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Summary. Wave propagation in porous media is an important topic for example in geomechanics or oil-

industry. Especially due to the interplay of the solid skeleton with the fluid the so-called second com-

pressional wave appears. The existence of this wave is reported in the literature not only for Biot’s theory

(BT) but also for theoretical approaches based on the Theory of Porous Media (TPM – mixture theory

extended by the concept of volume fractions).

Assuming a geometrically linear description (small displacements and small deformation gradients) and

linear constitutive equations (Hooke’s law) the governing equations are derived for both theories, BT and

the TPM, respectively. In both cases, the solid displacements and the pore pressure are the primary

unknowns. Note that this is only possible in the Laplace domain leading to the same structure of the

coupled differential equations for both approaches. But the differential equations arising in BT and TPM

possess different coefficients with different physical interpretations. Correlating these coefficients to each

other leads to the well-known problem of Biot’s ‘‘apparent mass density’’. Furthermore, some inconsis-

tencies are observed if Biot’s stress coefficient is correlated to the structure arising in TPM.

In addition to the comparison of the governing equations and the identification of the model parameters,

the displacement and pressure solutions of both theories are presented for a one-dimensional column. The

results show good agreement between both approaches in case of incompressible constituents whereas in

case of compressible constituents large differences appear.

1 Introduction

For a wide range of fluid infiltrated materials, such as water saturated soils, oil impregnated

rocks, or air filled foams, the elastic as well as a viscoelastic description of the material behavior

is a crude approximation for the investigation of wave propagation in such media. Due to their

porosity and due to the interaction of the skeleton and the pore content, a different theoretical

approach is necessary to describe the observed effects like the second compressional wave.

A historical review on the subject of multiphase continuum mechanics identifies two theories

which have been developed and are used nowadays, namely the BT and the TPM. For more

details, the reader is directed to the work of de Boer and Ehlers [1], [2] or to the recently

published monograph [3]. The early works on porous media are attributed to Fillunger in 1913

[4]. In this paper and in subsequent ones, Fillunger was concerned with the question of

buoyancy of barrages. At the same time, a more intuitively theory has been developed by von

Terzaghi [5]. These two basic works form the basis for the two different theories used up to day.
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Based on the work of von Terzaghi, a theoretical description of porous materials saturated

by a viscous fluid was presented by Biot [6]. This was the starting point of the theory of poroe-

lasticity or the BT. In the following years, Biot extended his theory to anisotropic cases [7] and

also to poroviscoelasticity [8]. The dynamic extension of Biot’s theory was published in1956 in

two papers, one covering the low frequency range [9] and the other one covering the high

frequency range [10]. One of the significant findings in these papers was the identification of

three different wave types for a 3-d continuum, namely two compressional waves and one shear

wave. The additional compressional wave is also known as the slow wave and has been ex-

perimentally confirmed [11]. In Biot’s original approach a fully saturated material was assumed.

The extension to a nearly saturated (partially saturated) poroelastic solid was presented by

Vardoulakis and Beskos [12].

On the other hand, based on the work of Fillunger, a different approach, namely the Theory

of Porous Media, has been developed. This theory is based on the axioms of continuum

theories of mixtures [13], [14] extended by the concept of volume fractions by Bowen [15], [16]

and others [17]–[21]. Thus, the TPM proceeds from the assumption of immiscible and super-

imposed continua with internal interactions.

Remarks on the equivalence of both theories are found in the work of Bowen [16]. In this

paper, he showed that the BT is a special case of a linearised theory of mixtures with constant

volume fractions. Bowen called this the case of ‘‘frozen volume fraction’’. To achieve equiv-

alence between both approaches the parameter Q introduced by Biot has to be zero, which

means that the interaction between both constituents is neglected. Furthermore, Ehlers and

Kubik [22] compared and discussed the linear versions of both theories claiming that they are

equivalent if Biot’s apparent mass density is assumed to be zero. This density is introduced into

BT to describe the dynamic interaction of the constituents. As a consequence of the work by

Bowen [16] and by Ehlers and Kubik [22], it may be stated that even if both approaches are

similar the theories are mainly different in the way how the solid-fluid interaction is modelled.

In both papers, the authors used solid displacements, seepage velocity, and pore pressure as

unknowns. In the following, a two-phase material consisting of an elastic solid skeleton and an

interstitial viscous fluid is assumed. Furthermore, the assumption of full saturation is made,

e.g., the whole pore space is filled with fluid. For such materials the governing equations are

given based on the TPM [3], [18] in Sect. 2 and based on BT [6], [23] in Sect. 3. In the present

contribution, contrary to the comparisons mentioned above, the governing equations are

formulated using only solid displacements and pore pressure as unknowns. Bonnet and Au-

riault [24] have shown that this choice is sufficient to describe a poroelastic continuum. Further

formulations based on the displacement and the pore pressure or on the displacement and the

relative velocity between solid and fluid are given, e.g., by Lewis and Schrefler [25]. Both

approaches discussed in the present paper are given in terms of a displacement-pressure for-

mulation for the BT as well as for the TPM. In both cases this reduction of unknowns is only

possible in the Laplace domain.

Themain focus of the paper is onwave propagationproblems. Therefore, a linear descriptionof

the geometry in terms of small displacements and small deformation gradients is assumed. Fur-

thermore, we restrict ourselves to linear constitutive equations. The combination of both as-

sumptions leads to a set of linear differential equations which is transformed into the Laplace

domain. The two sets of equations arising in BT and TPM, respectively, are compared not only

term by term, but also an analytical solution for the frequency response of a one-dimensional

column is given. A subsequent numerical inverse Laplace transformation yields the time domain

results. The displacement and pressure results of this solution are compared for both theories.
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In a two-phase material not only each constituent, the solid and the fluid, may be

compressible on a microscopic level but also the skeleton itself possesses a structural

compressibility. If the compression modulus of one constituent is much larger on the microscale

than the compression modulus of the bulk material this constituent is assumed to be materially

incompressible. A common example for materially incompressible solid constituent is soil. In

this case, the individual grains are much stiffer than the skeleton itself. In the following, the

governing equations are given for materially compressible and incompressible constituents,

respectively, cf. [15], [16], [19], [20], [21]. Beside these two extreme cases, there exist so-called

hybrid models where only one of the constituents is modelled as incompressible and the other

one as compressible [19]–[21]. As these intermediate cases can be simply deduced from the

equations given next they are not considered here in detail.

Throughout this paper, the summation convention is applied over repeated indices, and

Latin indices receive the values 1, 2 and 1, 2, 3 in two-dimensions (2-d) and three-dimensions

(3-d), respectively. Commas (),i denote spatial derivatives and primes ðÞ0 denote the material

time derivative with respect to the moving skeleton.

2 Theory of porous media

As the TPM is mostly presented in a general nonlinear fashion [15]–[18], here the focus is given

on the linearization process. All given nonlinear equations are formulated with respect to the

reference configuration of the solid skeleton, therefore, special indication of the reference co-

ordinate system is skipped. Furthermore, time derivatives are given as material derivatives with

respect to the moving skeleton. But according to the subsequent linearization no distinction will

be made between the material time derivative and the partial time derivative.

2.1 Compressible constituents

In order to describe the two different phases of the material the concept of volume fractions is

introduced [l5], [l6], [18]. Therefore, the given volume element V is divided in two fractions VS

and VF occupied by the solid skeleton (index S) and the interstitial fluid (index F), respectively.

If the whole space is filled with matter, the saturation condition requires V¼VS + VF. The

volume fraction of each constituent is defined by

nk ¼ Vk

V
with k ¼ F;S: ð1Þ

The partial densities qk of both constituents relate the mass element of the constituents to the

volume element V of the mixture while the effective densities qkR relate the same element of

mass to the volume element occupied by the constituent. Therefore, the partial densities are

obtained by the product of the volume fraction and the respective effective density,

qk ¼ qkRnk with k ¼ F;S: ð2Þ

Changes of the partial density are therefore possible due to changes of the effective density and

of the volume fraction, i.e., the material itself as well as its porous structure allow for a

compressibility.

Within the general framework of compressible constituents, the effective densities are state

variables and the volume fractions are internal variables [15], [l6], [l8] which may be
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transformed to state variables under certain conditions. For an elastic and materially

compressible solid phase, a nonlinear representation of the solid volume fraction is given by

Diebels [21] as

nS ¼ nS
0

nS
0ð1� det FSÞ þ det FS

: ð3Þ

The current value of the volume fraction nS depends on the solid deformation gradient FS and

the initial solid volume fraction nS
0 . Expression (3) is derived from an evolution equation for the

volume fraction by appropriate assumptions. Due to the assumption of a geometrically linear

description the determinant of the deformation gradient is approximated by

det FS � 1þ ui;i ð4Þ

as shown in [26]. The divergence of the solid displacement ui;i gives the linear expression for the

volumetric strain. Inserting the linearized format of the deformation gradient (4) into the

expression for the volume fraction (3) and a subsequent Taylor series expansion yields

nS � nS
0

1þ ð1� nS
0Þui;i

¼ nS
0 1� 1� nS

0

� �
ui;i þ Oðu2

i;iÞ
� �

: ð5Þ

The balance equations of momentum of a two-phase continuum give the basis for the the-

oretical description within the TPM. They can either be given for both constituents separately

or one of the individual balances may be replaced by the balance of momentum of the mixture

as discussed in detail in [27]. In the present contribution, the mixture balance of momentum is

used in combination with the fluid momentum balance. The balance equations of momentum

for the two-phase mixture read

(i) for the mixture

nSqSRu00i þ nFqFR u00i þw0i þ ðu0i;j þwi;jÞwj

h i
¼ TS

ij;j þ TF
ij;j þ nSqSRbS

i þ nFqFRbF
i ; ð6Þ

(ii) for the fluid

nFqFR u00i þw0i þ u0i;j þwi;j

� �
wj

h i
¼ TF

ij;j þ p�i þ nFqFRbF
i : ð7Þ

In Eqs. (6) and (7), wi denotes the seepage velocity defined as the relative velocity of the fluid

with respect to the deforming solid skeleton. The stress tensor is given by Tk
ij with k ¼ S for the

solid skeleton and k¼F for the fluid, respectively. The body force density in the fluid and in the

solid is nFqFRbF
i , and nSqSRbS

i , respectively. The force density p�i results from a momentum

production representing the interaction between both constituents. Therefore, it is obviously

not present in the equation for the mixture (6).

Keeping in mind a linear version of the theory, the convective terms on the left hand sides of

Eqs. (6) and (7) are of second order and will consequently be neglected. Furthermore, inserting

the series expansion of the solid volume fraction (5) into the balance of momentum (6), in

a consequent linearization remains only the constant part nS
0 in the final linear equation.

Subsequently, due to the saturation condition 1 ¼ nS þ nF , both volume fractions are assumed

to be constant within the balances of momenta

nS � nS
0 ) nF � nF

0 ¼ 1� nS
0 : ð8Þ

This corresponds to the case called ‘‘frozen volume fractions’’ by Bowen [16].
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Gathering all the linearizations formulated above the linear balances of momentum are

(i) for the mixture

nS
0q

SRu00i þ nF
0 qFR u00i þw0i

� �
¼ TS

ij;j þ TF
ij;j þ qbi; ð9Þ

(ii) for the fluid

nF
0 qFR u00i þw0i

� �
¼ TF

ij;j þ p�i þ nF
0 qFRbF

i ; ð10Þ

where no distinction between the partial time derivative and the material time derivative has

to be made. In Eq. (9), the bulk body force qbi with q ¼ nS
0q

SR þ nF
0 qFR is introduced as

an abbreviation for the sum of the solid and fluid body force. Additionally, the balance of

moment of momentum is fulfilled if the stress tensors are symmetric.

Furthermore, constitutive assumptions must be specified which link the stress tensors and the

momentum production term to kinematic quantities. Neglecting the fluid extra-stress [28], the

stress tensor of the fluid is governed by the pore pressure p,

TF
ij ¼ �nFpdij and accordingly TF

ij;j ¼ ð�nFpdijÞ;j ¼ �ðnFpÞ;i; ð11Þ

where dij denotes the Kronecker delta. Furthermore, the viscosity of the fluid is taken into

account by the momentum production or by the interaction force between the solid and the

fluid which is given by the linear relation [18]

p�i ¼ pnF
;i �
ðnFÞ2

jT
wi ð12Þ

with the permeability jT ; ð ÞT ¼̂¼TPM. This permeability depends on the intrinsic permeability kS

and on the fluid viscosity lF according to the relation jT ¼ kS=lF (see, e.g., [28]). In the balance of

momentum for the fluid (7) or (10) the stresses and the interaction forces combine to

TF
ij;j þ p�i ¼ �ðnFpÞ;i þ pnF

;i �
ðnFÞ2

jT
wi ¼ �nFp;i �

ðnFÞ2

jT
wi: ð13Þ

According to the choice (11) and (12), the viscous properties of the fluid are modelled by the

momentum exchange term (12) while the fluid extra stress is neglected [28].

For the solid skeleton Hooke’s law is taken into account assuming a linear elastic behavior.

Hence, with the extra stress

rS
E

� �
ij
¼ Gðui;j þ uj;iÞ þ K � 2

3
G

� �
dijuk;k; ð14Þ

the stress tensor of the solid skeleton is given by [21]

TS
ij ¼ �zSnSpdij þ rS

E

� �
ij

¼ Gðui;j þ uj;iÞ þ K � 2

3
G

� �
uk;k � zSnSp

� �
dij; ð15Þ

if a linear strain-displacement relation eij ¼ 1=2ðui;j þ uj;iÞ holds. The shear modulus G and the

compression modulus K are introduced in the constitutive equations. These material constants

refer to the bulk material and, therefore, the compression modulus includes also the com-

pressibility of the skeleton structure. Furthermore, the state variable zS was introduced in [21]

to separate effects related to material and structural compressibilities, respectively. In formu-

lating (15), it is additionally assumed that the free Helmholtz energy is independent of the
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volume fractions. Subsequently, due to this assumption, the configuration pressure defined in

[21] vanishes.

In the balance of momentum for the mixture the divergence of the total stress tensor is

needed, i.e., the combination of the solid and fluid stress tensor. Under the assumptions made

above the divergence of the total stress is obtained as

TS
ij;j þ TF

ij;j ¼ Gðui;jj þ uj;ijÞ þ K � 2

3
G

� �
uj;ji � zSnSp;i � ðnFpÞ;i

� Gui;jj þ K þ 1

3
G

� �
uj;ji � ðzSnS

0 þ nF
0 Þp;i ð16Þ

assuming constant volume fractions according to the linearization (8).

The balance of mass of the solid is formulated for the partial density qS ¼ nSqSR and is split

into two parts by the introduction of the arbitrary function 0 � zS � 1 [21]

ðqSÞ0 þ qSu0i;i ¼ 0

) qSR ðnSÞ0 þ zSnSu0i;i

� �
þ nS ðqSRÞ0 þ ð1� zSÞqSRu0i;i

� �
¼ 0: ð17Þ

For arbitrary values of zS, (17) is fulfilled if each part of the sum is equal to zero,

nS
� �0¼ �zSnSu0i;i and qSR

� �0¼ 1� zS
� �

qSRu0i;i: ð18Þ

Based on a micro mechanical investigation, Diebels [21] has proposed the dependence

zS ¼ 1� KS=KSR relating zS to the compression modulus of the structure KS and the com-

pression modulus of the solid grains KSR. He showed that this choice is thermodynamically

admissible and that in the case of an incompressible solid skeleton the limit zS ¼ 1 transforms

(17) into the well known volume balance nS ¼ nS
0det F�1

S .

Finally, an equation of state for the fluid must be prescribed because in (11) for the fluid extra

stress tensor no constitutive assumption was given. Within the framework of a linear theory,

the simplest case of the ideal gas equation [29] is applied,

qFRðpÞ ¼ qFR
0

p0
p ¼ p

R#
; ð19Þ

with the reference density qFR
0 and the reference pore pressure (static pressure) p0. The alter-

native second expression uses the absolute temperature # and the specific gas constant R. More

complex laws to describe the volumetric behavior of the fluid could be included here, however,

the linearization neglects additional effects.

With these preliminaries the continuity equation for the fluid can be formulated. In general,

this equation reads

@qF

@t
þ ððwi þ u0iÞqFÞ;i ¼ 0 ð20Þ

using the seepage velocity wi ¼ vi � u0i instead of the fluid velocity vi. Introducing the material

time derivative

qF
� �0¼ @q

F

@t
þ qF

;iu
0
i ð21Þ

and combining (20) with the definition of the partial density (2) and with the saturation con-

dition in the form ðnFÞ0 ¼ �ðnSÞ0 ¼ zSnSu0i;i yields the following representation [21]:

nF qFR
� �0þqFR nF þ zSnS

� �
u0i;i þ nFqFRwi

� �
;i¼ 0: ð22Þ
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Equation (22) is the nonlinear form of the continuity equation of the fluid with respect to the

moving solid reference system. This equation is linearized by a formal Taylor series, where in

the first term on the left-hand side the gas equation (19) is substituted. In the second and third

term, the density is multiplicated with the divergence of the solid velocity or seepage velocity,

respectively. Consequently, only the constant factor qFR
0 of the series expansion of the density is

used. Additionally, according to Eq. (8), constant volume fractions are introduced leading to

the following linearized form of the continuity equation of the fluid:

nF
0

p0

R#
þ qFR

0 nF
0 þ zSnS

0

� �
u0i;i þ nF

0 qFR
0 wi;i ¼ 0: ð23Þ

Gathering all above given linearizations the following set of coupled differential equations is

obtained from the balance equations:

q0u00i þ nF
0 qFR

0 w0i ¼ Gui;jj þ K þ 1

3
G

� �
uj;ji � nF

0 þ zSnS
0

� �
p;i þ qbi; ð24:1Þ

nF
0 qFR

0 u00i þw0i
� �

¼ �nF
0 p;i �

nF
0

� �2

jT
wi þ nF

0 qFRbF
i ; ð24:2Þ

nF
0

p0

R#
þ qFR

0 nF
0 þ zSnS

0

� �
u0i;i þ nF

0 qFR
0 wi;i ¼ 0: ð24:3Þ

The primary variables in (24) are the solid displacement ui, the seepage velocity wi, and the

pore pressure p. Note that in Eqs. (24), due to the linearization, constant densities qSR
0 ; qFR

0 and

q0 ¼ nS
0q

SR
0 þ nF

0 qFR
0 are used with the exception of the body force terms (Boussinesq ap-

proximation), where a linear approximation of the density is inserted.

From a physical point of view it is sufficient to describe the problem with only two primary

variables, namely the solid displacement ui and pore pressure p instead of three variables as

discussed in [24], [25].

In the quasi-static case, i.e.,u00i � 0;w00i � 0, the balance ofmomentumof the fluid (24.2) can be

rearranged to express the seepage velocity in terms of the pore pressure gradient. In this case,

Darcy’s law is obtained. Inserting this expression intoEqs. (24.1) and (24.3) eliminates the seepage

velocity as primary variable from the set of the governing equations. Since in the dynamic casewi

is given as time derivative in (24.2), this procedure is only possible in the Laplace domain. Before

the Laplace transformation can be performed the following assumptions are made:

– All initial conditions vanish, i.e.,

uiðxi; t ¼ 0Þ¼! 0; wiðxi; t ¼ 0Þ¼! 0: ð25Þ

– The pore pressure p is assumed to be the excess pressure relative to the static pressure p0.

Therefore, the initial conditions for the pore pressure also vanish,

pðxi; t ¼ 0Þ¼! 0: ð26Þ

Taking these assumptions into account, the transformed Eqs. (24) are

q0s2ûui þ nF
0 qFR

0 sŵwi ¼ Gûui;jj þ K þ 1

3
G

� �
ûuj;ji � nF

0 þ zSnS
0

� �
p̂p;i þ qb̂bi; ð27:1Þ

nF
0 qFR

0 s2ûui þ sŵwi

� �
¼ �nF

0 p̂p;i �
nF

0

� �2

jT
ŵwi þ nF

0 qFRb̂b
F

i ; ð27:2Þ
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nF
0

sp̂p

R#
þ qFR

0 nF
0 þ zSnS

0

� �
sûui;i þ nF

0 qFR
0 ŵwi;i ¼ 0; ð27:3Þ

where ð̂ Þ indicates the Laplace transform and s is the complex Laplace variable.

Rearranging the Laplace transformed balance of momentum for the fluid (27.2) the seepage

velocity is obtained,

ŵwi ¼ �
bT

snF
0 qFR

0

p̂p;i þ s2qFR
0 ûui � qFRb̂b

F

i

h i
: ð28Þ

In (28) the complex valued abbreviation

bT ¼ snF
0 qFR

0 jT

nF
0 þ sjTqFR

0

ð29Þ

is introduced. Eliminating the seepage velocity ŵwi from the remaining balances (27.1) and (27.3)

by use of (28), finally, the balance of momentum for the mixture

s2 q0 � bTqFR
0

� �
ûui � bT

p̂p;i � qFRb̂b
F

i

h i
¼ Gûui;jj þ K þ 1

3
G

� �
ûuj;ji � nF

0 þ zSnS
0

� �
p̂p;i þ qb̂bi ð30Þ

and the mass balance of the fluid

nF
0

sp̂p

R#
þ qFR

0 nF
0 þ zSnS

0 � bT
� �

sûui;i �
bT

s
p̂p;ii þ

bTqFR

s
b̂b

F

i;i ¼ 0 ð31Þ

are achieved. These operations establish a system of coupled partial differential equations for

the unknowns solid displacement ûui and pore pressure p̂p,

Gûui;jj þ K þ 1

3
G

� �
ûuj;ji � nF

0 þ zSnS
0 � bT

� �
p̂p;i � s2 q0 � bTqFR

0

� �
ûui ¼ bTqFRb̂b

F

i � qb̂bi; ð32Þ

p̂p;ii � nF
0

s2

bT
R#

p̂p� s2qFR
0

bT
nF

0 þ zSnS
0 � bT

� �
ûui;i ¼ qFRb̂b

F

i;i: ð33Þ

An analytical representation of Eqs. (32) and (33) in time domain is only possible for a constant

value bT . This is only achieved in the limit jT !1, i.e., lF ! 0. Consequently, the interaction

force p�i between the solid and the fluid is proportional to the pore pressure p�i � pnF
;i and the

influence of the seepage velocity on the momentum exchange vanishes. Evidently, this is only

valid under equilibrium conditions where no fluid motion takes place.

2.2 Incompressible constituents

Naturally, the balances of momentum (6) and (7) are not changed due to the assumption of

incompressible constituents. So, the linearization process is performed as shown in the previous

section. Also, caused by linearization, the volume fractions nS and nF are assumed to be

constant within the balance equations. So, the linearized balances of momentum for the mix-

ture (9) and for the fluid (10) are valid also in case of incompressible constituents.

On the other hand, the continuity equation of the solid (17) reduces to a balance of volume.

As stated above, the incompressible case is included in the general framework by the choice

zS ¼ 1. The physical interpretation is obviously a constant density qSR resulting in the well-

known balance of volume [19]–[21]

nS
� �0þnSui;i ¼ 0: ð34Þ

220 M. Schanz and S. Diebels



Assuming both constituents as materially incompressible and inserting the assumptions

qFR ¼ const. and zS ¼ 1 into the nonlinear form of the continuity equation of the fluid (22) yields

qFR nF þ nS
� �

u0i;i þ nFqFRwi

� �
;i
¼ qFR nFwi þ u0i

� �
;i
¼ 0: ð35Þ

The constitutive equations for the incompressible solid and incompressible fluid can also easily

be achieved. The stress tensor of the fluid (11) and the interaction force (12) are not changed

yielding the well known principle of effective stress, but note that the pore pressure becomes a

Lagrangian multiplier in this case which ensures the assumption of constant density. There is no

longer an equation of state linking the density to the pressure. Finally, the divergence of the total

stress is obtainedby these assumptions in combinationwith the saturation conditionnS þ nF ¼ 1,

TS
ij;j þ TF

ij;j ¼ Gui;jj þ K þ 1

3
G

� �
uj;ji � p;i: ð36Þ

As in the compressible case, the incompressible model results in three equations for the three

variables solid displacement ui, pore pressure p, and the seepage velocity wi,

q0u00i þ nF
0 qFR

0 w0i ¼ Gui;jj þ K þ 1

3
G

� �
uj;ji � p;i þ qbi; ð37:1Þ

nF
0 qFR

0 u00i þw0i
� �

¼ �nF
0 p;i �

ðnFÞ2

jT
wi þ nF

0 qFRbF
i ; ð37:2Þ

nF
0 wi þ u0i

� �
;i
¼ 0: ð37:3Þ

Because the balance of momentumof the fluid Eq. (37.2) is equal to Eq. (27.2) of the compressible

case, an extraction of the seepage velocity is only possible in the Laplace domain. The transfor-

mation of Eq. (37.2) leads to the same expression as given in (28). Eliminating the seepage velocity

from the balance of momentum (37.1) and from the balance of volume (37.3) results in the set of

coupled differential equations for the unknowns solid displacement ûui and pore pressure p̂p

Gûui;jj þ K þ 1

3
G

� �
ûuj;ji � ð1� bTÞp̂p;i � s2 q0 � bTqFR

0

� �
ûui ¼ bTqFR

0 b̂b
F

i � qb̂bi; ð38Þ

p̂p;ii �
s2qFR

0

bT
ð1� bTÞûui;i ¼ qFRb̂b

F

i;i: ð39Þ

As in the compressible case, an analytical representation in time domain is only possible for

jT !1.

3 Biot’s theory

In this section, Biot’s model of a poroelastic continuum is presented. Using different notation

for all variables which are not definitely the same as in the TPM approach allows for an

a posteriori comparison between both approaches including an identification of the individual

terms and of their physical meaning.

3.1 Compressible constituents

Following Biot’s approach to model the behavior of porous media, an elastic skeleton with a

statistical distribution of interconnected pores is considered [7]. The porosity is denoted by
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/ ¼ VF

V
; ð40Þ

where VF is the volume of the interconnected pore space contained in a sample of bulk volume

V. Contrary to these connected pores the sealed pores are considered as parts of the solid.

Therefore, / ¼ nF is only valid if all pores are interconnected. As mentioned above, full

saturation is assumed leading to V ¼ VF þ VS with VS the volume of the solid including sealed

pores.

If the constitutive equations are formulated for the elastic solid and the viscous interstitial

fluid, the following partial stress formulation is obtained [7]:

rS
ij ¼ 2GeS

ij þ K � 2

3
Gþ Q2

RB

� �
eS
kkdij þ QeF

kkdij; ð41:1Þ

rF ¼ �/p ¼ QeS
kk þ RBeF

kk; ð41:2Þ

using the solid strain eS
ij and the volumetric strain of the fluid eF

kk. The elastic skeleton is assumed to

be isotropic and homogeneous. Its elastic behavior is governed by the two material constants

compression modulus K and shear modulus G. The coupling between the solid and the fluid is

characterized by two additional parameters Q and RB. In these equations, the sign conventions

for stress and strain follow that of elasticity, namely, tensile stress and strain are denoted positive.

Therefore, in Eq. (41.2) the pore pressure p is the negative hydrostatic stress in the fluid rF.

An alternative representation of the constitutive equations (41) is used in Biot’s earlier work

[6]. There, the total stress rij ¼ rS
ij þ rFdij is introduced. Furthermore, introducing Biot’s

effective stress coefficient a ¼ /ð1þ Q=RBÞ the constitutive equation

rij ¼ Gðui;j þ uj;iÞ þ K � 2

3
G

� �
uk;k � ap

� �
dij ð42Þ

is obtained. In Eq. (42), the solid strain is replaced by the common linear strain-displacement

relation eS
ij ¼ 1=2ðui;j þ uj;iÞ. In addition to the total stress rij, the variation of fluid volume f

per unit reference volume is introduced as a second constitutive equation,

f ¼ aui;i þ
/2

RB
p: ð43Þ

The variation of fluid content f is governed by the mass balance, i.e., by the continuity equation

@f
@t
þ qi;i ¼ 0 ð44Þ

with the specific flux qi. This flux is identified with the filter velocity qi ¼ /wi. A time integrated

form of (44) identifies f as a kind of volumetric strain describing the motion of the fluid relative

to the solid as discussed in [30].

Additional to (44), the balance of momentum for the bulk material must be fulfilled. The

dynamic equilibrium is given by

rij;j þ fi ¼ q
@2ui

@t2
þ /qF

@wi

@t
; ð45Þ

with the bulk body force per unit volume fi ¼ ð1� /Þf S
i þ /f F

i , and the bulk density

q ¼ qSð1� /Þ þ /qF . For these densities the subscript is used instead of the superscript in

order to distinct them from the quantities arising in TPM.

Furthermore, the fluid transport in the interstitial space in terms of the specific flux qi is

modelled with a generalized Darcy’s law

222 M. Schanz and S. Diebels



/wi ¼ qi ¼ �jB p;i þ qF

@2ui

@t2
þ qa þ /qF

/
@wi

@t
� f F

i

� �
ð46Þ

which is given constitutively. Here, jB ¼ kS=lF denotes the permeability defined by the intrinsic

permeability kS and the viscosity of the fluid lF. The superscript B is chosen to distinct this

permeability from the permeability in the TPM. Furthermore, f F
i is the fluid body force per

unit volume. In Eq. (46), an additional density, the so-called apparent mass density qa was

introduced by Biot [9]. The apparent mass describes the dynamic interaction between fluid

phase and solid skeleton. Typically it is written as qa ¼ C/qF where C is a factor depending on

the geometry of the pores and the frequency of excitation. At low frequencies, Bonnet and

Auriault [31] measured C¼0.66 for a sphere assembly of glass beads. In higher frequency

ranges, a certain functional dependence of C on the frequency has been proposed based on

conceptual porosity structures [10], [31]. In the following, C¼0.66 is assumed.

The equation of motion for the poroelastic model is obtained from the above balance laws

and constitutive equations. As shown in [24], it is sufficient to use the solid displacements ui and

the pore pressure p as basic variables to describe a poroelastic continuum. Therefore, the above

equations are reduced to these two primary variables as was already done for the TPM model.

First, Darcy’s law (46) is transformed into Laplace domain and rearranged to obtain

ŵwi ¼ �
jBqF/2

s

/2 þ sjBðqa þ /qFÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bB

1

s/qF

ðp̂p;i þ s2qFûui � f̂f
F

i Þ: ð47Þ

In Eq. (47), the abbreviation bB is defined for further usage, and the superscript B is chosen to

distinct from the similar abbreviation in TPM. Moreover, as in TPM vanishing initial condi-

tions for ui;p, and wi are assumed. Now, the final set of differential equations for the dis-

placement ûui and the pore pressure p̂p is obtained by inserting the constitutive eqs. (42) and (43)

in the Laplace transformed dynamic equilibrium (45) and into the continuity equation (44).

Taking into account ŵwi according to (47) leads to

Gûui;jj þ K þ 1

3
G

� �
ûuj;ij � ða� bBÞp̂p;i � s2 q� bBqF

� �
ûui ¼ bB

f̂f
F

i � f̂f i; ð48Þ

p̂p;ii �
/2

s2qF

bB
RB

p̂p� ða� bBÞ s
2qF

bB
ûui;i ¼ f̂f

F

i;i: ð49Þ

This set of coupled differential equations describes the behavior of a poroelastic continuum on

the basis of BT. As in TPM, an analytical representation in time domain is only possible for

jB !1. This case represents negligible friction between solid and interstitial fluid.

3.2 Incompressible constituents

To find the respective governing equations for incompressible constituents the material param-

eters a and RB have to be rewritten in a different way. Considerations of constitutive relations at

micro mechanical level as given in [30] lead to a more rational model for this purpose,

a ¼ 1� K

KS

and ð50:1Þ

RB ¼ /2
KFK2

S

KFðKS � KÞ þ /KSðKS � KFÞ
; ð50:2Þ
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where KS denotes the compression modulus of the solid grains and KF the compression

modulus of the fluid. Based on these expressions materially incompressible behavior of the

constituents may be described by the above given constitutive assumptions. Note that material

incompressibility means that the compression modulus of each individual constituent is much

larger than the one of the bulk material. The respective conditions are [30]

K

KS

� 1 incompressible solid;
K

KF

� 1 incompressible fluid: ð51Þ

The corresponding limit process shows [30]

a � 1 and RB !1: ð52Þ

According to (43) f � ui;i, i.e., the fluid is influenced only by the solid volumetric strain. With

these considerations at hand the set of governing differential equations reduces to

Gûui;jj þ K þ 1

3
G

� �
ûuj;ij � ð1� bBÞp̂p;i � s2 q� bBqF

� �
ûui ¼ bB

f̂f
F

i � f̂f i; ð53Þ

p̂p;ii � ð1� bBÞ s
2qF

bB
ûui;i ¼ f̂f

F

i;i: ð54Þ

4 Analytical solution

For the subsequent comparison of both theories not only the governing equations but also

numerical results will be compared. For this comparison, a semi-analytical solution for a one-

dimensional fluid-saturated porous continuum is considered. Several of such solutions are

found in the literature, e.g., for an infinitely long column consisting of incompressible con-

stituents modelled with an incompressible version of TPM in [32] or for a finite column con-

sisting of compressible constituents modelled with BT [33]. The latter is also applied here, in

addition a solution for incompressible constituents is given in the following. Formally, Biot’s

theory is used as the starting point, however, because the governing equations differ only in the

coefficients but not in the type of the differential operator the same solution is valid for the

TPM.

A one dimensional column of length ‘ as sketched in Fig. 1 is considered. The side walls and

the bottom are assumed to be rigid, frictionless, and impermeable. Hence, the displacements

normal to the surface are blocked and, on the other hand, the column is free to slide parallel to

the wall. At the top, the stress ryðy ¼ ‘Þ ¼ �P0 f ðtÞ is prescribed as a function of time while the

pressure vanishes, i.e., pðy ¼ ‘Þ ¼ 0 N/m2. Therefore, the surface is ideally drained. At the

bottom the column is fixed and impermeable, i.e., uy (y¼0)¼0 m and qy( y¼0)¼0 m/s. Due to

these restrictions only the displacement component uy in vertical direction and the pore

pressure p remain as degrees of freedom.

Hence, the governing set of differential eqs. (53) and (54) is reduced to two scalar-valued

coupled ordinary differential equations in the Laplace domain,

Eûuy;yy � ð1� bBÞp̂p;y � s2ðq� bqFÞûuy ¼ 0; ð55Þ

bB

sqF

p̂p;yy � ð1� bBÞsûuy;y ¼ 0; ð56Þ

with Young’s modulus E ¼ K þ 4
3
G. The boundary conditions are
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ûuyðy ¼ 0Þ ¼ 0 m; q̂qyðy ¼ 0Þ ¼ 0
m

s
and

r̂ryðy ¼ ‘Þ ¼ �P0
N

m2
; p̂pðy ¼ ‘Þ ¼ 0

N

m2
:

ð57Þ

The applied load on the top of the column is an impulse function f ðtÞ ¼ dðtÞ in time, with dðtÞ
denoting the Dirac distribution. In addition, zero initial conditions are assumed. Due to the

neglected body forces this is a system of homogeneous ordinary differential equations with

inhomogeneous boundary conditions which can be solved by the exponential ansatz

ûuyðyÞ ¼ Ueksy; p̂pðyÞ ¼ Peksy: ð58Þ

Inserting the ansatz functions (58) in eqs. (55) and (56) yields an eigenvalue problem for k,

Ek2 � q� bBqF

� �
�ð1� bBÞ k

s

�sð1� bBÞk k2 bB

qF

2

4

3

5 U

P

" #

¼ 0; ð59Þ

with the characteristic equation

bB

qF

k2
Ek2 � ð1� bBÞ2qF

bB
� q0 þ bBqF

" #

¼! 0: ð60Þ

The characteristic Eq. (60) has the following four complex roots:

k1 ¼ �k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

E

ð1� bBÞ2qF

bB
þ q0 � bBqF

 !vuut and k3 ¼ �k4 ¼ 0; ð61Þ

leading to the complete solution of the homogeneous problem in the form

ûuyðyÞ ¼ U1ek1sy þ U2e�k1sy þ U3 þ yU4; p̂pðyÞ ¼ P1ek1sy þ P2e�k1sy þ P3 þ yP4: ð62Þ

The eight unknown constants Ui and Pi; i ¼ 1; . . . ; 4, cannot be determined by the four

boundary conditions (58) alone. Also none of the complex roots can be excluded due to

physical reasons. But the eigenvector of the system (59) gives the relation

Pi ¼
qFR

0 sð1� bBÞ
kib

B
Ui i ¼ 1; 2 and U3 ¼ U4 ¼ 0: ð63Þ

x

y

σy =  –P0 f (t)

Fig. l. Geometry and dynamic loading of a one-

dimensional column
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Finally, the solution is inserted into the one-dimensional form of the constitutive Eq. (42),

r̂ryðs; yÞ ¼ Eûuy;y � p̂p ¼ bBðq� bBqFÞ
qFð1� bBÞ

P1ek1sy þ P2e�k1sy
� �

� P3 � yP4 ð64Þ

and into the one-dimensional form of Darcy’s law (46),

q̂qyðs; yÞ ¼ �
bB

sqF

ðp̂p;y þ s2qFûuyÞ ¼ �
bB

qF

k1

1� bB
P1ek1sy � P2e�k1sy
� �

þ P4

s

� �
: ð65Þ

The remaining four constants Pi can be fit to the four boundary conditions (57). This leads to

four equations for four unknowns which can be solved, preferably, with the aid of computer

algebra.

Consequently, the solution for the displacement and the pore pressure is achieved by in-

serting these coefficients in the ansatz functions (62). This results in

ûuy ¼
P0k1b

B

sðqF � 2bBqF þ bBq0Þ
e�k1sð‘þyÞ � e�k1sð‘�yÞ

1þ e�2k1s‘
; ð66Þ

p̂p ¼ P0ð1� bBÞ
1� 2bB þ bB q

qF

1� e�k1sð‘þyÞ þ e�k1sð‘�yÞ

1þ e�2k1s‘

� �
: ð67Þ

The corresponding stress and flux are calculated from the constitutive Eq. (64) and from

Darcy’s law (65), respectively. As we are dealing with a linear problem the superposition

principle is valid. Therefore, solutions for different load cases, e.g., a pressure load or a pre-

scribed displacement, can be achieved by the same procedure.

Note, due to the dependence of bB on the Laplace parameter s, the roots ki, are dependent on

s. Therefore, an analytical inverse Laplace transform of the above given solutions is in general

not possible. However, if the viscosity lF of the fluid tends to zero the damping due to the

relative motion of the fluid and the solid may be neglected and, therefore,

jB !1) b � /2qF

qa þ /qF

: ð68Þ

In this case, an analytical inverse Laplace transform can be found (for the case of compressible

constituents see [33]). The same limit for jT can be taken in case of TPM.

For an arbitrary value of jB a numerical inverse Laplace transformation is necessary. A

number of methods is available in the literature, and the advantages and disadvantages have

been studied, e.g., in [34] or [35]. In the present case, the response in the time domain can be

calculated with the convolution integral

uyðt; yÞ ¼
Z t

0

L�1 ûuyðs; yÞ

 �

ðs; yÞf ðt� sÞds; ð69Þ

where L�1 is the inverse Laplace transform operator. Because one function in the convo-

lution integral (69) is only available in the Laplace domain and the other function in the time

domain, it is preferable to take the ‘Convolution Quadrature Method’ proposed by Lubich

[36]. This method approximates the convolution integral (69) numerically by the quadrature

formula

uyðnDtÞ ¼
Xn

k¼0

xn�k ûuy;Dtð Þf ðkDtÞ; n ¼ 0; 1; . . . ;N: ð70Þ
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Details concerning the integration weights xn�kðûuy;DtÞ and the used parameters can be found

in Appendix A. In the following, the time dependent responses are evaluated with this method,

choosing a backward differentiation formula of order 2 (BDF 2) as the underlying multi-step

method.

5 Comparison of both theories

Both theories, namely BT and TPM, describe the same physical behavior of fluid saturated

porous media. In the Sects. 2 and 3, the governing equations for each theory were given for

compressible as well as incompressible constituents. Now, a comparison of these equations is

performed in order to identify the physical interpretation of the parameters of both approaches

and to show whether there are discrepancies between the theories even if the underlying

structure of the governing equations is the same.

Preliminary for this comparison is the (evident) assumption that the independent variables

solid displacement ui and pore pressure p have the same physical meaning in both approaches.

Furthermore, from the constitutive equations, Eqs. (14) and (41.1), of the solid extra stress it

can be concluded that the shear modulus G and the compression modulus K are macroscopic

moduli valid for the porous skeleton, i.e., solid material including its structure. In order to

compare the other parameters arising in the governing equations the model equations are

recalled, first, for incompressible constituents:

– Displacement, TPM (38) and BT (53)

Gûui;jj þ K þ 1

3
G

� �
ûuj;ji � ð1� bTÞp̂p;i � s2ðq0 � bTqFR

0 Þûui ¼ bTqFR
0 b̂b

F

i � qb̂bi;

Gûui;jj þ K þ 1

3
G

� �
ûuj;ij � ð1� bBÞp̂p;i � s2ðq� bBqFÞûui ¼ bB

f̂f
F

i � f̂f i

– Pore pressure, TPM (39) and BT (54)

p̂p;ii �
s2qFR

0

bT
ð1� bTÞûui;i ¼ qFRb̂b

F

i;i;

p̂p;ii �
s2qF

bB
ð1� bBÞûui;i ¼ f̂f

F

i;i

Comparing the densities it is found that

qFR
0 ¼

!
qF and q0 ¼ nS

0q
SR
0 þ nF

0 qFR
0 ¼

!
q ¼ qSð1� /Þ þ /qF; ð71Þ

i.e., in BT the densities correspond to the effective densities introduced in TPM. Furthermore,

the porosity can be identified with the initial fluid volume fraction nF
0 ¼ / which is also indi-

cated by their initial definitions (1) and (40). However, as mentioned in Sect. 3, this conclusion

requires that all pores are interconnected.

With theses identifications in mind the body forces can be compared. While in TPM the

body force density bk
i is defined as force per mass, in BT f k

i is defined as force per volume (k¼S,
F). According to the definition of the densities the identification f k

i ¼ qkRbk
i is obtained.

Clearly, this difference is due to the different underlying definitions of the body forces.

Finally, the governing equations of both theories become identical if bB ¼ bT holds.

Comparing the definitions (47) and (29) the following identity has to hold:
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bB ¼ jBqF/2
s

/2 þ sjBðqa þ /qFÞ
¼! bT ¼ snF

0 qFR
0 jT

nF
0 þ sjTqFR

0

: ð72Þ

Before evaluating (72) the different expressions for the permeabilities have to be discussed. In

BT, the permeability is defined by the quotient of the intrinsic permeability kS and the viscosity

lF of the fluid, i.e., jB ¼ kS=lF. Note that the intrinsic permeability kS describes only the pore

structure. As discussed in Sect. 2, the permeability jT in TPM has the same physical meaning as

jB. Taking this equality into account from Eq. (72) it follows that

nF
0 qFR

0 ¼
!
qa þ /qF ) qa � 0: ð73Þ

However, this can only be achieved if the apparent mass density qa vanishes, which is in

accordance with Ehlers and Kubik [22]. Therefore, for the incompressible case it can be con-

cluded that the linearized governing equations of both theories are identical if condition (73)

holds.

This equivalence of both approaches is also verified by the one-dimensional example. In

Fig. 2, the displacement at the top of the 1-d column (see Fig. 1) is plotted versus time for both

theories. The loading is assumed to be ryðy ¼ ‘Þ ¼ �1 N/m2 HðtÞ, i.e., it is kept constant over
the complete observation time t � 0. The material data are those of a rock as given in Table 1.

The agreement of both results is perfect as expected due to the identification of the parameters.

As stated above, the perfect agreement of the results shown in Fig. 2 can only be achieved for

vanishing apparent mass density. So, the question is which influence has the apparent mass

density in BT and what differences appear if condition (73) is not fulfilled? To answer this,

numerical tests have shown that the apparent mass density has no influence on the results for

the given set of material data according to Table 1. However, if the permeability j ¼ jB ¼ jT is

increased or if the viscosity of the fluid is decreased, differences appear depending on the

apparent mass. As already reported by Schanz and Cheng [33], the second slow compressional

wave becomes visible for increased permeabilities.

0.0 0.002 0.004 0.006 0.008 0.01

time t/s

di
sp

la
ce

m
en

t u
y/

m

–1*10–11

–5*10–12

0*100

Biot
,
s theory

TPM

Fig. 2. Displacement at the top of the
column

Table 1. Material data of Berea sandstone (rock)

K N
m2

� �
G N

m2

� �
q kg

m3

� �
/ KS

N
m2

� �
qF

kg
m3

� �
KF

N
m2

� �
j m4

Ns

� �

Rock 8 � 109 6 � 109 2458 0.19 3:6 � 1010 1000 3:3 � 109 1:9 � 10�10
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To study this effect, the pressure 5 m behind excitation of a long column (‘ ¼ 1000 m) is

depicted versus time for different values of j in Fig. 3. The smallest value of the permeability

j ¼ 1:9 � 10�10 m4/(Ns) represents the realistic case. In this case, both graphs show no differ-

ence. Furthermore, two effects are observed. Firstly, an initial jump indicates that the fast

compressional wave travels with infinite wave speed. This is due to the incompressible model

and is mathematically found in the analytical solution by the zeros of the eigenvalues (61).

Secondly, by increasing j a second jump becomes visible corresponding to the highly damped

second compressional wave [33]. This slow compressional wave is of negative amplitude be-

cause it represents the out-of-phase movement of fluid and solid. The arrival time and,

therefore, the wave speed of this wave depend on the chosen value of the apparent mass density.

Additionally, the pressure level in case of qa � 0 is smaller than that of qa ¼ 0:66/qF. These

results show that the interaction between solid and fluid is influenced by the apparent mass

density according to the structure of the BT, where qa was introduced as ‘mass coupling

parameter’ [9]. Therefore, it is concluded that TPM and BT model the interaction between solid

and fluid in a different way, however, for the test data this has no significant influence.

In the next step, the comparison of the compressible models is performed. For this purpose,

the governing equations are recalled:

k = 1.9 × 10–10 k = 1 × 10–7

k = 1 × 10–6 k = 1

k = 1.9 × 10–10 k = 1 × 10–7

k = 1 × 10–6 k = 1
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a   ρa = 0.66φρF
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Fig. 3. Pressure 5 m behind excita-
tion of an infinite column: different

apparent mass densities
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– for the displacements, TPM (32) and Biot (48)

Gûui;jj þ K þ 1

3
G

� �
ûuj; ji � nF

0 þ zSnS
0 � bT

� �
p̂p;i � s2ðq� bTqFR

0 Þûui ¼ bTqFRb̂b
F

i � qb̂bi;

Gûui;jj þ K þ 1

3
G

� �
ûuj; ij � a� bB

� �
p̂p;i � s2ðq� bBqFÞûui ¼ bB

f̂f
F

i � f̂fi;

– for the pore pressure, TPM (33) and Biot (49)

p̂p;ii � nF
0

s2

bT
R#

p̂p� s2qFR
0

bT
ðnF

0 þ zsns
0 � bTÞûui;i ¼ qFRb̂b

F

i;i;

p̂p;ii �
/2

s2qF

bB
RB

p̂p� s2qF

bB
ða� bBÞûui;i ¼ f̂f

F

i;i:

Obviously, if the equivalences found in case of incompressible constituents are taken into

account only two additional parameters have to be identified. Firstly, the comparison of the

pressure term yields the not expected result

qF/
RB
¼ 1

R#
: ð74Þ

On the left-hand side of Eq. (74), the material parameter RB (50.2) depending on the fluid as

well as on the solid properties is compared with the gas constant R and the absolute tem-

perature # on the right hand side characterizing only the fluid. The same appears in iden-

tifying the last parameter a. If both expressions are the same in both theories it must hold

that

a ¼ 1� K

KS

¼! nF
0 þ zSnS

0 : ð75Þ

Inserting the identification given by Diebels [21] into (75),

zS ¼ 1� KS

KSR
; ð76Þ

leads to a contradiction. It should be kept in mind that K and KS have the same physical

interpretation in Biot’s theory as KS and KSR have in TPM, respectively. Therefore, the con-

stitutive relations derived on micro mechanical models for both theories are not in agreement to

each other.

This contradiction becomes obvious in Fig. 4 where the displacement at the top of the

column is given versus time. While in the incompressible case no differences between the

displacement solutions of both approaches are visible, here, large differences appear. To

compute these results the specific gas constant of water R¼461,61 Nm/(kgK) at the absolute

temperature # ¼ 293 K is used.

Finally, to close the comparison the influence of the apparent mass density in case of

compressible constituents is studied. As before in the incompressible case, the pressure in a

long column is presented for both theories. The pressure result 5 m behind excitation

is depicted versus time for different values of j ¼ jB ¼ jT in Fig. 5. Additionally to the

observations in the incompressible case, in the compressible case the fast compressional wave

is observed as a first jump. This appears in BT at t � 0:0017 s and in TPM at t � 0:0022 s.

The arrival time of the slow compressional wave in BT is, as in the incompressible case,

different depending on whether the apparent mass density is zero or not, i.e., at t � 0:004 s or
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at t � 0:005 s. The arrival time of the slow compressional wave in TPM is t � 0:013 s and

does not coincide with one of Biot’s models. Furthermore, the pressure level in TPM is much

smaller than in BT. This is in accordance with the different displacement levels as shown in

Fig. 4.

6 Conclusions

In the present article, Biot’s theory for both compressible and incompressible constituents is

recalled. Additionally, under the assumption of a linear theory, the dynamic equations for the

mixture theory based Theory of Porous Media (TPM) are presented. Both theories model a

two-phase continuum consisting of a porous solid skeleton saturated with an interstitial pore

fluid. A comparison of the governing equations as well as wave propagation results for a one-

dimensional poroelastic column are presented.

Summarizing the results of the comparison, the structure of the governing differential

equations in BT and in TPM is the same. So, the wave forms predicted by both theories

are equal. As a side effect, it was shown that Darcy’s law results naturally from the

balance of momentum in the fluid. Due to this, also the generalised version of Darcy’s law,

which takes the inertia terms into account, is a consequence of the fluid balance of

momentum.

In case of incompressible constituents, the model parameters are identified in a way that the

governing equations are the same in both theories if the apparent mass density is set to zero.

The equivalence between both approaches is also verified numerically. On the other hand, in

case of compressible constituents neither the identification procedure nor the numerical results

match. This is related to the definition of Biot’s stress coefficients a and RB and the identifi-

cation of the state variable zS in TPM, respectively. These parameters are motivated by micro

mechanical considerations in both theoretical approaches. The micro mechanical motivation

for the parameters is not mandatory and should be critically surveyed. Furthermore, comparing

the constitutive equations for the solid stress tensors of both theories shows that the configu-

ration pressure should be included into the TPM formulation in order to achieve comparable

equations.
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Appendix A

Convolution Quadrature Method

The ‘‘Convolution Quadrature Method’’ developed by Lubich numerically approximates a

convolution integral

yðtÞ ¼
Z t

0

f ðt� sÞgðsÞds! yðnDtÞ ¼
Xn

k¼0

xn�kð f̂f ;DtÞgðkDtÞ; n ¼ 0; 1; . . . ;N; ð77Þ

by a quadrature rule whose weights are determined by the Laplace transformed function f̂f and

a linear multi-step method. This method was originally published in [36] and [37]. An appli-

cation to the boundary element method may be found in [38]. Here, a brief overview of the

method is given.

In formula (77), the time t is divided in N equal steps Dt. The weights xnðDtÞ are the

coefficients of the power series

f̂f
cðzÞ
Dt

� �
¼
X1

n¼0

xnð f̂f ;DtÞzn; ð78Þ

with the complex variable z. The coefficients of a power series are usually calculated with

Cauchy’s integral formula. After a polar coordinate transformation, this integral is approxi-

mated by a trapezoidal rule with L equal steps 2p
L
. This leads to

xnðf̂f ;DtÞ ¼ 1

2pi

Z

jzj¼R

f̂f
cðzÞ
Dt

� �
z�n�1dz � R�n

L

XL�1

‘¼0

f̂f
cðRei‘2p

L Þ
Dt

 !

e�in‘2p
L ; ð79Þ

where R is the radius of a circle in the domain of analyticity of f̂f ðzÞ.
The function cðzÞ is the quotient of the characteristic polynomials of the underlying multi-

step method, e.g., for a BDF 2, cðzÞ ¼ 3
2
� 2zþ 1

2
z2. The used linear multi-step method must be

A (a)-stable and stable at infinity [37]. Experience shows that the BDF 2 is the best choice [39].

Therefore, it is used in all calculations in this paper.

If one assumes that the values of f̂f ðzÞ in (79) are computed with an error bounded by e, then
the choice L¼N and RN ¼

ffiffi
e
p

yields an error in xn of size Oð
ffiffi
e
p
Þ [36]. Several tests conducted

by the first author lead to the conclusion that the parameter e ¼ 10�10 is the best choice for the

kind of functions dealt with in this paper [40]. The assumption L¼N results in N2 coefficients

xnðDtÞ to be calculated. Due to the exponential function at the end of formula (79) this can be

done very fast using the technique of the Fast Fourier Transformation (FFT).
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Baudienst. 7, 532–510 (1913).

Biot’s theory and the linear Theory of Porous Media 233



[5] von Terzaghi, K.: Die Berechnung der Durchlässigkeit des Tones aus dem Verlauf der

hydromechanischen Spannungserscheinungen. Sitzungsber. Akad. Wissensch. (Wien): Math.–
Naturwiss. Klasse 132, 125–138 (1923).

[6] Biot, M. A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).
[7] Biot, M. A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys.

26, 182–185 (l955).
[8] Biot, M. A.: Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27,

459–467 (1956).
[9] Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-

frequency range. J. Acoust. Soc. America 28, 168–178 (1956).
[10] Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher

frequency range. J. Acoust. Soc. America 28, 179–191 (1956).
[11] Plona, T. J.: Observation of a second bulk compressional wave in porous medium at ultrasonic

frequencies. Appl. Phys. Letters 36, 259–261 (1980).
[12] Vardoulakis, I., Beskos, D. E.: Dynamic behavior of nearly saturated porous media. Mech. Comp.

Mater. 5, 87–108 (1986).
[13] Truesdell, C., Toupin, R. A.: The classical field theories. In: Handbuch der Physik (Flügge, S., ed.),
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[18] Ehlers, W.: Poröse Medien – ein kontinuumsmechanisches Modell auf der Basis der Mis-
chungstheorie. Forschungsbericht aus dem Fachbereich Bauwesen 47, Universität – GH Essen,

1989.
[19] Ehlers, W.: Constitutive equations for granular materials in geomechanical context. In:

Continuum mechanics in environmental sciences and geophysics (Hutter, K., ed.). CISM Courses
and Lecture Notes, No. 337, pp. 313–402 Wien: Springer 1993.

[20] Ehlers, W.: Compressible, incompressible and hybrid two-phase models in porous media theories.
ASME: AMD-Vol. 158, 25–38 (1993).

[21] Diebels, S.: Mikropolare Zweiphasenmodelle: Formulierung auf der Basis der Theorie Poröser
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