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ABSTRACT: Mental Imagery based Brain-Computer In-
terfaces (MI-BCI) are a mean to control digital technolo-
gies by performing MI tasks alone. Throughout MI-BCI
use, human supervision (e.g., experimenter or caregiver)
plays a central role. While providing emotional and so-
cial feedback, people present BCIs to users and ensure
smooth users’ progress with BCI use. Though, very little
is known about the influence experimenters might have
on the results obtained. Such influence is to be expected
as social and emotional feedback were shown to influence
MI-BCI performances. Furthermore, literature from dif-
ferent fields showed an experimenter effect, and specif-
ically of their gender, on experimental outcome. We
assessed the impact of the interaction between experi-
menter and participant gender on MI-BCI performances
and progress throughout a session. Our results revealed
an interaction between participants gender, experimenter
gender and progress over runs. It seems to suggest that
women experimenters may positively influence partici-
pants’ progress compared to men experimenters.

INTRODUCTION

Brain Computer Interfaces (BCI) enable their users to
interact with technologies by extrapolating their inten-
tions from their brain activity, often measured using an
electroencephalogram (EEG). In this article, we focus on
Motor-Imagery based BCI (MI-BCI), for which users ex-
press their intentions by performing Motor Imagery (MI)
tasks, such as imagining hands or feet movements, to in-
duce change in their EEG signals and thereby control the
BCI. MI-BCI represent promising new technologies. For
example, they have proven effective for motor rehabili-
tation post-stroke and to interact with a variety of auto-
mated system, such as orthoses or video games [6].
Though, currently, MI-BCI do not enable a sufficient ac-
curacy in detecting which task is performed by users [17].
Indeed, on average when trying to differentiate one MI
task between two from EEG signals, a task is correctly
recognized 75% of the time [1]. Users need to train to ac-
quire MI-BCI skills. Yet, around 10 to 30% of users are
unable to control MI-BCI [1]. Therefore, MI-BCI are still
mainly at the development stage in research laboratories.
During MI-BCI experimental protocols, experimenters

play a key role [27]. For instance, they introduce the tech-
nology to the participants, provide the participants with
advice regarding how they should perform the MI tasks
and keep the participants motivated throughout the train-
ing. Nonetheless, social and emotional feedback were
shown to have an impact on user experience, motivation
and MI-BCI performances [23]. Despite the main role
that experimenters have in the experimental process and
the literature regarding the impact of social and emotional
feedback, no studies had yet been led in MI-BCI to eval-
uate the influence experimenters might have on their own
experimental results.

Experimenter related biases are an important concern in
other fields such as ethics and business [19], social re-
search [26] or economic research [32]. Literature from
different fields states that the characteristics of the ex-
perimenter may consciously or unconsciously affect the
responses, behavior and performance of the participants
via direct and/or indirect interactions [26]. For example,
it has been shown that an “experimenter demand effect”
occurs when participants unconsciously try to fit the ap-
propriate image reflected by the experimenter’s behavior
and therefore want to please and assist the experimenters
in obtaining their expected results [26].

Several studies investigating experimenters’ influence
suggested that gender-interaction could have an impact.
For example, the interplay of participant’s and experi-
menter’s genders may shape the experimenter demand ef-
fect. When participants are instructed by an opposite-sex
experimenter, they seem more likely to act in ways that
confirm the experimenter’s hypothesis [21]. Also, men
participants seem to elaborate more on autobiographical
memory report with women experimenters than with men
experimenters and more than women participants in gen-
eral [8]. Proxemics studies, which study the amount of
space that people feel necessary to set between them-
selves and others, provide another example of gender in-
teraction. Men participants seem to keep a shorter dis-
tance from women than from men [29]. Interestingly,
participants also prefer a larger comfort and reachabil-
ity distance when facing a virtual man as compared to a
virtual woman [9]. In a pain-related study, it was shown
that men participants tend to report higher cold presser
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pain to a man experimenter than to a woman one [14].
Studies revealed that there were no interactions in the
physiological data between experimenter gender and par-
ticipant gender, suggesting that men participants report-
ing lower pain report to women experimenters is prob-
ably due to psychosocial factors [2]. Another gender-
related example would be that defensiveness is associated
with greater relative left frontal activation in the pres-
ence of experimenters from the opposite-sex compared
to experimenters from the same-sex [12]. Thus, partici-
pants who work with an opposite-gender or same-gender
experimenter can have different neurological responses,
such as differences in their EEG recordings [5]. In a re-
cent study examining the effect of psychosocial factors
—particularly sex-related effects— on a given neurofeed-
back training (learning to modulate sensorimotor rhythm
power and theta/beta power), women participants trained
by women experimenters learned significantly less than
their counterparts trained by men experimenters [31].
These observations have led us to think that a gender-
interaction could have an effect on MI-BCI experimental
results. Yet, it has never been tested in BCI. The aim
of our study was therefore to investigate if there was an
influence of the experimenters’ gender depending on the
participants’ gender on MI-BCI performances and pro-
gression (i.e., the evolution of performances).

MATERIALS & METHODS

Participants:
Fifty-nine healthy MI-BCI naïve participants (29 women;
age 19-59; X̄=29; SD=9.318) completed the study. None
of them reported a history of neurological or psychiatric
disorder. Experimenters who conducted the study were
six scientists (3 women; age 23-37; X̄=29.2; SD=5.60)
among which two experienced in BCI experimentation
(1 woman) and four beginners who were trained to per-
form a BCI experiment beforehand. Each experimenter
was randomly assigned to 10 participants (5 women and
5 men) they had never met before the session.
Our study was conducted in accordance with the relevant
guidelines for ethical research according to the Decla-
ration of Helsinki. Both participants and experimenters
gave informed consent before participating in the study.
In order to avoid biased behavior, this study was con-
ducted using a deception strategy, partially masking the
purpose of the study. Participants were told that the study
aimed at understanding which factors (unspecified) could
influence BCI progress and/or performance. The study
has been reviewed and approved by Inria’s ethics com-
mittee, the COERLE.

Experimental protocol:
Each participant participated in one MI-BCI session of 2
hours. The session was organized as follows: (1) con-
sent form signature and completion of several question-
naires (around 20 min), (2) installation of the EEG cap
(around 20 min), (3) six 7-minute runs during which par-
ticipants had to learn to perform two MI-tasks, i.e., imag-

ine right or left hand movements, (around 60 min, in-
cluding breaks between the runs), (4) completion of post-
session questionnaires (around 5 min) and (5) uninstalla-
tion and debriefing (around 10 min).
During each run, participants had to perform 40 trials (20
per MI-task, presented in a random order), each trial last-
ing 8s. At t = 0s, an arrow was displayed on the screen.
At t = 2s, an acoustic signal announced the appearance
of a red arrow, which appeared one second later (at t =
3s) and remained displayed for 1.250s.The arrow pointed
in the direction of the task to be performed, namely left
or right to imagine a movement of the left hand or the
right hand. Finally, at t = 4.250s, a visual feedback was
provided in the shape of a blue bar, the length of which
varied according to the classifier output. Only positive
feedback was displayed, i.e., the feedback was provided
only when the instruction matched the recognized task.
The feedback lasted 3.75 s and was updated at 16Hz, us-
ing a 1s sliding window. After 8 seconds of testing, the
screen turned black again. The participant could then rest
for a few seconds, and a new cross was then displayed on
the screen, marking the beginning of the next trial.
The training protocol used was the Graz protocol [22]
which is divided into two steps: (1) training of the sys-
tem and (2) training of the user. The first two runs were
used as calibration in order to provide examples of EEG
patterns associated with each of the MI tasks to the sys-
tem. During the first two runs, as the classifier was not yet
trained to recognize the mental tasks being performed by
the user, it could not provide a consistent feedback. In or-
der to limit biases with the other runs, e.g., EEG changes
due to different visual processing between runs, the user
was provided with an equivalent sham feedback, i.e., a
blue bar randomly appearing and varying in length.
We respected the following recommendations: encour-
age the user to perform a kinesthetic imagination [20] and
leave users free to choose their mental imagery strategy
[13], e.g., imagining waving at someone or playing the
piano. Participants were instructed to find a strategy for
each task so that the system would display the longest
possible feedback bar. Instructions were written in ad-
vance so that all the participants started with the same
standardized information.

Questionnaires:
We assessed personality and cognitive profile for both ex-
perimenters and participants with the 5th edition of the 16
Personality Factors (16PF5) [4], a validated psychomet-
ric questionnaire to assess different aspects of personal-
ity and cognitive profile. This questionnaire identifies 16
primary factors of personality, such as anxiety or auton-
omy. Participants also completed a mental rotation test
measuring spatial abilities [30].

EEG Recordings & Signal Processing:
To record the EEG signals, 27 active scalp electrodes, ref-
erenced to the left ear, were used (Fz, FCz, Cz, CPz, Pz,
C1, C3, C5, C2, C4, C6, F4, FC2, FC4, FC6, CP2, CP4,
CP6, P4, F3, FC1, FC3, FC5, CP1, CP3, CP5, P3, 10-20
system). Electromyographic (EMG) activity of the hands
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were recorded using two active electrodes situated 2.5cm
below the skinfold on each wrists. Electrooculographic
(EOG) activity of one eye was recorded using three active
electrodes. Two, situated below and above the eye, aimed
at recording vertical movements of the eye and one on the
side aimed at recording horizontal movements. Physio-
logical signals were measured using a g.USBAmp (g.tec,
Austria), sampled at 256 Hz, and processed online using
OpenviBE 2.1.0 [25].
To classify the two MI tasks from EEG data, we used
participant-specific spectral and spatial filters. First, from
the EEG signals recorded during the calibration runs, we
identified a participant-specific discriminant frequency
band using the heuristic algorithm proposed by Blankertz
et al. in [3] (Algorithm 1 in that paper). Roughly, this
algorithm selects the frequency band whose power in
the sensorimotor channels maximally correlates with the
class labels. Here we used channels C3 & C4 after spatial
filtering with a Laplacian filter as sensorimotor channels,
as recommended in [blankertz08]. We selected a dis-
criminant frequency band in the interval from 5 Hz to 35
Hz, with 0.5Hz large bins. Once this discriminant fre-
quency band identified, we filtered EEG signals in that
band using a butterworth filter of order 5.
Then, we used the Common Spatial Pattern (CSP) algo-
rithm [24] to optimize 3 pairs of spatial filters, still using
the data from the two calibration runs. Such spatially fil-
tered EEG signals should thus have a band power which
is maximally different between the two MI conditions.
We then computed the band power of these spatially
filtered signals by squaring the EEG signals, averaging
them over a 1 second sliding window (with 1/16th second
between consecutive windows), and log-transforming the
results. This led to 6 different features per time window,
which were used as input to a Linear Discriminant Analy-
sis (LDA) classifier [18]. As mentioned above, this LDA
was calibrated on the data from the two calibration runs.
These filters and classifier were then applied on the sub-
sequent runs to provide online feedback.

Variables & Factors:
The aim was to evaluate the influence of the gender of
the experimenters and participants on the MI-BCI perfor-
mances of the participants over a series of 4 runs with
online BCI use. Two measures were used to assess the
performance of the participants.
The first is the mean classification accuracy which is tra-
ditionally used by the community. This measure repre-
sents the percentage of time windows from the feedback
periods that were correctly classified. However, this met-
ric only considers whether the classification was correct,
but not the quality of this classification, i.e., it does not
take into account the classifier output. Since our partici-
pants were instructed to train to obtain not only a correct
classification, but also a feedback bar as long as possi-
ble, we also studied a metric considering the feedback
bar length, i.e., the classifier output.
Thus, we also used the Quality-Weighted Accuracy
(QWA), the standard performance metric provided in

OpenViBE MI-BCI applications, which is inspired by the
SensoriMotor Rhythm quality score in [7]. To compute it,
we first summed the (signed) LDA classifier outputs (dis-
tance to the separating hyperplane) over all time windows
during a trial feedback period. If this sum sign matched
the required trial label, i.e. negative for left hand MI and
positive for right hand MI, then the trial was considered
as correctly classified, otherwise it was not. Finally, a run
QWA was estimated as the percentage of trials considered
as correctly classified using this approach.

RESULTS

Comparability of groups:
Among 59 participants, 3 outperformed the others (by
more than two SDs) both in term of mean classifica-
tion accuracy (Outliers X̄1=88.94, X̄2=90.36, X̄3=94.51;
X̄grp=59.33%; SDgrp=12.3) and QWA (Respectively,
outliers X̄1=98.13, X̄2=98.13, X̄3=99.38; X̄grp=62.78%;
SDgrp=16.2). Thus, the following analyzes are based on
the results of 56 participants (27 women).
Before it all, we verified if the distribution of the data
collected was normal using Shapiro-Wilk tests. The
variables describing the mental rotation scores (p=0.34),
anxiety (p=0.06) and autonomy (p=0.14) of our partici-
pants could be considered as having a normal distribu-
tion. Though, the mean classification accuracy of the runs
did not have a normal distribution (p≤10−3) and neither
did the QWA metrics for the different runs (p≤10−3).
We also checked that groups formed by participants’ gen-
der, i.e., “ParGender”, and experimenters’ gender, i.e.,
“ExpGender”, were comparable. We focused on mental
rotation scores (MRS), anxiety or autonomy, which were
shown to influence on MI-BCI performances [10]. Par-
ticipants with low MRS [30], anxious or non-autonomous
(both measured using the 16PF5 questionnaire [4]) were
shown to have lower MI-BCI performances than the oth-
ers [10, 28]. To check that groups were comparable, we
ran 2-way ANOVAs with “ExpGender*ParGender” as
independent variables and either mental rotation scores,
anxiety or autonomy as dependent variable.
Results indicate that groups are comparable in terms
of anxiety. Though, participants’ gender influence
their MRS [F(1,52)=17.47; p≤10−3, η2=0.25]. Men
(X̄men=0.072; SD=0.024) had higher MRS than women
(X̄women=0.045; SD=0.023), which is in accordance
with the literature [15]. Furthermore, participants train-
ing with men or women experimenters did not have
the same level of autonomy [F(1,52)=4.01; p=0.05,
η2=0.07]. Participants training with men experimenters
(X̄menExp=6.35; SD=1.74) were more autonomous
than participants training with women experimenters
(X̄womenExp=5.67; SD=1.66). Therefore, we controlled
for the influence of these variables in our subsequent
analyses by using them as covariates in ANCOVAs (see
paragraph Checking for confounding factors).

Participants’ and experimenters’ gender:
Then, we analyzed the influence of the gender of the
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experimenters and participants on the MI-BCI perfor-
mances of the participants over the runs, i.e., “Run”. To
do so, we performed a 3-way repeated measures mixed
ANOVAs with “ExpGender*ParGender*Run” as inde-
pendent variables and the repeated measures of perfor-
mance over the runs, i.e., mean classification accuracy or
QWA, as dependent variable. Even though the normality
of the data is a pre-requisite of an ANOVA, the ANOVA
is considered as robust against the normality assumption
and to the best of our knowledge no other non parametric
test enabled to perform such analysis.
First, we performed such ANOVA using the mean clas-
sification accuracy. Results revealed no simple effect of
“Run” [F(3,156)=1.53; p=0.22, η2=0.03], “ExpGender”
[F(1,52)=0.26; p=0.61, η2 ≤0.01] and “ParGender”
[F(1,52)=0.23; p=0.64, η2 ≤0.01]. They revealed
no interaction of “Run*ParGender” [F(3,156)=1.92;
p=0.13, η2=0.04], “Run*ExpGender” [F(3,156)=0.23;
p=0.87, η2=0.01] nor “ParGender*ExpGender”
[F(1,52)=0.92; p=0.34, η2=0.02]. Finally, the interaction
of “Run*ParGender*ExpGender” was not significant
either [F(3,156)=1.38; p=0.25, η2=0.03].
Next, we performed this same analysis using QWA. Re-
sults revealed no simple effect of “Run” [F(3,16)=1.81;
p=0.15, η2=0.03], “ExpGender” [F(1,52)=0.54; p=0.47,
η2=0.01] nor “ParGender” [F(1,52)=0.09; p=0.76,
η2=0.01]. They also revealed no interaction of
“Run*ExpGender” [F(3,16)=0.08; p=0.97, η2=10−2]
nor “ParGender*ExpGender” [F(1,52)=0.60; p=0.44,
η2=0.01]. Though, the “Run*ParGender” interaction
was significant [F(3,156)=5.98; p=0.001, η2=0.1]. Fig-
ure 1 represents the evolution of the participants’ QWA
depending on their gender.

Figure 1: QWA evolution depending on participants’ gender
with standard errors.

Finally, a significant “Run*ParGender*ExpGender” in-
teraction was found [F(3,156)=3.46; p=0.02, η2=0.06].
Figure 2 represents the participants’ QWA evolution de-
pending on the participants’ and experimenters’ gender.

Figure 2: Participants’ QWA evolution depending on the partic-
ipants’ and experimenters’ gender with standard errors.

Checking for confounding factors:
As stated before, the groups of participants formed using
the participants’ and experimenters’ gender had differ-
ences in terms of mental rotation scores and autonomy.
Therefore, we studied the potential impact these differ-
ences could have had on our results. First, we checked
if a correlation could be found between our metrics of
performances and these variables. No significant corre-
lation was found between the autonomy and the mean
classification accuracy (r = −0.11, p = 0.40) nor the
QWA (r = −0.07, p = 0.62). The correlations between
the mental rotation score and the mean classification ac-
curacy (r = −0.13, p = 0.36) or the QWA (r = −0.24,
p = 0.08) was not significant either.
Second, we ran a 3-way repeated measures mixed AN-
COVA with “ExpGender, ParGender, Run” as indepen-
dent variables and one of the measures of performance,
i.e., mean classification accuracy or QWA, as dependent
variable, with the autonomy, i.e., “Aut”, or the mental
rotation score, i.e., “MRs”, of the participants as covari-
ate. When performing the analysis on the QWA we did
not find any single effect or interaction of the autonomy
(“Aut” [F(1,51)=0.26; p=0.61, η2=10−2], “Aut*Run”
[F(3,15)=0.81; p=0.49, η2=0.02]) or the mental rota-
tion score (“MRs” [F(1,51)=1.75; p=0.19, η2=0.03],
“MRs*Run” [F(3,15)=1.52; p=0.21, η2=0.03]).
When investigating the mean classification accuracy
we found as well no impact of the autonomy
(“Aut” [F(1,51)=0.44; p=0.51, η2=10−2], “Aut*Run”
[F(3,15)=1.46; p=0.23, η2=0.03]) or the mental rota-
tion score (“MRs” [F(1,51)=1.05; p=0.31, η2=0.02],
“MRs*Run” [F(3,15)=1.35; p=0.26, η2=0.03]).

DISCUSSION

We analyzed results using two metrics of performances:
QWA which represented what the participants were in-
structed to improve during training, and the mean clas-
sification accuracy, a traditional measure of BCI perfor-
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mances. Initial differences in mental rotation scores and
autonomy between groups did not seem to bias results.
No influence of the experimenters’ and/or participants’
gender on the mean accuracy performance was found.
Though, we found a significantly different evolution
across runs of QWA between men and women partici-
pants (see Figure 1). Women participants seemed to start
the training with already good QWA, which decreased
on the second run and increased again during the last
run. Men participants however, started with rather low
QWA and then drastically improved on the second run
and then stagnated to reach slightly higher final QWA
performances than women.
In addition, experimenters’ gender seemed to have an in-
fluence on this previous interaction. Indeed, the evolu-
tion of the QWA appear to depend on participants’ and
experimenters’ gender (see Figure 2). On the one hand,
we found the same tendency for men participants to start
with lower QWA at the beginning of the session inde-
pendently of the experimenter’s gender. However, men
seemed to start with drastically lower QWA performances
when they were training with men experimenters. They
also seemed to have higher QWA performances through-
out the session when they were training with women
experimenters. On the other hand, women participants
seemed to start with higher QWA when training with men
experimenters, though their QWA performances tended
to drop throughout the session. However, when training
with women experimenters they seemed to have a great
increase in QWA during the last run.
Interestingly enough, this result does not match those of
a recently published neurofeedback study [31], in which
the combination woman experimenter–woman partici-
pant appeared to hamper the training outcomes of the last,
so that no learning effect was observed in this group.

CONCLUSION

We investigated the potential influence of the experi-
menters’ gender depending on the participants’ gender
on MI-BCI performances and progression throughout one
MI-BCI session. Six experimenters (3 men; 3 women)
trained 59 participants (30 men; 29 women). The general
observation emerging from this study is that women ex-
perimenters seemed to induce better QWA performance
progress for both men and women participants. Men par-
ticipants seemed to start with substantially lower perfor-
mances when they were training with men experimenters
compared to when they were training with women exper-
imenters. Also, even though women participants started
with higher performances when training with men exper-
imenters, their performances decreased throughout the
session when they overall increased when training with
women experimenters.
These results naturally need to be confirmed with larger
populations. Further analysis are also needed regarding
other variables that might influence or provide insights
on our results. This includes inter-experimenter variables

(e.g., traits or teaching competence), intra-experimenters
variables (e.g., appearance or states), inter and intra-
participants variables (e.g., traits or motivation) and inter-
action related variables (e.g., quantity and quality of in-
teraction between the participant and the experimenter).
There might also be other analysis to perform based
on different performance metrics reflecting user perfor-
mances independently of the classifier output [16].
Further formal studies investigating the role of the BCI
experimenter are needed. The need for research methods
that explicit larger amounts of influencing factors (such
as the experimenter) emerging from experimental proto-
col and context is equally important. In BCI research, the
instructions (i.e., what participants are instructed to do
during mental-imagery tasks) are rarely formalized, or in
any case they are not taken into account and mentioned
in papers. Similarly, protocols rarely evoke demonstra-
tions [17] (i.e. showing a demonstration of a successful
BCI use to the participant, together with a demonstration
of feedback during (in)correctly performed mental tasks).
It is common practice for studies in the BCI field not to
report experimenter gender, though the literature as well
as our results indicate that the influence of experimenters
should be considered carefully while designing and re-
porting experimental protocols.
Literature suggests several solutions to limit the poten-
tial bias arising from the experimenter [19, 26]. These
methods include: monitoring participant-experimenter
interaction; increasing the number and diversity of data
collectors; pre-testing the method and controlling ex-
pectancy; providing an extensive training for adminis-
trators/ data collectors; monitoring and standardizing the
behavior of experimenters with detailed protocol and pre-
written instructions for the participant; and statistically
controlling for bias.
Beyond the potential bias that could arise from the ex-
perimenters’ presence, the social and emotional feedback
that experimenters provide could benefit MI-BCI. Indeed,
the use of social feedback in BCI has been encouraged
[27]. Social presence and trust relationship between the
user and the experimenter are essential for maintaining
training motivation, which has been shown to facilitate
the BCI learning process [11].
During MI-BCI training, using a learning companion to
provide the participants with social and emotional feed-
back have proven effective in improving the user experi-
ence [23]. An advanced conversational agent could also
be used to supplement the role of the experimenter. It
would represent yet another interesting method to con-
trol and/or enhance the experimenter influence. Taking
experimenter-related factors into account might lead to a
conjoint progress of the global BCI performance and the
validity and understanding of BCI experimental results.
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