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Abstract: This paper introduces the automated characterization of real estate (real 

property) for Internet mapping. It proposes a processing framework to achieve this task 

from vertical aerial photography and associated property information. A demonstration of 

the feasibility of an automated solution builds on test data from the Austrian City of Graz. 

Information is extracted from vertical aerial photography and various data products derived 

from that photography in the form of a true orthophoto, a dense digital surface model and 

digital terrain model, and a classification of land cover. Maps of cadastral property 

boundaries aid in defining real properties. Our goal is to develop a table for each property 

with descriptive numbers about the buildings, their dimensions, number of floors, number 

of windows, roof shapes, impervious surfaces, garages, sheds, vegetation, presence of a 

basement floor, and other descriptors of interest for each and every property of a city. From 

aerial sources, at a pixel size of 10 cm, we show that we have obtained positional 

accuracies in the range of a single pixel, an accuracy of areas in the 10% range, floor 

counts at an accuracy of 93% and window counts at 86% accuracy. We also introduce 3D 

point clouds of facades and their creation from vertical aerial photography, and how these 

point clouds can support the definition of complex facades. 

Keywords: aerial images; 3D-modeling of buildings; semantic image interpretation; 

counting building floors; window detection; real estate valuation; facade point clouds 
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1. Describing Real Properties 

We define a ―real property‖ by one or sometimes multiple parcels as they are recorded in cadastral 

maps. It consists of a piece of land, sometimes defined by a fence, on which are one or more buildings, 

impervious surfaces, garages, trees and other vegetation. A property may also contain only the portion 

of a multi-unit building, for example in dense urban cores where buildings are connected.  

The description of a real property consists of a table with coordinates and numbers. These define the 

number of buildings, type of building from a stored list of candidates, building height and footprint, 

number of floors, number and types of windows, presence of a basement floor, type of attic, roof type 

and roof details such as an eave, skylights, chimneys, presence of a garage and its size, types and 

extent of impervious surfaces, such as a driveway and parking spaces, and statements about the type 

and size of elements of vegetation, the presence of a water body, the existence and type of a fence, 

exposure to the sun and effects of shadows, the quality of views from a window, etc.  

We expect that such information per parcel, for all properties of a city, will be useful for a broad 

range of applications in city administrations, commercial location-based services and searches on the 

Internet [1]. There will, however, be concern about the cost of data creation. An economically 

favorable approach would build first of all on the wealth of already existing routine aerial photography 

justified by other applications, not insignificantly in connection with innovative location-aware global 

Internet sites such as Google Maps and Microsoft’s Bing Maps, or the innumerable regional sites. 

Secondly, such property-descriptions will need to be developed automatically, with little 

manual support.  

Therefore we have designed a processing framework which focuses on using pre-existing high 

resolution vertical aerial images and cadastral data. These two sources need to be conflated into a 

common coordinate system. The aerial images themselves in turn are the source of terrain models, 

image camera poses and classifications. One may possibly also involve street vectors. The process first 

builds an integrated geometry and semantic object data set which can then be analyzed for the 

development of descriptors. Our initial results concern the definition of building details. We show that, 

for vertical aerial photography, we have achieved an accuracy in counting floors of 93%, and for 

windows 86%. 

2. Inspiration from the Location-Aware Internet 

2.1. Evolving from Digital Geodata to Location-Awareness 

A location-aware Internet [2-5] has evolved since about 2005. Internet-search has been a driving 

force in the rapid development of detailed 2-dimensional maps and also 3-dimensional urban models. 

―Internet maps‖ in this context consist of street-maps used for car navigation, augmented by the terrain 

shape in the form of the Bald Earth and all this accompanied by photographic texture from ortho 

photos. This is currently available for large areas of the industrialized World when calling up the 

websites maps.google.com or www.bing.com/maps, and also from a number of regional Internet 

mapping services, for example the French www.geoportail.fr or the German 

www.klicktel.de/kartensuche. 
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The transition from the first availability of digital map data to today’s interactive location-based 

search on the Internet spans about 30 years. One may divide the evolution into several distinct stages: 

(1) The massive transition to digital geo data dates back to the time when computing facilities were 

first able to cope with the data quantity implied in the geo-application and began with the 

scanning of paper maps and their subsequent vectorization in the late 1970s. This improved the 

storage, retrieval, transmission and printing of such data.  

(2) The availability of digital data led to an early form of pre-Internet e-commerce by shipping 

shrink-wrapped Geodata to interested experts.  

(3) Road maps became available for trip planning in the mid 1990s, initially for transportation 

systems, later for the general public in the form of car navigation. It required the broad 

acceptance of personal computing. Geodata were transported on digital media. 

(4) The Internet was the major enabler of the widespread commerce with Geodata greatly 

improving the convenience in exchanging orthophotos, aerial and satellite photography. 

Shrink-wraps were replaced by online services. 

(5) The GPS (Global Positioning System) inspired a further increase in the usefulness of digital 

Geodata and resulted in the transition to true real-time navigation from about the mid 1990s 

onwards, based on street maps. 

(6) The latest stage of this evolution was the introduction of Geodata into the novel  

search-application via the Internet. Global location awareness was introduced into Internet 

search via maps.google.com and www.bing.com/maps. 3D urban building models came into 

being in November 2006 with Microsoft’s announcement of the availability of Virtual Earth 

in 3D [6]. 

(7) We see today the emergence of smart telephones and a refined interest in locations, not only in 

cars but now also for pedestrian applications. 

An interesting transition occurred along the way from Geodata as a realm of experts, into routine 

use by everyone. This separate evolutionary track began with a very early idea, namely the invention 

of the GIS (Geographic Information Systems) in about 1962 [7]. The idea was born well ahead of the 

ability to realize it in the form of large area systems. While of course entirely predicated on the 

availability of the computer, it took the personal computer to make the idea a practical reality. 

However, the GIS did not change the basic limitations of ―Geodata for the experts‖. That change 

became very visible with the development of car navigation systems for regular passenger cars. It 

signaled for the first time a transition from experts to everyone. This development accelerated with the 

location-aware Internet search, so that today almost every Internet user is also a user of Geodata, 

inspecting and judging aerial photography, oblique imagery, 3D building models and, most recently, 

also street-side images and their various methods of supporting a Geo-naïve user.  

Urban 3D models have been a research topic since the mid 1990s [8-12]. The initial introduction 

into Internet-search at Bing Maps (then Virtual Earth) employed man-made buildings as triangulated 

point clouds with a visual embellishment by photographic texture. Since April 2008, vegetation is 

being classified and identified, and computer-generated vegetation is being placed on top of the Bald 

Earth [5].  
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3D urban models are still in their infancy and are provided over large areas only by Bing Maps, with 

an example presented in Figure 1 in its ―classic‖ version from www.bing.com/maps. Recently, the 

emphasis has shifted at Microsoft from a full 3D urban model to the use of 2D street-side imagery that 

has undergone some limited 3D processing (see www.bing.com/maps/explore). While Internet-search 

may be the most visible and also initial driving application, there are of course others. Often mentioned 

are city planning, virtual tourism, disaster preparedness, military or police training and decision 

making [13], or 3D car navigation [14]. In Germany, 3D building models are being considered of such 

municipal relevance that a fairly complex and all-encompassing CityGML data standard has been 

developed to guide the creation of 3D building models at various levels of detail, ranging from a basic 

L0 through to a virtual reality level L4 with indoor 3D modeling [15]. This standard has been adopted 

by the international Open Geospatial Consortium (OGC) [16]. 

Figure 1. Typical 3D content in support of an Internet search, taken from 

www.bing.com/maps. The focus is on providing a pleasant ―user experience‖. The example 

is the Colorado State Capitol. The geometry is from vertical aerial photography, the  

photo-texture from separate aerial oblique imagery. The vegetation has been classified and 

computer generated trees have been placed at the locations classified as trees. 

 

2.2. Towards Semantically Interpreted Urban Models 

So-called 3D-location awareness of the Internet serves to please the user’s eye—one could speak of 

―eye candy‖—but cannot be used as part of the search itself. This is unlike the 2D content with its 

street map and address codes that can be searched. An interpreted urban 3D model would support 

searches in geometry data, not just in alphanumeric data. Certain characteristics may be interest, such 

as: the number of buildings higher than four floors in a certain district, a built-up floor area in excess 

of 500 m
2
, impervious areas at less than 30% of the land area, large window surfaces in excess of 30% 

of the wall surface, a certain minimum sun exposure during the day, with attractive views of the distant 

urban landscape. 

We can search for such objects if we augment the Internet with descriptions of real properties. 

Image contents must not merely be shown on a monitor, but they must get interpreted. For this to be 
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accomplished at low cost, it must be done automatically and from easily available sources. We are 

facing a research challenge for computer vision [4,17]. 

2.3. Growing from Location-Awareness towards Ambient Intelligence 

While applications like Bing Maps or Google Earth are currently driven to engage the public in 

using the associated Internet-search systems via attractive location awareness, there is a deeper 

justification in light of the emerging opportunities created by the Internet-of-Things and Ambient 

Intelligence. Both concepts need location awareness [18]. Already in 1991, Marc Weiser authored his 

much quoted prediction for computing in the 21st century and postulated that location will be one of 

two issues of crucial importance: ―ubiquitous computers must know where they are‖ [19].  

Weiser’s sketch of the future has morphed from ubiquitous computing to ambient intelligence. We 

expect the geometry of the elementary parts of an entire urban environment to be available at a human 

scale to be searched; we foresee that this becomes the basis for locations of fixed sensors, or moving 

GPS-tracked sensors, to read the RFID- and other tags of goods to be placed inside buildings, even 

inside individual rooms. In analogy, triangulated cell phones as well as tags can also place persons 

inside buildings and rooms. A semantically interpreted 3D city model could help find one’s briefcase, 

an errant person, the nearest copying machine and will affect the use and behavior of all sorts of 

computer-driven gadgets. 

3. Going through a Processing Framework 

Low cost by automation and a reliance on pre-existing sources has led us to define a general 

processing framework (Figure 2). We start out by conflating (merging) geometric data from essentially 

two sources: the aerial imagery and the cadastral information. Figures 3 and 4 cover an example of a 

400 m × 400 m urban test area in the city of Graz (Austria). Conflation defines each property as a 

separate entity for further analysis, not unlike previous authors have proposed [20]. The cadastral data 

may also contain preliminary information about a 2D building footprint. Conflation is part of a  

pre-processing workflow and results in all geometric data being available per property and in a single 

geometric reference system.  

We now proceed towards the use of the dense 3D point clouds associated with the aerial 

photography and extracted from it by means of a dense matcher applied to the triangulated aerial 

photographs [21]. ―Dense‖ refers to the fact that each image pixel gets assigned a terrain elevation 

value. The surface model is thus at a spacing equal to the Ground Sampling Distance (GSD) of the 

images. The extraction of data per building and per element of vegetation comes first. This finds the 

areas occupied by a building as well as its height. For vegetation we need to find the type, its location, 

the height and the crown diameter. The building footprints get refined vis-à-vis the cadastral prediction 

using image segmentation and classification to define roof lines. 

From the building, one proceeds to the facades: building footprints become facade baselines. A 

decision is needed on the number of facades. We segment a single building shape so that the footprints 

of its parts all consist of simple rectangular shapes. This is the basis for addressing the facades. For 

each facade we must find its intersection with the ground—its footprint. This is the basis for an 

extraction of the facade in 3D by intersecting it with elevation data. We compute the corner points of 
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each facade. These can then be projected into the block of overlapping aerial photography. We can 

search all aerial images for the best representation of the facade details; typically this will be the image 

with the maximum number of pixels for a given facade. Since there are multiple facade images, we 

prepare for a multi-view process. 

Figure 2. Diagram of the proposed work flow to characterize real properties from aerial 

images and associated cadastral data (performed processing steps highlighted). 

 

What follows is a search for rows and columns of windows in the overlapping (i.e., ―redundant‖) 

photographic imagery. First of all, this serves to establish the number of floors. Second, we also are 

interested in the windows location themselves, as well as in their size. And finally, we want to take a 

look at attics and basement windows to establish whether there is an attic or basement. 

While Figure 2 summarizes the workflow, subsequent sections of this paper will fill in the details 

based on sample data from Figures 3 and 4 from the City of Graz to explain the approach. The aerial 

coverage is taken with a ground sampling distance at 10 cm and with overlaps of 80% forward and 
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60% sideward. Our aim is to show that an automated property characterization is feasible, not least due 

to the fact that the overlaps produce a10-image coverage of each terrain point. 

Figure 3. True Orthophoto of the city of Graz, 400 m × 400 m, at a ground sampling 

distance of 10 cm. ―True‖ in that orthophoto implies the aerial photograph has been  

re-projected considering the elevation of the buildings, so that one cannot see any of the 

building facades. Shown here are 216 building details: Brockmanngasse, Kopernikusgasse; 

UltraCamX, acquired in 2007 [Courtesy of Microsoft-Graz]. 

 

Figure 4. Cadastral map of Graz with legal property boundaries is shown for the same area 

in Figure 3. The original data is in vector format that has been converted to a raster image 

at a GSD of 10 cm. Shown are 300 separate parcels [Courtesy of BEV-Austria]. 

 

A US-Internet application associates its commercial value with each property (www.zillow.com), by 

linking into the public property tax records. In the absence of such records, one would characterize a 

property before assessing its value. It is this characterization that is the focus of this contribution and 

may be essential in assessing any value. The characterization of vegetation and roof details [22] are not 
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discussed in this paper. For more information about vegetation and tree detection please read 

Hirschmugl et al. [23].  

4. Source Data 

4.1. A Wide Range of Potential Sources for Geo-Data 

One can observe a growing avalanche of digital Geodata from imagery, but also from records of 

GNSS/GPS traces or cellular phone triangulations. The diversity of geo-data is summarized in Table 1. 

The association with a geometric resolution or accuracy shows a range between ±2 cm and ±10 m. 

Table 1. The major providers of urban sources for geo-data with typical geometric 

resolution. A considerable dynamic exists to conflate image, vector and address data, to 

create updating mechanisms for street-level and address data (Google blog on conflation 

and updating, [24]). 

OVERHEAD SOURCES URBAN GSD 

  1. Satellite Imagery 0.5 m 

  2. Aerial Imagery, vertical 0.1 m 

  3. Aerial imagery, oblique 0.1 m 

  4. Aerial Laser Scanning (LIDAR) 0.1 m 

STREET SIDE SOURCES  

  5. Street Side Imagery from Industrial Systems 0.02 m 

  6. Street Side Lasers 0.02 m 

  7. Crowd-Sourced Images (FLICKR, Photosynth) 0.02 m 

  8. Location Traces from Cell Phones and GNSS/GPS 5 m 

OTHER DOCUMENTS  

  9. Cadastral Maps, Parcel Maps 0. 1 m 

10. Street Maps from Car Navigation 5 m 

11. Address codes with geographic coordinates 10 m 

The geometry of large urban areas is mapped by aerial photography. While it may be feasible in the 

distant future that a continuous stream of perennially fresh GPS/GNSS-tagged collections of  

crowd-sourced imagery will do away with any need for aerial photography, that time has yet to arrive. 

A coordinate reference is thus being established by an automatically triangulated block of aerial 

photographs to within a fraction of a pixel across an entire urban space. As previously stated, that 

reference, in the demonstration area in Graz, is within ±0.5 pixels or ±5 cm. 

From the wide range of possible source data in Table 1, our approach for the property 

characterization employs subsets ―2‖ and ―9‖ only, namely the original aerial images and cadastral 

maps. However, the aerial images are used to compute digital elevation data, orthophotos and image 

classifications. We anticipate that the addition of street network data ―10‖ will augment the 
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characterization result by information about traffic flows. It is worth noting that such data have 

become widely available at no cost off the Internet. 

4.2. Vertical Aerial Images 

At the core of the approach are vertical aerial images. In the current test environment we 

specifically use images from the UltraCamX [25]. This, like most digital aerial cameras, produces 

images in the four colors red, green, blue, and near infrared (NIR), and also collects a separate 

panchromatic channel. The images often have ~13 bits of radiometric range; this is encoded into 

16 bits per color channel [26,27]. The entire administrative area of the city of Graz consists of 155 km
2
 

and covers the dense urban core and rural outlying areas. This surface area is covered by 3,000 aerial 

photographs that have been flown with along-track overlaps at 80% and across-track at 60% with a 

GSD of 10 cm. This large number of aerial photographs far exceeds, by an order of magnitude, what 

one would have captured with a film camera and manual processing. The overlaps would have been at 

60% and 20%, and the geometric GSD would have been at 20 cm, largely driven by concerns about the 

cost of film and of manual processing scaling with the number of film images.  

Standard photogrammetric processing is being applied to such a block of digital photography using 

the UltraMap-AT processing system. The word ―standard‖ is applicable in terms of the principle of 

photo-triangulation itself, but the procedure is far from standard when considering the data quantities 

and the level of automation [28]. Full automation is achieved first because of the high image overlaps; 

a second factor is the use of a very much larger number of tie-points than traditional approaches have 

been using. The aerial triangulation process therefore results not only in a pose for each aerial 

photograph, but also in a sparse cloud of terrain points, since about 1,000 tie-points are found per 

aerial photograph [29,30]. The accuracy of the triangulation is in the sub-pixel range of ±4 cm in 

planimetry and ±6 cm in height [27]. The sparse cloud of terrain points may be at 20,000 per km
2
. 

4.3. Oblique Aerial Images 

There is a need for simple measurements in urban spaces by non-expert users in municipal 

administrations. This combines with the appeal of a bird’s eye view of a neighborhood and has led to 

the introduction of oblique aerial photography [30]. One application for this type of imagery has been 

in support of the location aware Internet, so far mainly in www.bing.com/maps, and in the regional site 

www.klicktel.de. 

Because the viewing angles of facades are typically at 45° and thus larger in oblique than in vertical 

photography with its 27° at the image’s edges, one might be tempted to consider oblique sources in the 

facade analysis. Taking oblique images off the Internet allows one to compare the vertical and oblique 

views of specific facades (see Figure 5). We will show that occlusions due to these large angles are 

severe and prevent one from obtaining useful floor and window counts from oblique aerial sources 

especially in historic cities like the city of Graz in Austria. For a more detailed description about this 

topic please read Meixner et al. [31]. 
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Figure 5. Oblique aerial image at 45° look angle taken from Bing Maps (left); Vertical 

aerial image obtained from UltraCamX at a look angle of 27° (right). The marked sections 

in the original image segments (above) have been rectified (below). 

 

 

4.4. Derived from Vertical Aerial Images: DSM and DTM Data 

The Digital Surface Model (DSM) is created by ―dense matching‖. The input consists of the 

triangulated aerial photographs. In this process, one develops point clouds from subsets of the 

overlapping images and then merge (fuse) the separately developed point clouds of a given area. The 

process is described by Klaus in [21]. For property classification, the elevation data are considered as 

input. Data used in our property-related experiments have been obtained from work at Microsoft 

Graz [27]. The conversion of the surface model DSM into a Bald Earth Digital Terrain Model (DTM) 

is a post-process of dense matching and has been described by Zebedin et al. [32].  

The postings of the DSM and DTM are at 2 pixel intervals, and result in about 25 million points 

per km
2
, far denser than traditional photogrammetry rules would support. However, because the 

overlaps of 80% and 60% result in 10 images per ground point, one is observing a type of  

―super-resolution‖ that supports a very dense sampling of terrain points. It has been shown that the 

vertical accuracy of such DSMs is in the range of about ±0.5 pixels [33], provided the surface is 

well defined. 

4.5. Derived from Vertical Aerial Images: True Orthophoto 

The DSM is the reference surface onto which each aerial photograph is projected. The DSM and its 

associated photographic texture are then projected orthogonally into the XY-plane and result in what is 

denoted as a ―true‖ orthophoto. In this data product, the buildings are only shown by their roofs, not 

however by their facades. Given the overlaps of the source images, the orthophoto can be constructed 

in such a way that all occlusions are avoided. Image detail in the orthophoto is therefore taken from 

multiple aerial images in a manner that would not be customary in traditional film-based 

orthophotography. 
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In the current context, the true orthophoto is an auxiliary tool for visual inspection of intermediate 

results. One could also use traditional orthophotos that have been projected not onto the DSM but onto 

the Bald Earth DTM instead. The traditional orthophoto would, however, show far less concurrence 

with the cadastral map. For further details about this method see Zebedin et al. [32] and 

Oda et al. [34]. Another possibility of generating true orthophotos is to use a fusion step where 

massive redundant image data is transformed to a common (ortho) view and processed with 

e.g., variational methods as described by Zach et al. [35] or Kluckner et al. [36]. 

4.6. Derived from Aerial Images: Classification into Segmented Images 

Any urban area of interest can be covered by multiple color aerial images. These can be subjected to 

an automated classification to develop information layers about the area. We consider these as input 

for our characterization procedures. The classification approach used here has been described by 

Gruber-Geymayer et al. [37] and Zebedin et al. [32]. However, classification and segmentation 

methods are topics of intense research. For example Kluckner et al. [38] have proposed alternative 

novel methods with good results specifically interpreting urban scenes imaged by the UltraCam digital 

aerial camera. 

Standard classifications of 4-channel digital aerial photography typically lead to seven separate data 

layers: buildings; grass; trees; sealed surfaces; bare earth; water; other objects (―unclassified‖). The 

unclassified areas may show lamp posts, cars, buses, people, etc. Gruber-Geymayer et al. [39] report 

typical classification accuracies in the range of 90%: this means that a 10% error is being made either 

by assigning a class in error or not assigning any class. 

4.7. Cadaster for Property Boundaries 

Since a ―property boundary‖ is a legal concept, it is not typically visible in the field and from the 

air. Also image segmentation algorithms cannot properly distinguish between buildings when they are 

physically attached to one another. It will be the rare exception that attached buildings can be separated 

from aerial imagery, for example if the roof styles differ, building heights vary or the colors of the 

roofing tiles differ. Obviously then one needs to introduce the cadastral map. 

Cadastral information has a long history that is reflected in a need to consider its national 

circumstances and historical development to avoid negative surprises. The accuracy and the historical 

development of the Austrian land register can be considered to be at a rather highly developed level 

not found in many countries.  

For the study area in the city of Graz we have cadastral data available from the year 2008, provided 

by the Austrian Federal Mapping Agency Bundesamt für Eich- und Vermessungswesen (BEV, see 

Figure 4). The cadastral information addresses property boundaries, and not necessarily building 

footprints, although such building data may be provided from the cadastral sources, albeit with some 

uncertainty and oftentimes somewhat dated. The cadastral accuracy is quoted at ±10 cm which is 

equivalent to the range of the aerial photography’s pixel size and thus sufficient for the purpose of 

characterizing real properties [40]. 
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4.8. Optional Street Network and Address Data 

Car navigation has been the driver for the global development of digital street maps. They also 

support location awareness of Internet searches. Since the vector format of street maps is not available 

free of charge, it is at times re-engineered from the raster display off the Internet [41]. The example for 

the Graz study site, in Figures 3 and 4, illustrates the scarcity of street map. And yet it can add unique 

information about traffic and traffic-related property-characteristics. Of course the street maps would 

take on a much elevated importance if there was no cadastral data (Figure 6). 

Figure 6. Street layer for the area in Figure 3 taken off the Internet search system Bing 

Maps (Microsoft, November 2009). The raster GSD has been resampled to fit the aerial 

imagery sources at a GSD of 10 cm. To the right is a ―hybrid‖ view of the street layer 

superimposed onto the orthophoto. 

    

Address information is encoded in the form of a point and its geographic latitude and longitude. 

This is valuable when attaching alphanumeric information to a property. Again, this source is of 

elevated importance when one needs to cope with the absence of a cadaster. Between the street map, 

address data and the orthophoto, one will have to devise a strategy for approximating cadastral 

information. 

4.9. Comments 

All image-based source data for the proposed property work are the result of extensive computation 

and data processing, some of which constitutes the outcome of considerable recent innovations, such 

as dense image matching and fully automated aerial triangulation. However, none of this processing is 

specific to the property characterization; therefore we do not address it in this paper. 

The growing diversity of Geodata sources has recently been discussed by Blumenthal [24] with 

respect to efforts made at Google. Two innovative phenomena stand out: crowd sourced imagery and 

motion traces. Both may have an impact on the property characterization as such data becomes 

increasingly more available. The detail from crowd sourced imagery (also denoted as Community 

Photo Collections CPC) will probably exceed by a level of magnitude that of aerial imagery. The 
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developments in this domain hold great promise [42-44]. Even new words are being introduced to deal 

with these changes, for example ―neo-geographer‖ [45]. A separate novel type of Geodata is the 

motion trace offering the option of modeling noise from traffic. 

The Graz study area is 400 m × 400 m and contains 216 buildings situated on 321 parcels. This 

suggests that multiple parcels may combine into a single property. 

5. Assembling Data per Property 

5.1. Chamfer-Matching the Cadastral Map with the Building Classification 

Most cadastral maps, including the Austrian cadastre, basically present a 2D data base and ignore 

the 3rd dimension. This causes issues when relating the cadastral data to the aerial photography and its 

inherently 3D data products. Co-registration therefore may be accomplished using the 2D building 

classification and a match between this and the 2D-cadastral map. Once this co-registration is 

achieved, the cadastral data are also geometrically aligned with all the orthophoto and other  

photo-derived data sets.  

A 2-step process serves to match the 2D cadastral vector map (in its own coordinate system) and the 

2D orthophoto (with its different coordinate reference). In a first step, the cadastral point coordinates 

simply get converted from their Gauss-Krüger M34 values to the building classification’s Universal 

Transverse Mercator UTM system. In an ideal world, this would solve the registration problem. 

However, it does not, as illustrated in Figure 7 (left).  

Figure 7. Overlaying the cadastral map over the orthophoto will leave some small errors 

that need to be found and removed. Left is the overlay after step 1 of the registration, 

namely the coordinate transformation from the Gauss-Krüger to the UTM system. To the 

right is the result after a Chamfer-match has been applied. The area is a segment of the 

study area in Figure 3. 

 

A second step is thus needed to achieve a fine alignment of the cadastre and the building 

classification. This is because small projection errors exist in the range of a few pixels (some 

tens of cm). 
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This adjustment is accomplished by a so-called Chamfer-match, here implemented after 

Borgefors [46]. The algorithm converts the vector image of the cadastral map into a raster image and 

assigns a grey value to each pixel as a function of the distance from the nearest vector. This is denoted 

as a distance image. The resulting raster image from the cadastre is shown in Figure 8. In a similar 

fashion, the building classification is transformed into an edge image. Chamfer-matching now employs 

these two computed auxiliary raster images by overlapping them to find small geometric changes to 

make them fit optimally. In our case this linear alignment is computed for the entire image patch. For 

this data set no non-linear misalignments like shearing or rotation occur, they are all solved in the first 

step. Figure 7 (right) supports the conclusion that discrepancies have been reduced from their previous 

±7 pixels down to a mere ±2 pixels (GSD = 10 cm).  

Figure 8. Cadastral raster image in the format of a computed distance transform 

image (left) and the edges of the segmented image (right), both used as an input to the 

Chamfer-match after Borgefors [46].  

    

5.2. Class-Specific Segmentation per Individual Properties 

The image segmentation result has the same coordinate system as the orthophoto. Therefore the 

cadastral map can be used directly to cut a classification map into data per property. Figure 9 illustrates 

the result. 

An evaluation of the automated segmentation is based on manually developed ground truth. For the 

example of the building information, the result confirms that the classification approach implemented 

by Gruber-Geymayer et al. [37] and Zebedin et al. [32] delivers an accuracy of 90%. Classification 

uncertainties are caused by mismatches between cadastral line work and the building outlines when a 

cadastral boundary line coincides with a building facade. We may find facade details such as 

balconies, or roof extensions in the form of eaves that violate cadastral delineations. Having the 

cadaster available offers one the option of changing the segmentation and classification along building 

and property boundaries. 
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Figure 9. Three separate sample properties and the source data per property. To the left in 

column (a) are the orthophoto segments. In column (b) are the elevation data (DSM), in 

column (c) are the elevations on top of the Bald Earth. Column (d) shows the classification 

result with seven object classes. 

 
(a)                                   (b)                                  (c)                                (d) 

While we assume that these small differences will be insignificant in the application to a property 

characterization, we do want to understand and hopefully reduce or remove them. A roof’s eave causes 

a small parallel shift vis-à-vis the cadastral data to make them fit the segmentation result. The 

inconsistencies from bay windows or balconies also would disappear if one were to redraw the 

classification boundaries. These interventions would affect the classification results and rate of 

misclassifications. These considerations create the need for methods to automatically improve the 

alignment of the cadastral line work and the segmentation boundaries. This could be possible e.g., by 

using a variational boundary regularization. Until such algorithms are developed and implemented, we 

perform such minor improvements by hand. Figure 10 illustrates the discrepancies and their removal.  
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Figure 10. Overlay of segmented image and cadastre for one of the samples in Figure 9. 

Left is with the discrepancies due to roof eaves and facade detail, to the right is a manually 

cleaned-up version. 

 

5.3. Dense Point Clouds per Property and per Building 

In the current test area, the DSM/DTM are an elevation raster in the coordinate system of the 

photogrammetric block and at a posting interval of 20 cm. Cutting the large area dense DSM/DTM 

data set along property boundaries is trivial and based on the cadastral data after Chamfer refinement. 

A per-property presentation of the various map data is shown in Figure 9.  

Elevation values associated with the classification layer ―building‖ will provide a visual impression 

of the building shape. Similarly, elevations associated with a vegetation layer will describe the shape 

of trees. This seems analogous to the processing performed for the current search-driven 3D ―eye 

candy‖ of Figure 1. However, in those data sets, the property boundaries do not play any role. 

5.3. Discussion 

The cadaster-based separation of the images, classification results and elevation data is fundamental 

to achieve the description per property. In the absence of a well-developed and accurate cadastral 

system, one would have to devise an approach with street maps and address points. Each address point 

would be a seed pixel in the imagery which point the area of a property can be defined. The street map 

would delimit the properties vis-à-vis public spaces. Properties would have to be defined from these 

approximations and rely on image content. Cadastral information without a cadastral survey would be 

required and this represents a future research challenge. 

6. Development of a Description per Property 

As a by-product of the data segmentation per property one obtains several important features: land 

area, areas used up by buildings, vegetation, water bodies, and impervious surfaces. We have 

previously established that the areas are at an accuracy of within 90%, largely due to limitations of the 

classification process.  
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By introducing the 3rd dimension in the form of the dense point cloud, one adds relevant property 

information and improves the accuracy of area measurements previously obtained in the 2D 

classification. An overriding role is associated with buildings; therefore they are the focus of our initial 

efforts. Going through each property, we add descriptive information about its buildings. 

6.1. Finding the Footprint of Facades in 2D 

(a) Vectorizing the Building Contour 

The contours of building objects from the image classification approximate the intersection of the 

facades with the ground. Initial contours need to be vectorized. This process is developed, for example 

in the Douglas-Peucker algorithm [47] in 1973. It replaces the contour pixels by straight lines, each 

extended line segment defining a facade, as illustrated in Figure 11. 

Figure 11. The classification layer ―building‖ is based on color and texture. The left shows 

the binary layer, center is its contour in raster, and finally on the right is the geometric 

figure of the footprint. 

 

(b) Vectorizing the Points along the Vertical Elements in the DSM 

A second independent information source for a facade is the DSM. The first derivatives of the  

Z-values along X-rows and Y-columns of the dense point cloud represent the surface tangents. Where 

this is vertical, one will have a facade point.  

(c) Fusing two Facade Data Sets: Segmentation Contours and DSM-Derivatives 

The facade footprints from the image classification based on 2D color and texture need to be fused 

with the footprint from the 3D point cloud of the DSM. One initial approach is to simply use the mean 

between the two largely independent measures. 

(d) A Property Boundary Cutting through two Connected Buildings 

In the special case where a property boundary cuts through a building or through connected 

buildings, one does not have a facade. Such cases need to be recognized. We achieved this by means of 

the 3rd dimension, as discussed below in Section 6.3. 

At the end of steps (a) through (d) one obtains a series of straight line segments, each representing 

the footprint in 2D of a particular facade. 
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6.2. Decomposing a Building into Separate Building Objects 

At issue is the number of a building’s facades and thus the building’s complexity. The simplest 

building will have four facades at right angles. However, there is no limit to the complexity of building 

shapes and thus of the number of facades, and also of the angles formed between adjacent facades. 

The option exists to fit the pattern of facade footprints into a series of predefined shapes of 

(rectangular) building footprints. In the process one hopes to develop a set of separate non-overlapping 

basic building objects or ―sub-buildings‖. This could be obtained via a segmentation of the building 

footprint. However, one could also review the roof shapes. Having more than one local maximum in 

the roof height is an indication that the single building has a complex shape and should be segmented 

into multiple building objects or sub-buildings. This is of course not the case for all roof types e.g., 

gabled roofs. 

6.3. Adding the 3rd Dimension to the Facade 

Along the footprints of the facade one finds elevation values in the DSM. These attach a 3rd 

dimension to the facade. The simplest facade shape is a rectangle. Depending on the shape of the roof, 

a facade could also have a complex shape. Should the elevations change along the facade footprint, we 

could be facing a sloping ground or a varying roof line, or a combination of both. The slope of the 

ground is known from the DTM. Variations of the roof line are available from the difference between 

the DSM and the DTM. For use as a property descriptor, one might be satisfied with a single elevation 

value for each facade. Therefore we initially associate a vertical rectangle to each facade. 

We have previously mentioned connected buildings and a property line cutting through buildings, 

leading to virtual facades. These can be identified via a look at the dense point cloud. The elevation 

values above the Bald Earth along a facade footprint will be zero at one side of the footprint. If they 

are not, then this facade will be marked as ―virtual‖. 

6.4. From the Facade to the Height of a Building and Its Roof 

As a minimum, we want to use two elevations values for each building: the height of the roof line 

and the height of the roof’s highest point. But given that a building has multiple facades, possibly built 

on a sloping ground and does not have a single roof line, one is faced with a more complex issue than 

expected. For simplicity, we initially average the multiple facade heights to a single value, and we 

define the roof height as the elevation difference between the highest point on the roof and the 

computed facade height. 

6.5. Occlusions 

Parts of buildings may be occluded by vegetation, other buildings or other objects such as cars or 

people. Any detailing of building information must be built with an understanding of the existence of 

occlusions. We see two approaches to deal with this issue. The first is the reliance on the known 

incidence angles defined by the camera station and neighborhood facade footprints. As one processes 

overlapping images and obtains different results, these differences themselves can indicate the effect of 

occlusions and cause a second look to be given to identify an occlusion. A second approach is a 
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geometric process using the facade footprints, the DSM and the camera station. Occlusions get 

computed by Z-buffering or ray tracing. 

7. Counting Floors and Windows 

7.1. Vertical Aerial Photography 

We proceed from the basic building description to an analysis of the facades. Work on building 

facades would intuitively build on street level photography or at least oblique aerial imagery. 

However, our interest is in understanding how well one can study facades in (cost free) vertical aerial 

photography. The facade detail of interest is a floor count, a window count and a description of the 

window’s location and size. 

The facade’s geometry is assumed to be quadrilateral and has been produced from the intersection 

of the facade footprint with the DSM. This delivers four facade corner points in 3D object coordinates 

and gets projected using a perspective projection into the aerial imagery, as illustrated in Figure 12. 

The rectification of the image content is applied by using a 2D bilinear interpolation to resample the 

image in a novel view. Typically, overlaps cause many aerial images to show the texture of a given 

facade. Figure 13 presents four images of one of the two separate facades of the building in Figure 12. 

The projection is based on the pose values of each image from the aerial triangulation. 

Figure 12. Two facades of one building are shown in the original vertical aerial 

photograph (above) and rectified into a facade plane (below). The facade quadrilateral is 

superimposed over the aerial photography to obtain the photo texture for further analysis. 
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Figure 13. From a single facade of the building in Figure 11, one will obtain multiple 

segments of vertical aerial images. These have been rectified into a facade coordinate 

system. From an aerial image block showing typically 10 images for each object point, not 

all will contain useful data for a specific vertical facade. Selected here are the four best, 

where ―best‖ is defined as the largest area of a facade quadrilateral projected into an image. 

 

7.2. Floors 

From the building’s appearance, floors normally get defined by windows. Where this fails may be 

in industrial plants or some contemporary public architecture. In any event, windows will always be a 

defining element of any facade, and will also be associated with floors. A procedure for finding a floor 

count has been developed using the steps in Table 2. It addresses a facade in a single plane and without 

significant extrusions. 

Table 2. Procedure for floor detection in simple planar facades. 

 

For each facade i of a building j, repeat: 

Import all n image segments showing this facade i. 

For each image segment repeat: 

 Transform the segment into the facade coordinate system. 

 Apply a contrast enhancement. 

 Apply the Prewitt edge detection horizontally. 

 Apply the Prewitt edge detection vertically. 

 Convert the maximum horizontal and vertical edge values into a binary format. 

 Create for each image row, and image column, a summation of all pixel values, resulting in a 

vertical and horizontal edge profile. 

 From the summation, remove outliers, normalize the values and remove low values as ―noise‖. 

 Determine the number of maxima of the sums of vertical gradients and use this as the number of 

floors. 

 Perform a verification by eliminating floors that do not have the proper vertical spacing 

(minimum distance between floors); and remove values from along the edges of the image texture 

inside the facade quadrilateral. 
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The approach of Table 2 is illustrated in Figure 14. A floor count can be applied to each of a set of 

overlapping facade images. If there was a discrepancy in the result, some logic would need to be 

applied to resolve the ambiguity. To solve these ambiguities, we introduce constraints like minimum 

floor height, minimum distance between two floors and the maximum number of floors according to 

the facade height. Another limitation may exist when the edge histogram fails to have a distinct 

extremum. This might indicate that the facade/building is complex and that a refined approach should 

be used. One such option is the development of a 3D facade point cloud, as discussed below. 

Figure 14. Binary Prewitt edges in (a) are vertical, in (b) horizontal. The sums of edge 

values are shown in (c) as a count of the number of floors. 

  

(a)        (b) 

 

(c) 

7.3. Windows 

Window detection has been of some interest in recent years. Algorithms like boosting have been 

applied by Grabner et al. [48] to detect cars in aerial photography and windows in street-level images. 

Cech and Sara [49] have developed a window detection based on a library of window shapes, 

analyzing street-level photography, as did Lee and Nevatia [50] who based their approach on edge 

images. Other examples in the field of window detection are the works from Reznik and Mayer [51] or 

Wenzel and Förstner [52]. These approaches have been subjected to only limited experimental 

analysis, but are generally reported to find windows in a rather robust manner. In the current 

application we need to deal with vertical aerial photography and source data with more noise than 

street level images have. 

Given our floor counts, we are reusing the intermediate Prewitt edges to also find the windows per 

floor. An approach that simply ―intersects‖ the locations along the pixel rows and columns with the 

maximum edge sums will work if all windows are regularly arranged. While this is often the case, it is 

not always true. Therefore Lee and Nevatia [50] have proposed a variation of the approach. To refine 

the locations of the windows a one dimensional search for the four sides of a window is performed. For 

every side of a window one hypothesizes a straight line segment and moves this in the two cardinal 

directions for a best fit with the image texture.  
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We find this method applicable to images with lower resolution, as is the case in facades imaged in 

vertical aerial photography. Also not only rectangular windows but other window designs can be 

automatically detected as well and rather quickly, without training the program in advance. The 

window count is applicable in each image segment of a given facade, separately. Or one might want to 

merge the edge data sets and apply single window detection to the sum of all edges. A comparison of 

the various different methods for window detection is pending and will be subject of ongoing work. 

7.4. Multiple Facades per Building 

We may find different floor numbers from the multiple facades of one building. It is possible that a 

building has different floor counts on a sloping terrain. Since the Bald Earth as well as the slope of a 

building footprint is known, this must enter into the floor count. 

We have redundant information also from overlapping images all showing one and the same facade.  

Figure 15 illustrates four results for one single facade imaged four times. The window locations are 

defined to within ±3 pixel in both horizontal as well as vertical directions, converting to a value of 

±0.3 m vertically and ±0.3 m horizontally. In this example all 28 windows of the facade were found in 

all four aerial images.  

Figure 15. Four images on one facade from Figure 12 lead to independent floor and 

window counts. It is to be noted that the floor counts and the number of windows concur 

with the visual inspection. 

 

7.5. Experimental Results 

The Graz test area with 400 m × 400 m, containing 216 buildings is imaged onto 20 aerial 

photographs. From the available buildings we randomly chose 104 with a total of 225 facades in 

vertical aerial photography. Facade images with look angles below 5° were eliminated from further 

analysis. Each facade is typically imaged at the edge of the vertical aerial photos using look angles 

between 20° and 27°. 

Considering oblique images from bing.com/maps, we also have 120 facades in the test area shown 

at look angles of around 45°. While a given facade is only imaged onto a single oblique image, they 

are imaged on average on four vertical images, even if eliminating the small look angles. As a result 

we have 870 facade images of the given 225 facades. It is very quickly obvious that in any quantitative 

analysis, oblique images will be seriously compromised by occlusions. In the case of vertical images, 
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occlusions are reduced as the look angles become steeper. And since we operate with four or more 

vertical images of each facade, we can exploit the redundancy to find a most likely correct floor and 

window count. 

Table 3 summarizes the results of the experimental work. With the workflow described earlier, each 

of the 870 image segments of the 225 facades is processed. Similarly, the oblique images are also 

processed. Then the facade images are classified by their look angles and a count takes place of the 

number of images in which the floor counts, and separately the window counts, were correct. In the 

look angle segment between 15° and 20° one finds 103 facades, and in 79 of those, the floor count was 

correct. Similarly, in the same look angle range, the window counts were correct in 174 of the 

221 image segments. 

Table 3. Correct number of floors (above) and number of windows (below) from vertical 

images versus look angles. Right shows oblique result: Floor counts are compromised by 

occlusions. 

These numbers can be condensed into a single figure of merit, for example if one decides on a 

single floor and window count per building from multiple values in overlapping images. In total the 

104 test buildings have 387 floors and 2,646 windows. One finds the following: 

Accuracy of building detection 100% all 104 buildings were detected; 

Accuracy of floor count   93% of all 397 floors counted; 

Accuracy of window count 86% of all 2,646 windows counted. 

Consideration of the cause of failures finds occlusions as the major culprit, followed by facades 

deviating from the assumption that they are within a single facade plane, and that windows are 

unobstructed by balconies or awnings. 

8. Introducing 3D Facade Point Clouds 

8.1. 3D Detail in Facades 

Facades are not always in a single plane. Figure 16 presents a typical example of a building side 

consisting of various details such as extruding staircases and awnings. The application of the previous 

workflow to this type of facade will fail because there will not be useable edge histograms, and the 

process will deliver a failed classification. A possible elimination of these problems could be a 

splitting of the facades into multiple facade fragments. However, for our experimental data set of 

104 buildings with 225 facades this method would result in a quadruple number of facades, and each 

Angle [deg] < 5 5–10 10–15 15–20 20–25 >25 Oblique 

Floors 0 7 of 21 79 of 103 191 of 221 255 of 279 228 of 246 90 of 120 

Floors, % 0 33 77 86 91 93 75 

Windows 0 6 of 21 69 of 103 174 of 221 233 of 279 212 of 246 79 of 120 

Windows, % 0 29 67 79 83 86 66 
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image would only show a small element. One will have to cope with ambiguities because of the small 

size of the facade elements. The biggest problem is that the building classification that is used for the 

determination of building footprints is not always accurate enough due to misclassifications. 

A solution to these types of facades may be in the analysis of 3D facade point clouds.  

Figure 16. To the left is a rectified facade image with its depth structure. To the right is a 

failed count of windows using the workflow that assumes that a facade is in a single plane. 

Abandoning this restriction will create a need for 3D point clouds of facades. 

 

One will have to examine whether 3D facade point clouds can be produced in sufficient detail and 

resolution from vertical aerial imagery, so that facades can be successfully analyzed. ―Success‖ will be 

achieved if the 3D point cloud: (a) improves the segmentation of a facade into facade planes; (b) then 

produces well defined values for the floor and window counts on these facade parts; and (c) finally 

supports the reconciliation of the facade parts into a single window and floor count for that building. 

8.2. Creation of a 3D Facade Point Cloud 

Performing a photogrammetric 3D process on a set of overlapping images of a facade taken from 

the street level is a widely studied endeavor [53]. The challenge in the current context is different since 

we rely on vertical aerial photography where facades suffer from major geometric deformations and 

non-square pixels. 

The approach is the same as that used for DSM-creation from highly redundant photography. The 

workflow has been described by Irschara et al. [54], but is very similar to workflows at many computer 

vision laboratories, for example Gösele et al. [44]. At its core is a so-called plane sweep. We set up a 

grid in object space consisting of parallel planes at an interval of the pixel size, and intersect these 

planes with the projection rays of a ―key image‖. Figure 17 illustrates the concept. 

Conceptually, each sensor image helps one to assign to each point in the 3D grid a likelihood that 

this grid point is on the surface. To this end, the object points get projected into the sensor image, and a 

correlation figure-of-merit gets computed at that image location. Since one has multiple overlapping 

images sensor views, one will get multiple estimates at each grid point. The surface is then defined by 

an optimization process using both the computed likelihoods at each grid point from image matches, as 

well as constraints about the surface’s smoothness, thus information about the object. The 

mathematical formulation of the point cloud generation is found in Zach [55], Irschara et al. [54] and 

Pock et al. [56]. 
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Figure 17. Our ―plane sweep‖ defines a set of parallel planes in the object space and 

intersects these planes with the projection rays from a key image, producing an (irregular) 

3D grid. All overlapping images are sensor views and help find surface points. 

 

This method has been applied to the four best vertical aerial photographs of the facade of the 

building in Figure 16. The 3D point cloud of that facade is shown in Figure 18. We can recognize the 

extruded building parts for the staircases. Remarkably, this point cloud comes from vertical aerial 

photography. The point density is one per pixel, and these are spaced at 10 cm in the horizontal 

direction and 17 cm in the vertical direction within the facade. 

Figure 18. 3D point cloud of the facade shown in Figure 16. Data extracted from four 

overlapping vertical aerial photographs. Density of points is (10 × 17 cm) 43,180 points. 

 

8.3. Analysis of the 3D Facade Point Clouds 

One now has to analyze the 3D points with the goal of segmenting the facade into its planar  

sub-facades. An initial method to accomplish this moves through the vertical columns of the facade 

and adds up the point counts. A facade row is found if the point count is high. The color line segments 

along the foot of the building in Figure 18 illustrate the result of such an approach. Figure 19 adds to 

each sub-facade the photo-texture and visually confirms that the building facade has successfully been 

segmented for a floor and window count within each plane. We find the existence of four floors and 

19 windows, a result that was not possible using the previous 2D method. 
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Figure 19. The facade of the building in Figure 16 has been segmented into plane  

sub-facades. Each sub-facade is available for a separate floor and window count. 

 

8.4. Further Developments 

There are several avenues for improvements in detail extraction from complex facades, and 

improvements of our understanding of how well this works. First of course are data experiments in the 

form of a study with many buildings, thus applying the work flows to many images and many 

buildings, as well as to a variety of look angles in vertical aerial photographs. Second, is the 

refinement of the 3D point cloud segmentation by well-thought-out methods of finding planes in point 

clouds. Third, is the ability of automatically recognizing occlusions and then responding to occluded 

facades by taking advantage of the overlapping images and their multitude of look angles. Innovations 

in window recognition will then become relevant, as will be site-dependent approaches to 

architectural styles. 

9. Conclusions 

We could demonstrate that vertical aerial photography holds considerable promise as a source of 

descriptive information about individual properties. Such information is expected to be useful in 

Internet-based mapping systems. Measures of surface areas covered by a parcel, its buildings and other 

land use categories, are obvious results from vertical aerial mapping, and are available at an accuracy 

of about 90% of the surface area. The 10% errors result from uncertainties of a parcel’s definition in an 

aerial image, given a cadastral record. Uncertainties also exist in the automated classification of the 

contents of the image and the areas covered by buildings, vegetation, and various land use categories.  

While one can expect that 2D measurements of surface areas could be obtained from vertical aerial 

photography, one might be uncertain about the value of such vertical imagery when analyzing facades. 

However, our work shows that vertical aerial photography is a valuable source of facade-related 

information, both in terms of planar facades as well as in the event that facades are complex and 

require a 3D approach. 

Initial work focused on planar facades and resulted in a correct floor count at a rate of 93% and a 

correct window count of 86%. A study of the dependence of these counts on the angle off-nadir in the 

images reveals that best results are achieved in the range of 20° to 27° off nadir. At greater angles, 

such as those used in oblique aerial photography, occlusions start to become distinctive so that floor 
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and window counts fail. Such counts will also fail if a facade is complex, yet the analysis method is 

unaware of that complexity. One needs then to consider the 3D shape of building facades, for example 

with extruding stair cases, balconies, awnings. We explain in this paper an approach based on 3D 

clouds of facade surface points, all extracted from overlapping vertical images. We have explained the 

approach by example and will have to embark on a systematic study of its performance with many 

buildings and imaging configurations. It seems not only important to test the work flow on many 

buildings, but also that the buildings represent a variety of sizes and styles and come from different 

regions (cities and rural areas) and parts of the world. 

The complexity of describing buildings is immense and much work remains to be done. One needs 

to obtain a good understanding of the accuracy and reliability of a building’s key numbers in all cases. 

One needs to solve the problems faced when: parts of a building are occluded; the geometric resolution 

of the source data varies; buildings deviate from expected shapes in the event of add-ons and of 

complex footprints and roof shapes; the building’s use is mixed and an industrial use leads to 

windowless facades; cadastral detail contradicts image detail, etc.  

At issue in this paper is of course also the motivation for the development of descriptive data about 

real properties (or real estate). An initial driver to embark on this research has been the disappointment 

when faced with the lack of detailed information about objects shown in Internet-maps on Google 

Earth or BingMaps, and the expectation that such information could be available at very little extra 

cost from image sources in existence for other purposes. Were such detailed information to exist, it 

could be useful in location-based decisions of both commercial and public interest, and in a better 

administration of municipal resources. The more thorough use of vertical aerial photography is 

globally expected to be augmented by significant efforts to conflate various 2D Geodata sources, to be 

added to business and private address data bases and parcel data, and by the start of massive 

collections of GNSS and cellular traces. This is separate from an increasing interest in human scale 

details of urban data that is reflected initially in the form of street-side imagery taken by moving 

vehicles, but in the long run is expected to come from Community-Photo-Collections (CPC), such as 

those in FLICKR. This in turn will be part of a broader concept of user-generated content (UGC).  

Much of Internet-mapping is currently a result of the search application. However, one may be able 

to see on the horizon an advent of spatial information as an integral part of the evolution of the 

Internet-of-Things (―IoT‖) and of Ambient Intelligence (―AmI‖), as projected by Weiser [19] or 

O’Reilly and Batelle [18]. 
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