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ABSTRACT: A substantial amount of research has 

demonstrated the accuracy of the Riemannian minimum 

distance to mean (RMDM) classifier for brain-computer 

interface (BCI). This classifier is simple, fully 

deterministic, robust to noise, computationally efficient 

and prone to transfer learning. The use of the geometric 

mean in the Riemannian manifold of symmetric positive 

definite matrices has proved fundamental to obtain these 

characteristics. Recently the general family of power 

means living on this manifold, which includes the 

geometric mean, has been defined. In this article we 

extend the RMDM algorithm in an unsupervised and 

adaptive fashion using a sampling of power means, 

named means field. We show that the resulting 

Riemannian minimum distance to means field 

(RMDMF) classifier features superior performance. Our 

conclusion is supported by the analysis of 17 public 

databases covering two BCI paradigms, for a total of 335 

individuals, using the open-source MOABB (Mother of 

all BCI Benchmark) framework. In order to promote 

reproducible research, our full code is released. 

 

INTRODUCTION 

 
Riemannian geometry is a branch of differential 

geometry that studies smooth manifolds, curved spaces 

with peculiar geometries. In these spaces notions of 

angles, shortest path between two points, distances, 

center of mass of several points, etc., allow to study 

analytic properties of mathematical operators from a 

geometric perspectives, making them accessible to 

intuition [1]. In the field of brain-computer interface 

(BCI) the manifold of symmetric positive-definite (SPD) 

matrices [2] has proved very useful, since multivariate 

electroencephalography (EEG) data in finite time 

windows can effectively be mapped as points onto this 

manifold through the estimation of some form of their 

covariance matrix [3-6]. This approach has led to the 

introduction of classifiers with remarkable characteristics 

as compared to the state-of-the-art [6]; for a formal 

introduction to the SPD Riemannian manifold the reader 

is referred to [2], while for a primer and review of its use 

in the BCI context to [7,8]. 

 

Riemannian classifiers have proved accurate, general and 

robust to noise, largely superior to state-of-the-art 

competitors [9], winning five international BCI machine 

learning competitions in which they have competed [7]. 

In particular, the Riemannian minimum distance to mean 

(RMDM) classifier, while not the most accurate among 

Riemannian classifiers, stands out for its simplicity, 

computational efficiency and universality (it applies to 

all BCI paradigms). It is a fully deterministic and 

parameter-free classifier, thus no parameter needs to be 

tuned by cross-validation or other methods that may 

jeopardize its generalization. Further, it can be easily 

extended to the multi-user scenario [10], has proved 

accurate also in individuals affected by clinical 

conditions [11] and has proved apt to integrate transfer 

learning [12, 13] and adaptation strategies [14], as 

demonstrated by the calibration-less P300-based BCI 

video game Brain Invaders [14-16].  

 

In its non-adaptive (test-training) form, the RMDM 

works as it follows: a training provides a set of SPD 

matrices encoding BCI trials for the available classes. For 

each class a center of mass of the available trials is 

estimated. Finally, in test mode, a BCI trial to be 

classified is encoded in the same way as an SPD matrix 

and is assigned to the class whose center of mass is the 

closest according to a suitable distance function acting on 

the manifold [7]. In adaptive mode instead, the centers of 

mass are initialized by a database of previous users for a 

naive user and/or a database of the same user for a non-

naive user thanks to transfer learning strategies [12, 13], 

then the centers of mass are adapted to the user while the 

BCI is operated [14]. In any case, the good performance 

of the RMDM classifier derives from the adoption of an 

appropriate metric for the SPD manifold. The metric in 

turn determines both the distance function between two 

points and the definition of a center of mass for a cloud 

of points, which is also a function of the distance since it 

is defined as the point on the manifold minimizing the 

dispersion of the cloud around itself [7, 17]. So far, the 

hyperbolic (geometric) distance and the geometric mean 

as a center of mass, which arise adopting the Fisher-Rao 

(affine-invariant) metric, have been preferred, due to a 

number of desirable invariance properties they possess. 

As explained in [7], those are the extension to SPD 

matrices of the usual hyperbolic distance and geometric 

mean for scalars. Simply stated, their use instead of the 

much more common Euclidean distance and arithmetic 

mean has engendered the success of Riemannian 

classifiers dealing with covariance matrices [7, 8].  

 

In [18] the authors have defined a one-parameter family 

of means generalizing to SPD matrices the power means 
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for scalars. Given a set of K scalars {c1,…,cK}, the power 

mean with real parameter h  0 is given by 

    
1

1 hh

kh K k
g c  .  (1) 

As for the scalar power means, the SPD matrix power 

means of [18] (see also [19-21]) interpolate between the 

harmonic mean ( 1)h    and the arithmetic mean 

( 1)h  , while the geometric mean that we have 

discussed corresponds to the limit of h evaluated at 0, 

from either side. This generality of power means is 

appealing in the BCI context; as suggested in [22], in 

EEG data the sensor measurement is affected by several 

noise components and varying the order h one can find 

an optimal mean depending on the signal-to-noise-ratio. 

In [22] we have tested the accuracy of the RMDM 

algorithm using 13 power means with h={±1, ±0.8, ±0.6, 

±0.4, ±0.2, ±0.1, 0} (see Fig. 7 therein). The classical 

RMDM classifier corresponds to the power mean with 

h=0 (geometric mean). We have found that the value of 

h offering the maximum accuracy gravitated around zero, 

but h=0 was optimal only for three out of the 38 tested 

subjects. Instead, the optimal value of h was highly 

variable across individuals. Also, there was a significant 

positive correlation between the maximal accuracy and 

the value of h allowing such maximum. Thus, the higher 

the accuracy, which is an indirect measure of signal-to-

noise ratio, the higher the optimal value of h.  

 

Finding the optimal value of h for a given subject and 

session, as we have done in [22], is a supervised 

procedure. Therefore in seeking the optimal value we roll 

back to the problem of obtaining a classifier that is prone 

to overfitting, that lacks transfer learning and that is not 

capable of adaptation. Let us instead name a means field 

a sampling of power means in the interval h[-1, 1] such 

as the one used in [22]. Then, in this article we propose 

the Riemannian minimum distance to means field 

(RMDMF) classifier. It uses in an unsupervised and 

adaptive fashion all the means in the field for classifying. 

In particular, for a given unlabeled datum, the closest 

power mean, regardless of its class, is found, then the 

MDM is applied using the power means with the value 

of h that corresponds to the closest mean. Such method is 

unsupervised, in that it can be used blindly to any datum 

without any learning and is adaptive, in that the preferred 

value of h is allowed to change during the session.  

 

We employ MOABB (Mother of All BCI Benchmark) 

[9] for testing the RMDMF against the RMDM classifier 

on 17 databases covering two BCI paradigms (motor 

imagery and P300), for a total of 335 individuals. 

MOABB is an open-source framework for objectively 

assessing the performance of BCI classifiers on large 

amount of data. The use of MOABB ensures that exactly 

the same processing pipeline is applied to all databases 

of the same type and that both the cross-validation 

procedure and the Riemannian classifiers operate exactly 

in the same way for all databases, regardless the BCI 

type.  

MATERIALS AND METHODS 

 

Table 1 reports the main characteristics of the 17 

databases we have used for testing. 12 concerns a motor 

imagery (MI) BCI, five concerns a P300 BCI. For some 

databases several sessions are available, therefore the 

actual number of EEG recordings analyzed is superior to 

the total number of subjects. Also, one may notice that 

the number of electrodes used in the experiments is 

highly variable, ranging from three to 128. 

 
Table 1: Main characteristics of the databases used for the 

analysis. Legend: Ch.=number of channels; Sess=number of 

sessions; Ss=number of subjects. For extended names of the 

databases see Table 2. 

Name Type Ch Trials Sess Ss 
Zhou 2016 MI 14 100 3 4 

BNCI 2014-009 P300 18 4200 1 10 

BNCI 2015-001 MI 13 200  2 or 3 13 

BNCI 2014-002 MI 15 160 1 14 

BNCI 2015-003 P300 10 5400 1 10 

BNCI 2014-004 MI 3 120-160 5 9 

BNCI 2015-004 MI 30 70-80 2 10 

BNCI 2014-008 P300 10 4200 1 8 

Alexandre MI MI 16 40 1 9 

Weibo 2014 MI 60 160 1 10 

Brain Inv 2013a P300 16 480 1 or 8 24 

Cho 2017 MI 64 200 1 49 

EPFL P300 P300 32 800 4 8 

GW 2009 MI 128 300 1 10 

Physionet MI MI 64 40-60 1 109 

Shin 2017a MI 25 60 3 29 

BNCI 2014-001 MI 22 144 2 9 

 

The pipeline for MI databases included: filtering in the 8-

32Hz band-pass region, computing the sample 

covariance matrix for all trials and evaluating the 

classifiers using (5-fold) cross-validation [3]. The 

pipeline for P300 included filtering in the 1-24Hz band-

pass region and then, during (5-fold) cross-validation, 

estimating on the training set a spatial filter specifically 

conceived to enhance the signal-to-noise ratio of event-

related potentials (ERPs) [23, 24] retaining the best eight 

discriminative components, filtering all the trials in the 

training and test set using this filter, computing the 16x16 

extended sample covariance matrix used for ERP data [3, 

14] on all trials and finally evaluating the classifiers. 

 

Using these two pipelines we have run statistical tests in 

MOABB to compare the ROC-AUC classification 

accuracy of the RMDMF classifier vs. the RMDM 

classifier for all databases. The power means for the 

RMDMF classifier where computed for h={±1, ±0.75, 

±0.5, ±0.25, ±0.1, ±0.01}. If several sessions for the same 

subject were available, the ROC-AUC score was 

averaged across-sessions to provide a unique score for 

each subject. For each database a paired permutation one-

sided t-test has been carried out, enumerating all raw data 

permutations if the number of subjects was <20, yielding 

in this case an exact test [25,26], otherwise employing 

the Wilcoxon signed-rank test, which basically is 

equivalent to a permutation test performed on the ranked 

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-02



data. The p-values thus obtained for each database have 

been combined using the weighted Liptak combination 

function [26] (also known as Stouffer’s combination 

function when expressed in terms of standard normal 

variables), which is given by 
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where Φ is the standard normal cumulative distribution 

function, Φ-1 its inverse function, n is the number of 

databases (17 in our case), pi the p-value observed for the 

ith database and wi weights taken as the square root of the 

number of subjects in each database. This returned a 

single p-value for the global one-sided comparison 

RMDMF vs. RMDM. Such p-value is to be interpreted 

as the probability to observe n p-values under the 

Omnibus hypothesis, i.e., given that the null hypothesis 

is true for all of them. Notice that the Liptak combination 

function (2) assumes that the p-values to be combined 

result from all pair-wise independent hypotheses, which 

in our case is verified since all the databases are 

independent. Notice also that this combination function 

is optimal (most powerful) when all tests have the same 

effect size, which, although rarely verified in practice, is 

a desirable property. The effect sizes were also 

determined, akin to meta-analysis studies, computing the 

standardized mean difference (SMD) for each database 

and combining them by the weighted arithmetic average 

using the same weighs as those used for Liptak’s p-value 

combination method. All statistical analysis tools here 

above described are already embedded in MOABB [9]. 

 

RESULTS 

 

Table 2 reports the p-values and SMDs obtained on the 

17 databases along with the combined p-value and the 

average SMD. Figure 1 depicts the SMDs and their 95% 

confidence interval obtained on the 17 databases. One 

can see that for five databases the RMDMF classifier 

significantly outperforms the RMDM classifier. Among 

the remaining 12 databases, in nine of them RMDMF 

tends to perform better than RMDM (as seen by the 

positive SMD or, equivalently, by a p-value smaller than 

0.5), while the opposite happens in three. There is no 

evidence that the RMDM significantly outperforms 

RMDMF for any databases. The weighted average SMD 

was 0.3 and the weighted combined p-value was 

extremely low (p=0,0000377), allowing a firm rejection 

of the Omnibus hypothesis. Notice finally that, as 

expected, the confidence interval for the SMDs tends to 

be inversely proportional to the sample size.  

 

DISCUSSION 

 

Using MOABB we have presented results on 17 

databases for a total of 335 individuals. Those results are 

therefore solid and powerful. For doing this we have 

added several databases to MOABB, including one of our 

1 https://sites.google.com/site/marcocongedo/science 

own database on the P300 video-game Brain Invaders 

[14-16] and we will continue this effort. MOABB is an 

ideal framework for testing classifiers objectively and we 

invite the community to contribute to it in terms of 

development and data. More in general, we urge the BCI 

community to promote publications on machine learning 

for BCI where either real on-line accuracy is reported or 

the classifiers are tested on large and diverse data. The 

Python code of this analysis and our data are available 

along with many other contributions1.  

 
Table 2: p-values and standardized mean differences (SMD) 

obtained on the 17 databases along with the combined p-value 

and SMD. Small p-values (underlined for p<0.05) indicate that 

the accuracy is significantly higher for the RMDMF as 

compared to the RMDM.  

Name Type Ss p SMD 
Zhou 2016 MI 4 0,188 0,679 

BNCI 2014-009 P300 10 0,271 0,201 

BNCI 2015-001 MI 13 0,004 0,964 

BNCI 2014-002 MI 14 0,041 0,499 

BNCI 2015-003 P300 10 0,374 0,136 

BNCI 2014-004 MI 9 0,648 -0,120 

BNCI 2015-004 MI 10 0,322 0,150 

BNCI 2014-008 P300 8  0,078 0,659 

Alexandre MI MI 9 0,285 0,182 

Weibo 2014 MI 10 0,023 0,711 

Brain Invaders 2013a P300 24 0,744 -0,132 

Cho 2017 MI 49 0,085 0,259 

EPFL P300 P300 8 0,836 -0,372 

Grosse-Wentrup 2009 MI 10 0,011 0,687 

Physionet MI MI 109 0,109 0,090 

Shin 2017a MI 29 0,052 0,304 

BNCI 2014-001 MI 9 0,010 0,998 

Combination p=0,0000377 0,302 

 

 

 

Figure 1: Standardized mean differences (diamond) and their 

95% confidence interval (horizontal lines) for the 17 databases 

(from top to bottom in the same order as in table 1 and 2). A 

positive SMD value indicate that the accuracy of the RMDMF 

classifier is higher as compared to the RMDM, the opposite for 

a negative SMD value. *= significant p-value (see table 2). 
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CONCLUSION 

 

In this article we have proposed an improvement to the 

Riemannian minimum distance to mean classifier for 

BCIs, leveraging on recent advances on mathematics (the 

definition of power means for symmetric positive 

definite matrices [18-21]) and signal processing (an 

efficient algorithm for estimating them [22]). Comparing 

the proposed RMDMF to the RMDM classifier on 17 

databases using MOABB has yielded an average SMD 

equal to 0.3 and a combined p-value equal to 0,0000377. 

As it can been seen in Table 2, the effect is driven by MI 

databases, whereas for no P300 database the effect is 

significant. We believe this is due to the fact that in our 

pipeline for P300 an optimal spatial filter has been 

estimated during cross-validation, thus the signal-to-

noise ratio for these data has been optimized; under these 

circumstances the benefit of using a means field 

populated by power means is likely lost. If this is 

confirmed by further analysis, the RMDMF classifier 

would prove better apt for working on raw data as 

compared to the RMDM, but of course it can be used also 

on spatially filtered data without losing performance, as 

our analysis suggests. Then the RMDMF, while 

preserving the other desirable properties of the RMDM 

(simplicity, computational efficiency, universality, ease 

of extension to the multi-user scenario, good attitude for 

transfer learning and for adaptation), truly would support 

parameter-free classification pipelines. 

 

The computational cost of the RMDMF as compared to 

the RMDM is increased proportionally to the number of 

means used to populate the means field. Since the 

computational complexity of Riemannian classifiers is 

cubic on the size of the covariance matrices used to 

encode the EEG data, this does not represent a substantial 

additional cost. When the dimension of the covariance 

matrices is high, it can be reduced by well-known 

methods such as principal component analysis or by 

methods inspired by Riemannian geometry [27, 28]. As 

reported in [6], the performance of the MDM drops in 

high dimension, therefore in these situations a 

dimensionality reduction step in practice is necessary. 

The RMDMF may turn more robust than the RMDM also 

with respect to the dimensionality. Further research is 

necessary to verify these hypotheses. 

 

For defining the RMDMF we have found effective a 

‘closest mean’ approach. However, better strategies may 

exist to exploit the richness of the means field, such as, 

for example, pooling and majority voting. Further 

research is therefore needed to find optimal strategies for 

exploiting the Riemannian means fields. Not only the 

strategy can be optimized, but also the definition of the 

means field itself: while in this work we have populated 

the means field with power means, other means not 

belonging to this family may be added to the field, such 

as the log-Euclidean mean and a sample of the α-

divergence means, to which the Bhattacharyya mean 

belongs [29], making the means field even more rich. 
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