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ABSTRACT: A brain-computer interface (BCI) is an
highly interdisciplinary research topic which involved
psychology, signal processing, machine learning, medi-
cal engineering etc. A steady-state visually evoked po-
tentials (SSVEP) paradigm-based Brain Computer Inter-
face systems are the most promising and reliable commu-
nication systems for people with disabilities on clinical
purposes. This paper proposes the use of Deep Neural
Network models for decoding the data acquired through
visual-based Electroencephalography (EEG). in this pa-
per, we concentrate on two points with the Convolutional
Neural Network The first is decoding of the EEG data
using the raw signal (time domain) and the extracted fre-
quency features of the signal after Fourier analysis. The
second point explored in this paper is the evaluation of the
selection of electrodes on the performance of the Deep
Neural Network models for raw signals (time domain
data). We have also compared the performance of Canon-
ical Correlation analysis of the data with the Deep Neural
Network models.

INTRODUCTION

Brain-Computer Interface (BCI) systems provide direct
communication between the human brain and an external
device. BCI systems are applicable in different areas such
as spellers [1], for operating wheelchairs [2], computer
games, virtual reality and controlling home environment
[3]. BCI systems make use of different types of signals
comprising of slow cortical potentials, P300, sensorimo-
tor rhythms and SSVEPs [1]. SSVEPs are recorded over
the scalp from repetitive external stimulations. SSVEPs
are of the same frequency as of the stimulus. In other
words, looking at an image of frequency 12Hz with 0°
phase angle will generate a signal of the same value and
angle in the occipital region of the brain. High Signal-To-
Noise (SNR) ratio, high Information Transfer Rate (ITR),
little user training and less susceptibility to eye move-
ments are the advantages leading to the usage of SSVEPs
in BCIs over other types of signals [4].
Essentially, a visual BCI has four sections, signal acqui-

sition, signal processing, signal classification, and out-
put device which realizes the selected commands by the
user of BCI indicated by Figure 1. The principal task in

Figure 1: Working of SSVEP-based BCI [8]

this process is signal classification with reliable perfor-
mance in regards to accuracy and response time. A num-
ber of methods for detection of SSVEPs have been used
such as Minimum-Energy Combination (MEC), Canoni-
cal Correlation Analysis (CCA), Support Vector Machine
(SVM) and Power Spectral Density Analysis (PSDA).
These methods would require the data to be refined by
human intervention. The use of Deep Neural Networks
in BCIs has gained popularity due to its robust nature and
the capability of extracting high-level features from the
data without prior knowledge [7][11]. Use of Convolu-
tional Neural Networks (CNN) for image classification
and recognition provides high accuracy, automatic fea-
ture extraction with the multiple convolutional layers thus
making it the perfect choice for EEG data. The EEG data
received from a variety of participants having different
features makes CNN an apt solution for classification of
the signals. Despite of high performance of CNN, it has
a necessity to have a large training dataset so that no or
less over-fitting occurs in the model, which is a challenge
in the EEG data, given it’s relatively smaller size.
In this paper, there are two parts of the implementation,
the first is the impact on performance, when giving raw
signal as input and extracted frequency features as input.
The second part compares the performance of the selec-
tion of electrodes and without the selection of electrodes
in the input.

MATERIALS AND METHODS

EEG Dataset: This paper uses data published in [5],
which is recorded using a 40-target BCI speller. The BCI
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speller consists of a 5x8 matrix of 40 characters, out of
which 26 are English alphabets, 10 digits, and 4 sym-
bols. A total number of 35 participants (27 naive, 8 expe-
rienced) participated in the experiment. The experiment
had 6 blocks, each comprising of 40 trials corresponding
to the 40 symbols on the screen. One trial total length is 6
s, with 0.5 s target cue and last 0.5 s was blank. There was
a gap of several minutes between two consecutive blocks
for the participant to rest. The 40 frequencies recorded
are from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The
whole-head EEG data is recorded using 64 electrodes ac-
cording to the 10-20 system at a sampling rate of 1000Hz
as shown in Figure 2. The recorded data epochs were
downsampled to 250 Hz as the upper limit of the SSVEP
range is 90 Hz. No pre-processing has been performed on
the data. At the end of the experiment, the data available
for each participant is 240 trials i.e. 6 blocks x 40 trials.
Each trial consisted of 64 channels x 1500 time points.

Figure 2: Electrode placement

Canonical Correlation Analysis: Canonical Correla-
tion Analysis is a multivariable statistical method which
finds a correlation between two sets of variables. It was
introduced in the field of EEG analysis by Lin et. al
in [9]. In the case of SSVEP-based EEG signals, there
are two variables, X which is the recorded multi-channel
EEG signal and Y refers to the reference signals. The fre-
quency recognition is obtained by calculating the canon-
ical correlation between multi-channel SSVEP and the
reference signals. The frequency which has the max-
imum correlation value in the reference signals is the
same as the frequency of the multi-channel SSVEP sig-
nal. CCA helps in reducing a large amount of information
into useful information by maximizing the correlation.

Convolutional Neural Network: Recently CNNs have
attained success and popularity in so many different
fields. The different layers of CNN help in dimension-
ality reduction, in turn, reducing the number of training
parameters which will increase the training speed and im-
prove performance. A CNN consists of an input layer,
convolutional layer, activation, pooling layer, and fully
connected layer. Various parameters such as Dropout and
Batch Normalization can be used for further optimization

Table 1: CNN for Time Domain
Layer / Parameter Number / Size
Conv1D 32 filters
MaxPooling1D 2
Dropout 0.5
BatchNormalization -
Conv1D 64 filters
MaxPooling1D 2
Dropout 0.5
BatchNormalization -
Flatten -
Dense 256 filters
Dense 512 filters, 40 output

in the CNN model. The convolution layer slides a fil-
ter of a particular size over the given input to produce a
feature map. As done in any Neural Network, we use ac-
tivation function on the output of the convolution layer
after which we have a non-linear output. The dimension-
ality reduction is performed by the pooling layers, which
extracts useful parameters and thus reduce the number
of parameters to compute and to be learned. This will
also prevent overfitting of the model. There can be such
multiple layers, each comprising of convolution layer, ac-
tivation function, and pooling layer. The last few layers
are fully connected layers which are similar to the regular
neural networks. But before we pass the data from con-
volutional layers to the fully connected layers, we need to
flatten the data as fully connected layers understand only
1-dimensional data. The main part of the training is the
configuration of the above-described layers.
In the past few years, the use of CNN in the area of
SSVEP has increased. In [6], the accuracy of CNN was
69.03% 256 channel SSVEP recordings of 11 subjects,
whereas in [7] the accuracy of CNN classification is as
high as 99.27% for static and 94.03% for ambulatory
SSVEP data of 7 subjects. In these papers, a power spec-
tral density analysis has been performed to extract fre-
quency features and then feed it to the model for classi-
fication. Here in this paper, we will compare the perfor-
mance of the model between such extracted features and
raw signal.

CNN Model for raw signal: The raw signal is in form
of time domain as indicated by 64 channel x 1500 time
points is given as input to the CNN model. To evalu-
ate the performance of the CNN model on the raw signal
as input, we make use of Convolutional Neural Network
in 1 dimension. The structure is described in Table 1, 1
Conv1D layer with 32 filters having ’ReLU’ as activa-
tion function and a Max Pooling layer with size 2. The
second layer comprises of 1 Conv1D layer with 64 filters
having ’ReLU’ as activation function and a Max Pooling
layer with size 2. The Dropout value is taken as 0.5 and
BatchNormalization has been applied. Fully connected
layers of size 256 and 512 have been used. The last fully
connected layer uses Softmax as the activation function
for giving the output. Adam optimization algorithm is
used for updating the network weights in training data.
The training and validation accuracy indicated in Figure 3
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Table 2: CNN for Frequency Domain
Layer / Parameter Number / Size
Conv2D 32 filters
MaxPooling2D 3
Dropout 0.5
BatchNormalization -
Conv2D 64 filters
MaxPooling2D 3
Dropout 0.5
BatchNormalization -
Flatten -
Dense 512 filters, 40 output

shows the learning of the model.

Figure 3: Training & Validation Accuracy - Time Domain

CNN Model for extracted frequency features: Power
Spectral Density Analysis (PSDA) is performed on the
signal before giving input to the CNN model. Here we
use Convolutional Neural Network in a 2 dimensions ma-
trix. The structure is described in Table 2, 1 Conv2D
layer with 32 filters having ’ReLU’ as activation function
and Max Pooling layer with size 3x3. The second layer
consists of 64 filters with ’ReLU’ as activation function
and Max Pooling layer with a filter of size 3. The Dropout
value is taken as 0.5 and BatchNormalization has been
applied. The last layer which is fully connected layer is
of size 512 with Softmax as an activation function. Adam
optimization algorithm is used just like the previous for
updating the network weights in training data. The train-
ing and validation accuracy indicated in Figure 4 shows
the learning of the model.

Figure 4: Training & Validation Accuracy - Frequency Domain

Selection of electrodes: The SSVEP signals decoding
have a much better quality when the electrodes placed

Figure 5: Overall Accuracy of Subjects in both domains

over the occipital and parietal areas are thus removing
other background activities [5]. From the 64 electrodes
shown in Figure 2, the electrodes selected in this paper
are 9 i.e. Pz, PO5, PO3, POz, PO4, PO6, O1, Oz and
O2 which give a better performance in classification of
the signal [5]. The data from those electrodes is selected
for classification. The same model is given two differ-
ent inputs of raw signal (time domain) and the result is
compared to check the performance of the model in both
scenarios. The structure of the model is just the same as
the one described in Table 1. The channel selection is
tested in the case of the time domain.

RESULTS

Comparison of CNN models for raw signal and ex-
tracted frequency features: In our models, we have at-
tained an accuracy of 76.5% in the time domain, 80%
accuracy in the frequency domain. The CNN model with
time domain performs almost as well as the model with
frequency extracted features. The accuracy of the model
in time domain is quite higher in certain subjects than in
frequency domain as shown in Figure 5 indicating that
the extraction of the frequency component is alternative.
The idea behind using CNN models is an automatic fea-
ture extraction and learn the signal specific oscillation in
the hidden layers which is achieved in the model used for
raw signal. From the given data, we have used has 240
trials per subject, the number of samples is quite less for
the model to train in the time domain.

Channel Selection results: The model achieves 76.5%
accuracy when data from only 9 channels is taken into
consideration and achieves 22.5% accuracy without se-
lection of 9 channels. In [5], it is mentioned that utiliza-
tion of electrodes positioned over occipital and parietal
will give better accuracy in classification of the given sig-
nals. Our CNN model verifies that the channel selection
proves beneficial in the classification as shown in Fig-

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-03



Figure 6: Overall Accuracy of Subjects with 9-channel and 64-
channel data

ure 6.
Comparison of CCA with CNN models: The accuracy

of CCA for all the subjects can be compared with the ac-
curacy of CNN models in various conditions. The CCA
model requires hand-crafted data for processing and get-
ting the maximum correlation values. While the CNN
models automatically detect the high-level features with
the help of hidden layers. It can also be observed that
the CCA and CNN give quite similar results on cer-
tain subjects, however as the most successful algorithms
in SSVEP decoding for many years,CCA generated the
overall higher accuracy than the time and frequency do-
main. The CCA and CNN results are shown in Figure 7
and Table 3.

Figure 7: Overall Accuracy of Subjects using CCA

DISCUSSION

Table 3: CCA,time and frequency domain accuracy
Sub\Acc CCA Time Domain Frequency Domain
Subject 1 85 85 77.5
Subject 3 100 57.5 95
Subject 5 100 52.5 92.5
Subject 6 100 60 92.5
Subject 7 97 40 42.5
Subject 9 80 58.5 62.5
Subject 10 100 58.5 80
Subject 11 87 55 62
Subject 12 80 47.5 58.5
Subject 13 87 17.50 35
Subject 14 95 60 90
Subject 17 87 37.5 70
Subject 19 82 45 50
Subject 20 97 58.5 90
Subject 23 82 40 70
Subject 25 100 65 80
Subject 26 100 82.5 85
Subject 29 30 2.5 5
Subject 30 95 12.5 40
Subject 31 100 85 97.5
Subject 33 22 12.5 10
Subject 34 100 70 77.5
Subject 35 100 90 77.5

Mean 87.21 51.02 65.55
Sub\Acc CCA Time Domain Frequency Domain
Subject 2 80 60 90
Subject 4 97 50 97.5
Subject 8 80 78.5 100
Subject 15 97 72.5 98
Subject 16 47 60 62
Subject 18 62 58.5 80
Subject 21 25 60 95
Subject 22 87 82 100
Subject 24 85 60 100
Subject 27 90 77.5 98.5
Subject 28 75 50 98.5
Subject 32 97 90 100

Mean 76.83 65.5 92.90
Sub\Acc CCA Time Domain Frequency Domain
Overall 83.65 56.51 76.30

The evaluation of the CNN model on time and fre-
quency domain with different architectures were per-
formed. from the result, we reconfirmed the method of
electrode selection gave a lot higher accuracy than the
usual data without selection with deep neural networks.
In the time domain data, the CNN model itself learns the
low-level and the high-level features and makes the de-
cision of discarding the unnecessary data unlike in the
extracted frequency features. the CCA was implemented
to compare the traditional algorithm and deep neural net-
works. We conclude two points from the above experi-
ments. The first being that given the raw signal and ad-
justed parameters, CNN can classify the input data with-
out prior feature extraction. Initially, the classification ac-
curacy did not increase as the number of parameters like
Dropout, BatchNormalization, Regularizers were contin-
uously updated and the model’s accuracy was checked.
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The second conclusion is that in a certain kind of data,
the data taken from selected electrodes would assist the
model in better classification than the whole data.

CONCLUSION

Two different deep neural network structure on time and
frequency domain have been put forward and tested in
this paper. The accuracy of the model in the time domain
is quite higher in certain subjects than in the frequency
domain which may indicate that the extraction of the fre-
quency component is alternative. Generally on all sub-
jects, frequency domain show the overall higher accuracy
than the time domain. The traditional CCA algorithm still
achieved the best accuracy in the case of small data on
time domain which is not unexpected. The selection of
channels play an important role in identifying the brain
rhymes. Despite having good accuracy, each of the model
can be further tested and configured to achieve even more
accuracy given more amount of data. Data augmentation
method will be applied for the next round test. 240 trials
per subject is not enough for CNN to learn the features
and also might generate the overfitting problems in the
model. Hence, a reiteration was performed and then se-
lected values for the parameters of regularization to avoid
overfitting. Furthermore, CNNs can be combined with
Recurrent neural network (RNN)to explore Brain physi-
ological data on time domain data as well as on frequency
domain.
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