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A. Kimeswenger, O. Steinbach, G. Unger

Institut für Numerische Mathematik, TU Graz,
Steyrergasse 30, 8010 Graz, Austria

[arno.kimeswenger,o.steinbach,gerhard.unger]@tugraz.at

Abstract

We analyze the approximation of a vibro-acoustic eigenvalue problem for an elas-
tic body which is submerged in a compressible inviscid fluid in R

3. As model the
time-harmonic elastodynamic and the Helmholtz equation are used and are coupled
in a strong sense via the standard transmission conditions on the interface between
the solid and the fluid. Our approach is based on a coupling of the field equations
for the solid with boundary integral equations for the fluid. The coupled formulation
of the eigenvalue problem leads to a nonlinear eigenvalue problem with respect to
the eigenvalue parameter since the frequency occurs nonlinearly in the used bound-
ary integral operators for the Helmholtz equation. The nonlinear eigenvalue problem
and its Galerkin discretization are analyzed within the framework of eigenvalue prob-
lems for Fredholm operator-valued functions where convergence is shown and error
estimates are given. For the numerical solution of the discretized nonlinear matrix
eigenvalue problem the contour integral method is a reliable method which is demon-
strated by some numerical examples.

1 Introduction

In this paper we analyze a coupled finite and boundary element formulation for the numer-
ical solution of a resonance problem arising from fluid-solid interaction in R3 in the time
harmonic regime. We consider an elastic shell-like body in a compressible, inviscid fluid
which occupies the unbounded exterior region. A strong coupling between the solid and
fluid is assumed given by the equilibrium of forces and the equality of normal displacements
from both media. The acoustic pressure in the fluid is modeled by the Helmholtz equation
such that the formulation is also suitable for the mid-frequency range. A comprehensive
theoretical analysis of the underlying resonance problem was provided in [19, Chapt. IX],
however, appropriate coupled formulations for the numerical solution were not considered.
Our formulation of the resonance problem is based on a field equation for the solid and
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on boundary integral equations for the fluid. This formulation was first proposed in [8]
for source problems and later considered in [14]. The analysis of the formulation in [8] is
restricted to real frequencies and it is shown that the Fredholm alternative can be applied
in the natural energy spaces for the displacement and for the acoustic pressure. By using
the same arguments as in [8] we extend this result to non-real frequencies which have to
be considered for resonance problems since resonance modes of the fluid-solid interaction
have a damping in time and therefore the resonances are non-real. The coupled eigenvalue
problem formulation is nonlinear in the eigenvalue parameter since the frequency occurs
nonlinearly in the boundary integral equation for the acoustic pressure due to the nonlin-
ear dependence of the frequency in the fundamental solution of the Helmholtz equation.
The eigenvalue problem is analyzed in the framework of eigenvalue problems for holomor-
phic Fredholm operator-valued functions [15]. For the numerical solution of the eigenvalue
problem a conforming Galerkin discretization is applied and analyzed. General results for
the discretization of eigenvalue problems for holomorphic Fredholm operator-valued func-
tions [10, 11, 22, 23, 25] are used to show convergence and to give error estimates. The
discretized nonlinear algebraic eigenvalue problem can be solved with the contour integral
method [2] which is demonstrated by some numerical examples.

2 Formulations of the eigenvalue problem

We consider a homogeneous and isotropic elastic shell-like body ΩS ⊂ R3 which is sur-
rounded by a compressible inviscid fluid filling the exterior unbounded domain ΩF . The
domain ΩS is assumed to be a bounded Lipschitz domain with piecewise smooth bound-
ary. The interface between the elastic body ΩS and the fluid domain ΩF is denoted by Γ,
whereas Γi denotes the interior boundary of ΩS, see Fig. 1. We assume a time-harmonic
behavior of the displacement field U of the elastic body and of the acoustic pressure P of
the fluid of the form

U(x, t) = Re
(
e−iωtu(x)

)
, P (x, t) = Re

(
e−iωtp(x)

)
.

The Navier equations and the Helmholtz equation are used with the standard strong cou-
pling conditions between the elastic body and the fluid for the formulation of the eigenvalue
problem. In addition, a so-called outgoing radiation condition for the acoustic pressure in
ΩF is imposed. The eigenvalue problem reads then as follows: Find ω with Re(ω) > 0 and
u ∈ H1(ΩS), p ∈ H1

loc(ΩF ) with (u, p) 6= (0, 0) such that

−̺Sω
2u− µ∆u− (λ+ µ) grad divu = 0 in ΩS, Tu = 0 on Γi,

−∆p− k2p = 0 in ΩF , p is outgoing (1)

ρFω
2n · u = ∂np and Tu = −pn on Γ.

Here, λ and µ are the Lamé parameters, ρS and ρF are the density of the solid and the
fluid, respectively, ω is the frequency parameter and k = ω

c
is the wave number, where c is

the speed of sound in the fluid. T is the boundary stress operator and n denotes the unit
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normal vector on Γ pointing out of ΩS. As radiation condition for the pressure p we impose
that p is outgoing, i.e., p has outside of any ball Br0(0) which contains ΩS a representation
of the form

p(x) =

∞∑

n=0

n∑

m=−n

an,mh
1
n(kr)Y

m
n

(
x

‖x‖

)
for r = ‖x‖ ≥ r0, (2)

where h1
n are the spherical Hankel functions and Y m

n are the spherical harmonics. This
radiation condition describes outgoing waves and for positive wave-numbers this radiation
condition coincides with the Sommerfeld radiation condition, see [13, Remark 2.1].

In the next theorem first spectral properties of the eigenvalue problem (1) are summa-
rized.

Theorem 2.1. Let ω ∈ C, Re(ω) > 0, and u ∈ H1(ΩS), p ∈ H1
loc(ΩF ) with (u, p) 6= (0, 0)

be a solution of (1). Then:

a) Im(ω) ≤ 0.

b) If ω ∈ R, then Tu = 0 = n ·u on Γ and p = 0 in ΩF . Such an ω is referred to as Jones
frequency.

Proof. The assertions were proven in [16, Sect.2] for domains ΩS with smooth boundary
and for which R3 \ΩS is simply connected. Since the proof can be done in the same way if
ΩS is a Lipschitz domain and if it has homogeneous Neumann boundary conditions on Γi,
it is here omitted.

The imaginary part of an eigenvalue of (1) describes the damping of the correspond-
ing waves U and P in time, namely we have, U(x, t) = eIm(ω)t Re

(
e−iRe(ω)tu(x)

)
and

p(x, t) = eIm(ω)t Re
(
e−iRe(ω)tp(x)

)
. Therefore in practical applications those eigenvalues

are of particular interest for which the absolute value of the imaginary part is small.

Figure 1: Computational domain
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2.1 A coupled formulation of the eigenvalue problem

For the coupled formulation of the eigenvalue problem (1) we use a coupled field and
boundary integral formulation which was first presented and analyzed in [8] and which was
later considered in [14]. The focus in [8] were source problems and therefore the analysis
was restricted to positive frequencies. By using similar arguments as in [8] we will show that
the Fredholm property of the mentioned formulation is valid for all non-zero frequencies.
The coupled formulation of the eigenvalue problem is a nonlinear eigenvalue problem with
respect to the eigenvalue parameter ω since the wavenumber occurs nonlinearly in the
boundary integral equations. However, as we will show, the dependence of the eigenvalue
parameter in the coupled eigenvalue problem formulation is holomorphic.

For the representation of the acoustic pressure p in the unbounded region ΩF we use
the representation formula for outgoing solutions of the Helmholtz equation [20]

p(x) = −

∫

Γ

U∗
k (x,y)∂np(y)dsy +

∫

Γ

∂n,yU
∗
k (x,y)p(y)dsy, x ∈ ΩF , (3)

where

U∗
k (x,y) =

1

4π

eik‖x−y‖

‖x− y‖

is the fundamental solution. The application of the Dirichlet and Neumann trace to (3)
leads to the standard boundary integral equations [17, 21]

p(x) = − (V (k)∂np) (x) + σ(x)u(x) + (K(k)p)(x), for x ∈ Γ, (4)

∂np(x) = σ(x)∂np(x)− (K ′(k)∂np) (x)− (D(k)p)(x), for x ∈ Γ, (5)

where σ(x) = 1
2
almost everywhere on Γ, and where the single layer operator V (k), the

double layer operator K(k), the adjoint double layer operator K ′(k) and the hypersingular
operator D(k) are formally defined in the following way:

(V (k)t)(x) =

∫

Γ

U∗
k (x,y)t(y)dsy, (K(k)q)(x) =

∫

Γ

∂n,yU
∗
k (x,y)q(y)dsy

(K ′(k)t)(x) = ∂n,x

∫

Γ

U∗
k (x,y)t(y)dsy, (D(k)q)(x) = ∂n,x

∫

Γ

∂n,yU
∗
k (x,y)q(y)dsy.

Note that integral representations of the boundary integral operators are only valid for
sufficiently smooth t and q, see e. g., [17, Thm.7.4]. The boundary integral operators are
bounded mappings for the indicated function spaces below [17, Sect. 6.2]:

V (k) : Hs−1/2(Γ) → Hs+1/2(Γ), K(k) : Hs+1/2(Γ) → Hs+1/2(Γ),

K ′(k) : Hs−1/2(Γ) → Hs−1/2(Γ), D(k) : Hs+1/2(Γ) → Hs−1/2(Γ),

where s ∈ [−1/2, 1/2].
The coupled variational formulation of the eigenvalue problem (1) is derived by com-

bining the standard variational formulation for the displacement u in ΩS and boundary
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integral equations of the pressure p on Γ together with the transmission conditions. The
variational formulation of the linear elasticity part of (1) reads

−ρSω
2〈u,v〉ΩS

+ aS(u,v)− 〈Tu,v〉Γ = 0 for all v ∈ H1(ΩS) (6)

with

〈u,v〉ΩS
:=

∫

ΩS

u · v dx, 〈Tu,v〉Γ :=

∫

Γ

Tu · v ds,

aS(u,v) := λ

∫

ΩS

divu div v dx+
µ

2

∫

ΩS

(
∇u+ (∇u)⊤

)
:
(
∇v + (∇v)⊤

)
dx.

The latter term of the left hand side of (6) can be written as

〈Tu,v〉Γ = 〈−np,v〉Γ = 〈n[V (k)∂np− (
1

2
I +K(k))p],v〉Γ

= 〈n[ρFω
2V (k)n · u− (

1

2
I +K(k))p],v〉Γ,

(7)

where we have used the transmission conditions and the boundary integral equation (4).
Next, we take the boundary integral equation (5) for the pressure p, plug in the transmission
condition ρFω

2n · u = ∂np and divide by ρFω
2 which yields

〈(
1

2
I +K ′(k))n · u, q〉Γ +

1

ρFω2
〈D(k)p, q〉Γ = 0 for all q ∈ H1/2(Γ). (8)

Combining equations (6)-(8) yields the coupled eigenvalue problem which reads as follows:
Find ω ∈ C, Re(ω) > 0, and (u, p) ∈ H1(ΩS)×H1/2(Γ), (u, p) 6= (0, 0), such that

− ρSω
2〈u,v〉ΩS

+ aS(u,v)− 〈n[ρFω
2V (k)n · u],v〉Γ + 〈n[(

1

2
I +K(k))p],v〉Γ

+ 〈(
1

2
I +K ′(k))n · u, q〉Γ +

1

ρFω2
〈D(k)p, q〉Γ = 0 (9)

is satisfied for all (v, q) ∈ H1(ΩS)×H1/2(Γ). Note, that the eigenvalue parameter ω occurs
nonlinearly in the eigenvalue problem formulation (9) due to the wavenumber represen-
tation k = ω

c
. In the following we will consider the operator notation of the eigenvalue

problem (9):

A(ω)

(
u

p

)
:=

(
−ω2ρSMs + AS −N∗ρFω

2V (k)N N∗(1
2
I +K(k))

(1
2
I +K ′(k))N 1

ρFω2D(k)

)(
u

p

)
=

(
0

0

)
, (10)

where MS , AS : H1(ΩS) → H1(ΩS)
∗ are the operators related to the sesquilinear forms

〈·, ·〉ΩS
and aS(·, ·), and where N : H1(ΩS) → H−1/2(Γ) is defined by

Nu = n · u|Γ for u ∈ H1(ΩS).
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An eigenvalue problem of the form (10) is referred to as an eigenvalue problem for the
operator-valued function A.

In the rest of this subsection we will derive the essential properties of the operator-valued
function A which are needed for the spectral analysis of the eigenvalue problem (10). First
we will show that for ω ∈ C \ {0} the operator A(ω) defines a Fredholm operator from
H1(ΩS) × H1/2(Γ) =: H into H1(ΩS)

∗ × H−1/2(Γ) = H∗ where H is endowed with the
natural graph norm. For positive ω this was already shown in [8, Thm. 4.2].

Theorem 2.2. Let ω ∈ C \ {0}. Then, A(ω) : H → H∗ is a compact perturbation of the
operator

B(ω) :=

(
As +Ms 0

0 1
ρFω2 D̃(0)

)

where D̃(0) : H1/2(Γ) → H−1/2(Γ) is the modified hypersingular boundary integral operator
of the Laplace equation [21] defined as

〈D̃(0)u, v〉Γ := 〈D(0)u, v〉Γ + 〈u, 1〉Γ〈v, 1〉Γ for all u, v ∈ H1/2(Γ).

Further, the operator B(ω)−1 : H∗ → H exists and is linear and bounded.
If |Re(ω)| > | Im(ω)|, then B(ω) is elliptic, i. e., there exists a constant α(ω) > 0 such
that

Re〈B(ω)z, z〉H∗×H ≥ α(ω)‖z‖2 for all z ∈ H,

where 〈·, ·〉H∗×H denotes the duality pairing of H and H∗.

Proof. We can write

A(ω) = B(ω) +

(
(−1 − ω2ρs)MS −N∗ρFω

2V (k)N N∗(1
2
I +K(k))

ω2ρF (
1
2
I +K(k))N D(k)− D̃(0)

)

︸ ︷︷ ︸
=:C(ω)

. (11)

The invertibility of B(ω) : H1(ΩS)×H1/2(Γ) → H1(ΩS)
∗ ×H−1/2(Γ) follows from the

ellipticity of As +Ms : H
1(ΩS) → H1(ΩS)

∗ and of D̃(0) : H1/2(Γ) → H−1/2(Γ) [7, 21].
Let a := Re(ω) and b := Im(ω). If |a| > |b|, then for z = (u, p) ∈ H we have

Re〈B(ω)z, z〉 = 〈(AS +MS)u,u〉Ω +
a2 − b2

ρFd
〈D̃(0)p, p〉Γ ≥ α(ω)‖z‖2H,

where d = (a2 − b2)2 + (2ab)2.
The operator C(ω) : H1(ΩS)×H1/2(Γ) → H1(ΩS)

∗ ×H−1/2(Γ) is compact since each
block of C(ω) is compact: It is well known that MS : H1(Ω) → H1(Ω)

∗ and D(k)−D(0) :

H1/2(Γ) → H−1/2(Γ) [7] are compact, where from the latter follows that D(k) − D̃(0)
is compact. The off-diagonal blocks of C are compact since N : H1(ΩS) → H−1/2(Γ) is
compact because the mapping u 7→ u|Γ · n is bounded and linear from H1(ΩS) into L2(Γ)
and since L2(Γ) is compactly embedded in H−1/2(Γ).
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Next we show that A defines a holomorphic operator-valued function.

Theorem 2.3. The operator-valued function

A : C \ {0} → L(H,H∗),

ω 7→ A(ω)

is holomorphic.

Proof. It suffices to show that the map

ω 7→

〈
A(ω)

(
u

p

)
,

(
v

q

)〉

H∗×H

is holomorphic for all (u, p) and (v, q) for a dense subspace of H = H1(ΩS)×H1/2(Γ), see
Theorem III.3.12 in Kato [12] and the remark following it. Let us chooseC∞(Ω)∩H1(ΩS)×
C∞(Γ) as dense subspace of H1(ΩS) × H1/2(Γ), then we can use integral representations
of the duality product and of the boundary integral operators [17, Chapter 7, Thm. 7.4,
Thm. 9.15] and the holomorphy of the mapping ω 7→ A(ω) follows from the holomorphy

of the fundamental solution ei
ω
c ‖x−y‖

‖x−y‖
.

2.2 Notations and properties of eigenvalue problems for holo-

morphic Fredholm operator-valued functions

In this subsection we introduce notions and properties of eigenvalue problems for holo-
morphic Fredholm operator-valued functions where we follow [15, Appendix]. Let X, Y
be reflexive Hilbert spaces and let Λ ⊂ C be open and connected. We assume that
A : Λ → L(X, Y ) is a holomorphic operator-valued function and that A(λ) : X → Y
is Fredholm with index zero for all λ ∈ Λ. The set

ρ(A) := {λ ∈ Λ : ∃A(λ)−1 ∈ L(Y,X)}

is called the resolvent set of A. In the following we will assume that the resolvent set of A
is not empty. The complement of the resolvent set ρ(A) in Λ is called spectrum σ(A). A
number λ0 ∈ Λ is an eigenvalue of A if there exists a non-trivial x0 ∈ X \ {0} such that

A(λ0)x0 = 0.

x0 is called an eigenelement of A corresponding to the eigenvalue λ0. The spectrum σ(A)
has no cluster points in Λ [6, Corollary IV.8.4] and each λ ∈ σ(A) is an eigenvalue of A
which follows from the Fredholm alternative. The dimension of the nullspace kerA(λ0)
of an eigenvalue λ0 is called the geometric multiplicity. An ordered collection of elements
x0, x1, . . . , xm−1 in X is called a Jordan chain of λ0 if x0 is an eigenelement corresponding
to λ0 and if

n∑

j=0

1

j!
A(j)(λ0)xn−j = 0 for all n = 0, 1, . . . , m− 1 (12)
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is satisfied, where A(j) denotes the j–th derivative. The length of any Jordan chain of
an eigenvalue is finite [15, Lemma A.8.3]. The maximal length of a Jordan chain of the
eigenvalue λ0 is denoted by κ(A, λ0). Elements of any Jordan chain of an eigenvalue
λ0 are called generalized eigenelements of λ0. The closed linear hull of all generalized
eigenelements of an eigenvalue λ0 is called generalized eigenspace of λ0 and is denoted by
G(A, λ0). The dimension of the generalized eigenspace G(A, λ0) is finite [15, Prop. A.8.4]
and it is referred to as algebraic multiplicity of λ0.

2.3 Spectral properties of the coupled formulation of the eigen-

value problem

In Section 2.1 we have seen that every eigenvalue of the eigenvalue problem (1) is an
eigenvalue of the eigenvalue problem for the operator-valued function A. Vice versa, not
every eigenvalue of the eigenvalue problem forA is an eigenvalue of (1). If k is an eigenvalue
of the Neumann eigenvalue problem of the Laplacian in the bounded domain R3 \ΩF , then
kerD(k) = ker

(
1
2
I +K(k)

)
6= {0} [5, Prop. 1.2] and (0, p), p ∈ kerD(k)\{0}, is obviously

an eigenelement of the eigenvalue problem for A. However, for this eigenelement of A the
transmission condition Tu = n · p of the eigenvalue problem (1) is not fulfilled.

In the next theorem we show that if kerD(k) = {0}, then an eigenvalue of the eigenvalue
problem for A is also an eigenvalue of (1).

Theorem 2.4. Let Re(ω) > 0 and (u, p) ∈ H1(ΩS)×H1/2(Γ). Assume that

A(ω)

(
u

p

)
=

(
0

0

)
. (13)

If ker(D(k)) = {0}, then (ω,u, p̃) is a solution of the eigenvalue problem (1), where p̃ is
defined by

p̃(x) = −

∫

Γ

U∗
k (x,y)ρFω

2n · u(y)dsy +

∫

Γ

∂n,yU
∗
k (x,y)p(y)dsy, x ∈ ΩF , (14)

and it holds p̃ = p on Γ.

Proof. Let Re(ω) > 0 and assume that (u, p) ∈ H1(ΩS) × H1/2(Γ) is a solution of (13).
Further, let p̃ be defined by (14). The assumption ker(D(k)) = {0} implies that we
can construct a unique outgoing solution p̂ ∈ H1

loc(ΩF ) of the Neumann problem of the
Helmholtz equation

−∆p̂− k2p̂ = 0 in ΩF , ∂np̂ = ρFω
2n · u on Γ, (15)

by using the boundary integral equation (5) in the form

D(k)p̂ = −(
1

2
I +K ′(k))ρFω

2n · u, (16)
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for the determining p̂ on Γ, see [20]. Then

p̂(x) = −

∫

Γ

U∗
k (x,y)ρFω

2n · u(y)dsy +

∫

Γ

∂n,yU
∗
k (x,y)p̂(y)dsy, x ∈ ΩF ,

is the unique outgoing solution of (15). The second equation of (13) gives

D(k)p = −(
1

2
I +K ′(k))ρFω

2n · u, (17)

hence D(k)p = D(k)p̂. Because D(k) is assumed to be injective the Fredholm property of
D(k), see e. g. [17, Thm. 7.8], implies that p = p̂ on Γ. Hence p̃ = p̂ in ΩF and p = p̃ on
Γ. Combining the boundary integral equation (5) for p̃ and equation (17) with p = p̃ we
see that the transmission condition ∂np̃ = ρFω

2n · u on Γ is fulfilled.
The first equation of (13) implies that u solves the problem

−̺Sω
2u− µ∆u− (λ+ µ) graddivu = 0 in ΩS

Tu = 0 on Γi, Tu = n

(
ρFω

2V (k)n · u−

(
1

2
I +K(k)

)
p

)
on Γ.

Since ∂np̃ = ρFω
2n ·u it follows from the boundary integral equation (4) and from p = p̃ on

Γ that −p = V (k)ρFω
2n · u−

(
1
2
I +K(k)

)
p. This shows that the transmission condition

Tu = −pn on Γ is fulfilled.

Corollary 2.5. Let Re(ω) > 0 and (u, p) ∈ H1(ΩS) × H1/2(Γ), (u, p) 6= (0, 0). Assume
that

A(ω)

(
u

p

)
=

(
0

0

)
. (18)

Then:

a) Im(ω) ≤ 0.

b) If Im(ω) = 0, i. e. ω > 0, then one of the following assertions holds:

i) ω is a Jones frequency, i. e., Tu = 0 and n · u = 0 on Γ and p = 0 in ΩF .

ii) ker (D(k)) 6= {0}

c) If Im(ω) < 0, then ω is an eigenvalue of (1) if ker (D(k)) = {0}.

Proof. Assertion c) has already been shown in Thm. 2.4. For Im(ω) > 0 the operator D(k)
is elliptic, see [1]. Thm. 2.1 shows that (1) has no eigenvalue ω with Im(ω) > 0 therefore
assertion a) is a direct consequence of Thm. 2.4. Assertion b) follows also from Thm. 2.1
and Thm. 2.4.

Remark 2.6. In practical computations the eigenvalues for the operator-valued function
D can be computed simultaneously when the eigenvalues of A are computed since D is the
lower right block of A. In the case that ω ∈ σ(A) and ω

c
∈ σ(D), one has to check if the

transmission conditions of (1) are fulfilled in order to decide if ω is an eigenvalue of (1).
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For our numerical analysis of the approximation of the eigenvalues of A the consider-
ation of the eigenvalue problem for the adjoint operator-valued function of A is necessary
which is defined by

A∗(ω) := (A(ω))∗.

The adjoint of the operator A(ω) is defined with respect to the sesquilinear form, i. e.,

〈
A(ω)

(
u

p

)
,

(
v

q

)〉

H∗×H

=

〈(
u

p

)
, (A(ω))∗

(
v

q

)〉

H×H∗

.

Lemma 2.7. For ω ∈ C \ {0} it holds

(A(ω))∗ = A(−ω), i. e. A∗(ω) = A(−ω).

Proof. It suffices to show that 〈A(ω)(u, p), (v, q)〉H∗×H = 〈(u, p),A(−ω)(v, q)〉H×H∗ holds

for all elements (u, p), (v, q) of a dense subspace of H = H1(ΩS)×H1/2(Γ). Assume that
(u, p), (v, q) ∈ C∞(Ω) ∩H1(ΩS)× C∞(Γ). By definition of A we have

〈
A(ω)

(
u

p

)
,

(
v

q

)〉

H∗×H

= 〈(−ω2ρSMs + AS)u,v〉Ω − 〈N∗V (k)Nu,v〉Ω

+ 〈N∗(
1

2
I +K(k))p,v〉Ω + 〈(

1

2
I +K ′(k))N)u, q〉Γ + 〈

1

ρFω2
D(k)p, q〉Γ. (19)

Since MS and AS are self-adjoint with respect to 〈·, ·〉Ω and ρS is real, we obtain from
−ω2 = −(−ω)2 for the first sesquilinear form of (19)

〈(−ω2ρSMs + AS)u,v〉Ω = 〈u, (−(−ω)2ρSMs + AS)v〉Ω.

For the remaining terms of the right hand side of (19) we get with eik = e−ik by using
integral representations of the sesquilinear forms and of the boundary integral operators

〈N∗ρFω
2V (k)Nu,v〉ΩS

= 〈ρFω
2V (k)Nu, Nv〉Γ = 〈Nu, ρF (−ω)2V (−k)Nv〉Γ

= 〈u, N∗ρF (−ω)2V (−k)Nv〉ΩS

〈N∗(
1

2
I +K(k))p,v〉ΩS

= 〈(
1

2
I +K(k))p,Nv〉Γ = 〈p, (

1

2
I +K ′(−k))Nv〉Γ

〈(
1

2
I +K ′(k))N)u, q〉Γ = 〈Nu, (

1

2
I +K( − k))q〉Γ = 〈u, N∗(

1

2
I +K(−k))q〉ΩS

〈
1

ρFω2
D(k)p, q〉Γ = 〈p,

1

ρF (−ω)2
D(−k)q〉Γ,

from which the assertion follows.

Since A(ω) is a a Fredholm operator with index 0 we conclude from (A(ω))∗ = A(−ω)
that if ω ∈ σ(A), then also −ω ∈ σ(A).
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3 Galerkin approximation and convergence analysis

The variational formulation of the eigenvalue problem for the operator-valued function A
reads: Find ω ∈ C with Re(ω) > 0 and (u, p) ∈ H1(ΩS)×H1/2(Γ) 6= (0, 0) such that

〈
A(ω)

(
u

p

)
,

(
v

q

)〉

H∗×H

= 0 (20)

is satisfied for all (v, q) ∈ H1(ΩS) × H1/2(Γ). For the approximation of (20) we consider
a piecewise linear finite element space Sh(ΩS) which are defined with respect to some
admissible triangulation of ΩS and matching piecewise linear boundary element space Sh(Γ)
on Γ. The Galerkin approximation of the eigenvalue problem (20) reads then as follows:
find ωh ∈ C and (uh, ph) ∈ Sh(ΩS)× Sh(Γ), (uh, ph) 6= (0, 0), such that

〈
A(ωh)

(
uh

ph

)
,

(
vh

qh

)〉

H∗×H

= 0 (21)

is satisfied for all (vh, qh) ∈ Sh(ΩS)× Sh(Γ).
For the numerical analysis of the Galerkin variational eigenvalue problem (21) we rewrite

the variational formulation (20) in terms of the inner product in H and use an equivalent
operator formulation of the Galerkin eigenvalue problem (21). This will allow us to apply
directly the general results of the convergence theory for the Galerkin approximation of
eigenvalue problems for holomorphic Fredholm operator-valued functions [11, 25]. Let
J : H → H∗ be the Riesz map, then the operator I : H → H∗ defined by I· = J · is a linear
isometry. So we can identify the anti-duality product 〈·, ·〉H1(ΩS)×H1/2(Γ)

∗
×H1(ΩS)×H1/2(Γ)

with the scalar product (·, ·)H, i. e.,

〈A(ω)z, w〉H∗×H = (I∗A(ω)z, w)H

holds for all z, w ∈ H. Since I∗ : H∗ → H is an isomorphism, the operator-valued functions
A and I∗A have the same eigenvalues and eigenspaces. Let Ph be the orthogonal projection
from H onto Hh := Sh(ΩS)× Sh(Γ). Because of the orthogonality property of Ph we have
(PhI

∗A(ωh)zh −I∗A(ωh)zh, wh)H = 0 for all zh, wh ∈ Hh, from which follows that (ωh, zh)
is an eigenpair of (21) if and only if it is an eigenpair of the eigenvalue problem

PhI
∗A(ωh)zh = 0. (22)

The eigenvalue problem (22) can be interpreted as an operator representation of the
Galerkin eigenvalue problem (21).

Let us summarize the properties of I∗A(ω) and its approximations PhI
∗A(ω) which

are required in order that we can apply the convergence results and error estimates from
[11, 25] to the eigenvalue problem (22), see [11, p. 390] and [25, p. 30]:

P1) ρ(I∗A) 6= ∅,
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P2) PhI
∗A(ω) : Hh → Hh are Fredholm operators with index zero for every ω ∈ C \ {0},

P3) for every fixed compact Λ0 ⊂ C \ {0} there exist a C > 0 and an h0 > 0 such that
‖PhI

∗A(ω)‖ ≤ C for all ω ∈ Λ0 and h ∈ (0, h0],

P4) for all ω ∈ C \ {0} and z ∈ H we have

‖PhI
∗A(ω)Phz −PhI

∗A(ω)z‖ → 0 as h → 0,

P5) the sequence (PhI
∗A(ω)) converges for all ω ∈ C\{0} regularly to I∗A(ω) as h → 0 for

all ω ∈ C\{0}, i. e., if (zh̃) is a subsequence of a bounded sequence (zh), zh ∈ Hh, such
that Ph̃I

∗A(ω)zh̃ → Ph̃z as h̃ → 0 for some z ∈ H, then there exists a subsequence
(zh′) of (zh̃) and a z′ ∈ H such that Ph′zh′ → z′ as h′ → 0.

The properties P1)- P4) are obviously fulfilled. The regular convergence of the sequence
(PhI

∗A(ω)) to I∗A(ω) as h → 0 follows from the decomposition A(ω) = B(ω) + C(ω)
as given in (11) with R(I∗B(ω)) = H and from the fact that PhI

∗B(ω) converges stably
to I∗B(ω) and PhI

∗C(ω) converges compactly to I∗C(ω), see [24, Prop. 5]. Here the
convergence has to be understood as pointwise convergence which is fulfilled because Ph

converges pointwise to the identity IH due to the approximation properties of Sh(ΩS) [3,
Sect. 4.4] and of Sh(Γ) [18, Thm. 2.3]. The convergence PhI

∗B(ω) to I∗B(ω) is stable since
(PhI

∗B(ω))−1 : Hh → Hh exists and is uniformly bounded for sufficiently small h > 0.
The compact convergence of PhI

∗C(ω) to I∗C(ω) is obvious since C(ω) is compact.
The approximation quality of an eigenvalue ωh and of the corresponding eigenfunctions

(uh, ph) of the Galerkin eigenvalue problem (21) depends on the approximation property
of the ansatz space Sh(Ω) × Sh(Γ) with respect to the generalized eigenspaces G(I∗A, ω)
and G((I∗A)∗, ω) of the eigenvalue ω ∈ σ(I∗A) which is approximated. We want to recall
that σ(A) = σ(I∗A), G(A, ω) = G(I∗A, ω) and G(A∗, ω) = G((I∗A)∗, ω). For ω ∈ σ(A)
we define

δh(ω) := max
(v,q)∈G(A,ω),

‖v‖2
H1(ΩS )

+‖q‖2
H1/2(Γ)

=1

dist((v, q),Sh(ΩS)× Sh(Γ)),

δ∗h(ω) := max
(v,q)∈G(A∗ ,ω),

‖v‖2
H1(ΩS )

+‖q‖2
H1/2(Γ)

=1

dist((v, q),Sh(ΩS)× Sh(Γ)),

where

dist((v, q),Sh(Ω)× Sh(Γ)) := inf
(vh,qh)∈Sh(ΩS)×Sh(Γ)

√
‖v − vh‖2H1(ΩS)

+ ‖q − qh‖2H1/2(Γ)

for (v, q) ∈ H1(ΩS)×H1/2(Γ).

Theorem 3.1. Let ω ∈ σ(A). Then:

a) There exists a sequence (ωh) of the eigenvalues of eigenvalue problem (22) such that
ωh → ω as h → 0.
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b) Let Λ ⊂ C\{0} be compact set such that the boundary ∂Λ ⊂ ρ(A) and Λ∩σ(A) = {ω}.
Then there exists a h0 > 0 and a constant c > 0 such that for all 0 < h ≤ h0 we have

|ωh − ω| ≤ c (δh(ω)δ
∗
h(ω))

1/κ for all ωh ∈ σ(PhI
∗A) ∩ Λ,

where κ = κ(A, ω) is the maximal length of a Jordan chain corresponding to ω. Fur-
ther, for any (uh, ph) ∈ kerPhI

∗A(ωh) with ‖(uh, ph)‖H1(ΩS)×H1/2(Γ) = 1 there exists a
constant C > 0 such that

inf
(u,p)∈kerA(ω)

‖(uh, ph)− (u, p)‖H ≤ C

(
|ωh−ω|+ max

(v,q)∈kerA(ω)
‖(v,q)‖H=1

dist((v, q),Sh(Ω)×Sh(Γ))

)
.

Proof. The assertions follows from [11, Thm.1] and [25, Thm. 4].

Theorem 3.2. Let ω ∈ σ(A) and let Λ ⊂ C \ {0} be as in Theorem 3.1. Assume that

there exists a δ ∈ (0, 1] such that G(A, ω), G(A∗, ω) ⊂ H1+δ(Ω) × H
1/2+δ
pw (Γ). Then there

exists a h0 > 0 and a constant c > 0 such that for all 0 < h ≤ h0 we have

|ω − ωh| ≤ ch2δ/κ(A,ω) for all ωh ∈ σ(PhI
∗A) ∩ Λ.

Furthermore, for any (uh, ph) ∈ kerPhI
∗A(ωh) with ‖(uh, ph)‖H1(ΩS)×H1/2(Γ) = 1 there

exists a constant C > 0 such that

inf
(u,p)∈kerA(ω)

‖(uh, ph)− (u, p)‖H1(ΩS)×H1/2(Γ) ≤ Chα, α = min{1, δ/κ(A, ω)}.

Proof. The error estimates are a direct consequence of Thm. 3.1 and the approximation
properties of Sh(ΩS) and Sh(Γ), see [3, Sect. 4.4] and [18, Thm. 2.3].

4 Numerical examples

The Galerkin eigenvalue problem (21) results in a nonlinear matrix eigenvalue problem of
the form

Ah(ωh)

(
u
p

)
= 0, (23)

where

Ah(ωh) =

(
−ω2

hρSM
FEM
h + AFEM

h − ρFω
2
hN

⊤
h V

BEM
h (kh)Nh N⊤

h (
1
2
MBEM

h +KBEM
h (kh)

(1
2
MBEM

h + (KBEM
h (kh))

⊤)Nh
1

ρFω2
h
DBEM

h (kh)

)
,

where MFEM
h and AFEM

h are the finite element mass and stiffness matrices and V BEM
h (kh),

MBEM
h , KBEM

h (kh), and DBEM
h (kh) are the boundary element matrices, see, e. g., [21]. The

matrix Nh corresponds to the application of the normal component on the boundary, u|Γ ·n.
For the numerical solution of (23) we use the contour integral method [2]. This method

is suitable for the extraction of all eigenvalues which lie inside of a predefined contour in
the complex plane. An alternative approach for the numerical solution of the nonlinear
eigenvalue problem (23) is presented in [4] which is based on a polynomial interpolation of
Ah(ωh).
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Example 4.1 As first numerical example we consider as solid domain ΩS the spherical
shell ΩS := {x ∈ R3 : 4.95 < ‖x‖ < 5} and the fluid domain ΩF := {x ∈ R3 : ‖x‖ > 5}.
For this example analytical approximations of the eigenvalues are derived in [9, Chapt.
10]. The material constants for the shell are E = 207 · 109, ν = 0.3 and ρS = 7669. For
the surrounding fluid, we choose c = 1483.24 and ρS = 1000. The eigenvalues of practical
interest are those which are lying close to the real axis, since the imaginary part of an
eigenvalue corresponds to the damping of the related eigenfunction in time. As domain of
interest for the eigenfrequencies f = ω/(2π) we have chosen the strip {f : 1 < Re(f) <
90, | Im(f)| < 5}. In this domain two analytical approximations are given in [9, Chapt. 10].
The results of the approximations of these eigenvalues for different meshes are presented in
Table 1. The approximations of the eigenvalues on the two finest mesh-levels match well
with the analytical approximations.

h/dof 0.5/8794 0.25/36792 0.15/109455 anal. approx.

fh,1 (58.19,-1.44) (55.82,-1.18) (55.65,-1.16)

56.02
fh,2 (58.26,-1.45) (55.84,-1.18) (55.66,-1.16)
fh,3 (58.50,-1.48) (55.84,-1.18) (55.66,-1.16)
fh,4 (58.62,-1.50) (56.03,-1.20) (55.78,-1.18)
fh,5 (58.96,-1.54) (56.04,-1.21) (55.78,-1.18)
fh,6 (83.61,-1.00) (71.47,-0.32) (70.45,-0.31)

70.52

fh,7 (83.73,-1.03) (71.53,-0.32) (70.53,-0.31)
fh,8 (84.51,-1.08) (71.63,-0.32) (70.53,-0.31)
fh,9 (85.10,-1.14) (71.63,-0.32) (70.54,-0.31)
fh,10 (85.47,-1.16) (71.72,-0.33) (70.60,-0.31)
fh,11 (85.94,-1.18) (71.74,-0.33) (70.61,-0.31)
fh,12 (87.96,-1.37) (71.80,-0.34) (70.62,-0.32)

Table 1: Eigenvalues of Ah of Example 4.1 in the strip {f : 1 < Re(f) < 90, | Im(f)| < 5}.

The eigenfunctions corresponding to the eigenvalues f1 to f5 and f6 to f12 are axis-
symmetric, respectively. In Fig. 2, plots of the deformation of the spherical shell ΩS

induced by the eigenfunctions corresponding to fh,1 and fh,6 are given.

Example 4.2 For the second numerical example we use a simplified submarine model
with length 12m, diameter 2m and wall thickness 0.1m. As material for the submarine
model we haven chosen titan and for the fluid water. In Table 2 the approximations of
the eigenvalues in the strip {f : 1 < Re(f) < 120, | Im(f)| < 5} are given for different
mesh-sizes. Note that the eigenvalue f3,h it is not an eigenvalue of the original eigenvalue
problem (1) since (uh,3, ph,3) is an approximation of (0, p) where p is an eigenfunction
corresponding to the eigenvalue k = 2πf3/cF of the Neumann Laplacian eigenvalue problem

14



Figure 2: Undeformed spherical shell ΩS and deformations of ΩS induced by the eigenmodes
corresponding to fh,1 and fh,6 for h = 0.15.

Figure 3: Undeformed submarine model ΩS, where one half of the hull is not shown, and
deformations induced by the eigenmodes corresponding to fh,1, fh,2 and fh,4 for h = 0.2.

of the domain R3 \ ΩS. Fig. 3 shows the deformations of the submarine model which are
induced by the eigenmodes corresponding to the eigenvalues fh,1, fh,2 and fh,4.

h/dof 0.4/4809 0.2/19114 0.1/74523

fh,1 (54.18,-6.0e-3) (52.41,-6.5e-3) (52.12,-6.9e-3)
fh,2 (59.11,-1.1e-2) (57.48,-1.1e-2) (57.25,-1.2e-2)
fh,3 (65.71,-1.0e-8) (65.53,-1.1e-8) (65.48,-1.5e-8)
fh,4 (126.6,-3.5e-1) (119.9,-2.4e-1) (118.6,-2.2e-1)

Table 2: Eigenvalues of Ah of Example 4.2 in the strip {f : 1 < Re(f) < 120, | Im(f)| < 5}.

5 Conclusions

In this paper, a coupled finite element and boundary element formulation for the eigen-
value problem of the solid-fluid interaction is proposed and analyzed. This formulation
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is in particular suitable for the mid frequency regime since the acoustic pressure is mod-
eled by the Helmholtz equation instead of the Laplace equation. The coupled eigenvalue
problem is a nonlinear eigenvalue problem with respect to eigenvalue parameter, but it is
holomorphic and fits in the framework of eigenvalue problems for holomorphic Fredholm
operator-valued functions. Within this framework convergence and error estimates of the
Galerkin discretization of the coupled eigenvalue problem have been derived. The contour
integral method is a suitable method for the numerical solution of the discretized coupled
eigenvalue problem. It provides all eigenvalues and corresponding eigenvectors which lie
inside a predefined contour in the complex plane.
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Birkhäuser, Basel, 1990.

[7] R. Hiptmair: Coercive combined field integral equations. J. Numer. Math. 11 (2003)
115–133.

[8] G. C. Hsiao, R. E. Kleinman, G. F. Roach: Weak solutions of fluid-solid interaction
problems. Math. Nachr. 218 (2000) 139–163.

[9] M. C. Junger, D. Feit: Sound, structures, and their interactions. The MIT Press,
Cambridge, Massachusetts, 1972.

[10] O. Karma: Approximation in eigenvalue problems for holomorphic Fredholm operator
functions. I. Numer. Funct. Anal. Optim. 17 (1996) 365–387.

[11] O. Karma: Approximation in eigenvalue problems for holomorphic Fredholm operator
functions. II. Numer. Funct. Anal. Optim. 17 (1996) 389–408.

16



[12] T. Kato: Perturbation Theory for Linear Operators. Classics in Mathematics,
Springer, Berlin, 1995.

[13] S. Kim, J. E. Pasciak: The computation of resonances in open systems using a perfectly
matched layer. Math. Comp. 78 (2009) 1375–1398.

[14] A. Kimeswenger, O. Steinbach, G. Unger: Coupled finite and boundary element meth-
ods for vibro–acoustic interface problems. In: Domain Decomposition Methods in
Science and Engineering XXI, (J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi,
O. Widlund eds.). Lecture Notes in Computational Science and Engineering, published
electronically, 2013.
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