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ABSTRACT: In this contribution, the temperature-dependent
swelling behavior of vapor-deposited smart polymer thin films is
shown to depend on cross-linking and deposited film thickness.
Smart polymers find application in sensor and actuator setups and
are mostly fabricated on delicate substrates with complex
nanostructures that need to be conformally coated. As initiated
chemical vapor deposition (iCVD) meets these specific require-
ments, the present work concentrates on temperature-dependent
swelling behavior of iCVD poly(N-isopropylacrylamide) thin films.
The transition between swollen and shrunken state and the
corresponding lower critical solution temperature (LCST) was investigated by spectroscopic ellipsometry in water. The films’
density in the dry state evaluated from X-ray reflectivity could be successfully correlated to the position of the LCST in water
and was found to vary between 1.1 and 1.3 g/cm3 in the thickness range 30−330 nm. This work emphasizes the importance of
insights in both the deposition process and mechanisms during swelling of smart polymeric structures.

■ INTRODUCTION

Hydrogels are networks of hydrophilic polymer chains. In a
water environment, either in humidity or in liquid state, water
molecules form hydrogen bonds with the hydrophilic groups in
the polymeric structure, making the material rearrange and
swell up to a multiple of its dry size. Upon changing the
amount of water in contact with the polymeric network, the
hydrogel reacts reversibly by taking up water into or repelling
out water from its inherent structure. This reversible swelling
behavior makes this class of materials interesting for a variety
of different setups (e.g., in drug delivery,1 contact lenses).
The kinetics of the water uptake are time-limited by water

diffusivity.2 Therefore, adopting thin polymeric films is crucial
for achieving fast response times and, in turn, optimal device
performance. However, often the water uptake processes and
the corresponding rearrangement of polymer chains impose
stress on the thin film and could result in poor adhesion or
mechanical failure. Consequently, to ensure mechanical
stability during swelling, a specific cross-linking co-monomer
can be added. Cross-linking is achieved by adding a chemical
species that allows for the binding of two separate polymer
chains. This cross-linked hydrogel can, therefore, be seen as a
polymer mesh, able to take up a specific amount of water into
its structure.3

Monomer and cross-linker choice influence the responsive-
ness to water and to other external stimuli. Specific chemical
functionalities in the monomer units can be utilized to
fabricate stimuli-responsive hydrogels. A variety of such smart
polymers have been demonstrated to respond to temperature,
pH, magnetic/electric fields, or different concentrations of
specific chemical species (e.g., glucose).4 In the current study,

the most prominent temperature-responsive hydrogel, poly-N-
isopropylacrylamide (pNIPAAm), has been investigated. Its
temperature-responsiveness stems from the molecule exhibit-
ing hydrophilic groups (i.e., amide), forming hydrogen bonds
in the presence of water, and the probability for attractive
intrachain interactions leading to polymer collapse, depending
on the material’s temperature.5 The presence of both
functionalities results in interesting thermoresponsive proper-
ties, namely, the lower critical solution temperature (LCST).
At this temperature, pNIPAAm undergoes a phase transition
from a hydrated swollen state to a dehydrated shrunken state,
below and above the LCST, respectively. This reversible
temperature-dependent swelling behavior attracts particular
interest for using smart polymer thin films in sensor6 and
actuator setups.7

As in several applications delicate surfaces (e.g., drugs,
flexible substrates) need to be coated, often with specific
nanostructure, vapor-based techniques are more suitable for
the purpose than solution processing due to the absence of
solvent-related inconveniences: dissolution of the substrate,
intermixing of components, surface tension. In this contribu-
tion, initiated chemical vapor deposition (iCVD) was adopted.
In this solvent-free technique, monomer, cross-linker, and
radical initiator molecules are flown into a vacuum chamber in
the gas phase at set flow rates. The initiator (usually a
peroxide) decomposes into radicals at a heated filament (200−
350 °C) mounted above the sample stage. The monomer and
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cross-linker molecules adsorb on the low temperature substrate
(held at 10−40 °C). The initiator radicals attack the
unsaturated bonds in the monomer and cross-linker species
and, hence, initiate polymerization on the substrate similar to
free radical polymerization processes.8 However, the mild
processing conditions allow for full retention of delicate
functionalities upon deposition such as thermoresponsive
groups, enabling precise engineering of the material properties.
With iCVD, accurate control on the film thickness can be
achieved via deposition time and accurate tuning of the
chemical composition can be achieved by setting the
monomer/cross-linker/initiator ratio and by choosing their
distinct chemical nature.
The cross-linker content is known to affect the mesh size

and, therefore, the degree of swelling of a polymer.3 Surface
attached networks9 and, in particular, thin films deposited by
iCVD10 have been shown to behave correspondingly.
Furthermore, it has been previously reported that cross-linking
and its amount within the polymeric structure affect the
position of the LCST transition, with the hydrophobicity11 or
hydrophilicity12 of the cross-linker determining the direction of
the shift. However, next to the chemical composition affecting
the thermoresponsive properties of the polymer, thickness
should also be a crucial parameter affecting the LCST position.
In the literature, the LCST of solution-processed photo-cross-
linked pNIPAAm-based thin films has been reported to change
as a function of film thickness ranging from 20 nm up to 2 μm,
with the amount of cross-linking defining the magnitude of this
effect.13 For pNIPAAm thin films with a low amount of cross-
linking and film thicknesses up to 100 nm, stable values for the
LCST have been reported. Above 100 nm, the films’ transition
temperature was shown to decrease linearly with increasing
film thickness. The state in which the thin films are cross-
linked (dry or partially swollen) has been deemed responsible
for changes in shape and position of the LCST transition.
Swelling is one-dimensional in thin films and introduces
compression in the polymeric system in pNIPAAm films cross-
linked in the dry state. As the magnitude of this compression
changes with film thickness, this results in a thickness-
dependent LCST.13

As this thickness-dependent swelling behavior is not very
well documented for solution-processed polymers and not
reported for vapor-deposited thin polymeric films, in this
study, we aim at demonstrating the effect of cross-linking and
film thickness on the thermoresponsive behavior also for
pNIPAAm thin films deposited by initiated chemical vapor
deposition. The film thickness range between 30 and 330 nm,
most suitable for vapor-based techniques, is investigated,
focusing on the low film thickness regime. Results on the
applicability of the investigated polymeric system to humidity
sensing have previously been reported by our group in
Salzmann et al.14 There, the temperature-dependent swelling
behavior of two different polymeric systems in a humid
environment has been analyzed and compared. In the present
contribution, the iCVD synthesis of one of these systems,
namely, p(NIPAAm-co-DEGDVE), as already reported by Alf
et al.,15 was used as a case study. Herein, the focus is on
fundamental investigations of thin film properties and their
connection to thickness-dependent swelling behavior of vapor-
deposited systems in water. For this purpose, in the present
work, the LCST together with optical properties of the thin
films are determined by swelling experiments in water recorded
in situ by spectroscopic ellipsometry (SE). X-ray reflectivity

(XRR) measurements and SE measurements in a controlled
environment (nitrogen/humidity) have been carried out,
deepening the understanding of the investigated effects in
terms of thin film properties.

■ EXPERIMENTAL SECTION
Hydrogel layers of thicknesses ranging between 30 and 330 nm have
been deposited in a custom-built initiated chemical vapor deposition
(iCVD) reactor. The deposition processes were run in a cylindrical
chamber (diameter 360 mm, height 55 mm), in which the pressure
during deposition is controlled by a Duo 5M rotary vane pump
(Pfeiffer Vacuum, Germany) and a throttle valve (MKS Instruments,
USA). Single-sided polished silicon wafers with a native oxide of 1.5−
2 nm thickness on top (Siegert Wafer, Germany) are used as
substrates. The substrates are positioned on the bottom of the
reaction chamber, where the temperature is set to 35 °C by an Accel
500 LC heater/chiller (Thermo Fisher Scientific, USA). The
deposited film thickness is monitored in situ by laser interferometry
with a He−Ne laser (λ = 633 nm; Thorlabs, USA) through a
removable quartz glass lid. Di-tert-butyl peroxide (TBPO, 98%;
Aldrich, Germany) is used as an initiator. TBPO is kept at room
temperature in a glass jar connected to the reaction chamber via a
needle valve (Swagelok, USA) to be able to set the desired flow rate of
1 sccm. Twenty-five mm above the substrates, a Ni−Cr wire wound in
12 parallel lines (20 mm wire separation) functions as a heated
filament (200 °C) to cleave the initiator molecules entering the
reaction chamber. N-isopropylacrylamide (NIPAAm, 99%; Aldrich,
Germany) is used as monomer and di(ethylene glycol) divinyl ether
(DEGDVE, 99%; Aldrich, Germany) as cross-linker. NIPAAm and
DEGDVE are also kept in glass jars but heated to 85 and 70 °C,
respectively. The monomer and cross-linker vapors are flown into the
reaction chamber through a heated mixing line (90 °C). Needle valves
(Swagelok, USA) are used to set flow rates and achieve controlled
composition. Since the deposition rate depends on the individual flow
rates, substrate temperature, and working pressure, the film thickness
increase as monitored in situ by laser interferometry was used to stop
the deposition at different deposition times when the desired
thickness was achieved.

Spectroscopic ellipsometry (SE) in a wavelength range of 370−
1000 nm (M-2000S, J.A. Woollam, USA) was used to determine the
film thickness and optical properties of the thin films in a controlled
environment (nitrogen, relative humidity, and water at set temper-
ature). A temperature controlled liquid stage (J. A. Woollam, USA)
was used for performing swelling experiments in deionized water. The
recorded data were evaluated with an optical model consisting of a c-
Si semi-infinite layer on the bottom (temperature-dependent), a 1.6
nm thick native SiO2 layer in the middle, and the polymer film on top.
The polymer layer was modeled with a Cauchy function, and an
Urbach tail was adopted accounting for adsorption in the low
wavelength region. The surrounding medium was set to H2O with
temperature-dependent optical properties. For the temperature-
dependent swelling experiments, the liquid stage and the mounted
sample (already exposed to deionized water) were precooled to 10
°C. The respective signal was then recorded while applying a
temperature ramp from 10 to 50 °C at a heating rate of 0.5 °C/min.
Directly after deposition, the thin film samples were rinsed for 30 s
with deionized water for equilibration. Despite rinsing, the first and
second heating experiments showed differences in shape and position
of the transition. As equilibration has been earlier reported to be
needed for the study of temperature-dependent behavior of iCVD
thin films,16 the third heating experiment was used for the
determination of the LCST, as all of the further heating ramps give
similar results. This effect was attributed to the removal of loosely
attached material and the rearrangement of polymer chains in the first
couple of heating cycles for which rinsing is not sufficient while
heavier rearrangements during cooling/heating are (especially in films
exhibiting a low amount of cross-linking). As described in detail later,
the film thickness changes after rinsing, but together with the optical
properties as recorded by SE, it has not been observed to change after
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the first two heating cycles applied for equilibration purposes. This
hints to structural rearrangements occurring during equilibration that
do not affect the amount of material present on the substrate. The
ellipsometry measurements in relative humidity and N2 atmosphere
were performed in a THMS600 temperature stage (Linkam, UK) at
room temperature (∼25 °C), with the gases being supplied from a
custom-built mixing setup. An SHT15 humidity sensor (Sensirion,
Switzerland) was used to monitor the relative humidity (RH) in the
sample stage in situ; the samples were measured after equilibration in
the respective environment, so that the film thickness would not
change more than 0.5 nm in 5 min. The recorded optical data have
been evaluated using the same model as that in the liquid case but
with the ambient material being set to air (n ≈ 1). Likewise,
measurements to obtain information about the available free volume
detectable with water have been carried out similar to Perrotta et
al.17,18 Therefore, the thin film samples have been kept under a
nitrogen atmosphere at a constant temperature (25 °C), determining
their optical properties. Subsequently, water vapor has been
introduced into the system in 10% RH steps, to which the films
respond by filling free volume with H2O. Hence, the refractive index
first increases due to water permeation, which can be understood as a
measure for free volume of the respective thin film.
X-ray reflectivity (XRR) measurements were performed on a

PANalytical Empyrean diffractometer. The diffractometer uses a
copper sealed tube, a multilayer mirror for monochromatizing the
beam (λ = 0.154 nm), a beam mask of 10 mm, and a 1/32°
divergence slit on the incident beam side. On the diffracted beam side,
a receiving slit of 0.1 mm and a 0.02 rad Soller slit were used in front
of a PANalytical PIXcel 3D detector in point detector mode. The
critical angle of total reflection was read out of the XRR patterns as
the angle 2θ slightly above the maximum intensity where the intensity
drops to half its maximum value.19 All of the XRR measurements have
been performed at room temperature (∼25 °C) and at a relative
humidity of ∼40%.
Absorbance spectra of several samples were collected in trans-

mission mode on a Bruker IFS 66 v/s Fourier transform infrared
(FTIR) spectrometer. The measurements were run in the wave-
number range 1000−4000 cm−1 at a resolution of 4 cm−1 and a zero
filling factor of 8.

■ RESULTS AND DISCUSSION
A series of thin films of p(NIPAAm-co-DEGDVE) with varying
amounts of cross-linking and film thickness have been
successfully deposited by iCVD, as also previously reported.14

The respective degree of cross-linking has been set by adjusting
the ratio of the monomer, cross-linker, and initiator flow rates.
From the flow rates, the nominal composition of the deposited
thin films was calculated via the partial pressure of the
chemicals compared to their saturation pressure (PM/Psat) in
the applied temperature and pressure conditions. All of the
flow rates have been chosen so that the PM/Psat values lie in the
range 0.05−0.2, a regime where surface concentration is
reported to depend linearly on the PM/Psat value.

20 Hence, the
presented values of the nominal cross-linker amount
correspond to the calculated amount of cross-linker species
available on the surface during deposition and, therefore, are
related to but do not represent the exact fraction of cross-linker
molecules in the respective deposited polymeric system. The
following formula has been used to calculate the nominal
DEGDVE cross-linker amount from the PM/Psat values of the
components of the deposited polymeric structure (NIPAAm
and DEGDVE):

[ ]

=
+

×
P P

P P P P

crosslinker amount %
( / )

( / ) ( / )
100M sat DEGDVE

M sat NIPAAm M sat DEGDVE

For this investigation, two differently cross-linked polymers of
p(NIPAAm-co-DEGDVE) were chosen as case models to
investigate the effect of cross-linker concentration and overall
thin film thickness on the LCST. For the less cross-linked
series, the nominal percentage of cross-linking was set to 25%,
whereas it was set to 40% for the more cross-linked samples.
Additionally, a series of p(NIPAAm-co-DEGDVE) samples
with a deposited film thickness of 70 nm has been prepared
with cross-linker amounts varying between 25 and ∼60%.
FTIR absorbance spectra were collected on the differently

cross-linked samples with varying film thickness. The presence
of the cross-linker could not be determined from FTIR due to
DEGDVE lacking strong characteristic FTIR absorption bands,
as reported earlier.15 However, a representative spectrum is
shown in Figure 1 to illustrate successful polymerization with

the absence of characteristic vinyl group vibrations at 3150,
1620, and 1400 cm−1 as labeled by Salzmann et al.14 The
recorded absorption bands compare well to FTIR data of
p(NIPAAm-co-DEGDVE) films deposited by iCVD in the
literature,15 and all recorded peaks could be successfully
assigned to absorption bands within the chemical structure of
pNIPAAm according to Sun et al.21

As pure pNIPAAm films dissolve in water, the presence of
the cross-linker has been successfully verified by the films’
stability upon rinsing, down to a nominal DEGDVE content of
25%. As stated earlier, rinsing leads to the removal of loosely
attached material. The amount of material removed decreases
with increasing amount of cross-linking, from 7−8% of the
deposited dry film thickness for 25%-cross-linked samples to
3−4% for samples with 40% DEGDVE cross-linker fraction, as
evaluated from SE measurements. However, the investigated
samples within a similarly cross-linked thickness series show
similar percentages of material removal during rinsing. This
points out that rinsing affects the entire thin film
independently of the overall film thickness, instead of just

Figure 1. FTIR absorption spectrum of a 330 nm 25% cross-linked
p(NIPAAm-co-DEGDVE) sample indicating successful polymer-
ization by not exhibiting vinyl group absorption bands14 at 3150,
1620, and 1400 cm−1; peaks labeled and assigned according to Sun et
al.21
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removing material, e.g., from the surface of the sample.
Furthermore, proving the presence of the cross-linker at
different degrees, the films are able to take up significant
amounts of water, in a range going from ∼10% (with a high
amount of cross-linker) up to 120% of their dry film thickness
(with a low amount of cross-linker) at 20 °C (see Figure 2).

The LCST values of the respective thermoresponsive thin
film samples have been evaluated as the mean values of the
points of inflection of thickness and refractive index (measured
at 633 nm) curves derived from spectroscopic ellipsometry.
The data were acquired in water as a function of temperature
during heating from ∼15 to 50 °C (see Figure 3 for
representative measurement data). The thickness is reported
here normalized to the thickness measured at 50 °C, for clarity.
As the film thickness also affects the kinetics of the swelling/

deswelling process,2 several different heating rates between
0.25 and 4 °C/min have been adopted (see the Supporting
Information). As a result, a heating rate of 0.5 °C/min has

been used for all of the swelling experiments, because kinetic
effects can be neglected: Heating ramps at this rate yield
similar results as applying lower heating rates for the
investigated film thickness regime, while still being sufficiently
quick to achieve reasonably constant heating ramps in a room
temperature environment.
As aforementioned and evident from the plots in Figure 3,

the cross-linking amount also affects the LCST transition.12

Two effects have been deemed responsible: First, the mesh size
is being reduced by introducing more cross-linker into the
polymeric system. Therefore, the maximum amount of water
the polymer thin film is able to take up is reduced by increasing
the amount of cross-linker.3 In the investigated systems, the
maximum swelling at 20 °C for several differently cross-linked
p(NIPAAm-co-DEGDVE) thin films (see Figure 2) shows a
clearly decreasing trend from 120% for a cross-linking degree
of 25% to swelling of approximately 10% for a cross-linking
degree of ∼60%. Second, the hydrophobic cross-linker
DEGDVE makes it favorable for the thin film to repel out
water, even at lower temperatures. This leads to a decreased
LCST for more cross-linked thin films, whereas the LCST
values of the pNIPAAm thin films with a low amount of cross-
linking are comparable to pure bulk pNIPAAm hydrogels22 or
solution-processed pNIPAAm layers grafted onto surfaces,23

exhibiting values of around 32 °C. The LCST values of the
photo-cross-linked pNIPAAm thin films reported by Harmon
et al.13 also compare well to the values reported in this study.
Also, the magnitude of LCST shifts due to the different
amounts of cross-linking are comparable to literature values, as
the LCST was reported to shift for ∼5 °C when changing the
amount of cross-linking from 10 to 30% in p(NIPAAm-co-
EGDA) films deposited by iCVD.12 In order to verify the effect
of different thin film thickness values on the LCST, heating
ramps upon water exposure were measured to obtain the
LCST values for p(NIPAAm-co-DEGDVE) layers ranging
from 30 to 330 nm. The LCST values for two thickness series
with different amounts of cross-linking are reported in Figure
4.

Both series exhibit a maximum LCST value for a deposited
film thickness of ∼70 nm, at 27.7 and 31.8 °C for the more and
less cross-linked polymers, respectively. Furthermore, the
LCST decreases at higher film thickness, with the effect
being more pronounced for the less cross-linked films. This is
in agreement with what has been found for photo-cross-linked
pNIPAAm films by Harmon et al.13 and, as previously
mentioned, explained by film thickness affecting the state of

Figure 2. Swelling at 20 °C (thickness in water compared to the dry
thickness) as a function of the nominal cross-linker amount
(DEGDVE fraction) of differently cross-linked 70 nm-thick p-
(NIPAAm-co-DEGDVE) samples

Figure 3. (a) Thickness normalized to the value measured at 50 °C
(d/d50°C) and (b) refractive index n measured at 633 nm as a function
of temperature during heating in water for the evaluation of the LCST
as the mean value of the points of inflection of the respective curves
plotted for two differently cross-linked 70 nm-thick samples.

Figure 4. LCST as a function of deposited film thickness (ddep) for
differently cross-linked p(NIPAAm-co-DEGDVE) thin films (dotted
lines are for guidance of the eye).
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the polymer during swelling compared to the reference state as
cross-linked (compression or elongation). The investigated
iCVD thin films are deposited at a pressure of 250 mTorr and
at a substrate temperature of 35 °C (dry and above the LCST),
where Harmon et al. state that a gel that is cross-linked in dry
state is always under compression upon swelling, with the
compression being greater further from the substrate.13

Therefore, two regimes have been identified, above and
below a certain critical film thickness depending on the amount
of cross-linking. Above the critical thickness, the LCST
decreases linearly with film thickness. Harmon et al.13 also
report on the LCST being constant below this critical film
thickness. However, in the present study, the LCST was found
to decrease toward lower film thickness for both series of
different amounts of cross-linking, which has not been reported
before. Therefore, the present investigations show that the
p(NIPAAm-co-DEGDVE) thin films deposited by iCVD
exhibit a thickness- and cross-linker-dependent swelling
behavior, possibly caused by thickness-dependent physical
properties of the investigated polymeric systems, as described
later.
In order to verify the expected relation between the variation

in LCST values and the physical properties of the thin films,
the refractive index (n) was recorded in different environ-
ments. Refractive index values are a measure for the optical
density of thin film samples. Therefore, the index as measured
in a nitrogen environment (dry) gives information about the
density of the polymeric matrix without the presence of water.
These values of n measured at ∼25 °C as a function of the film
thickness and composition are reported in Figure 5a. The
trends for the individual thickness series show similarities to
the LCST behavior as a function of deposited film thickness.
Temperature-dependent measurements in a nitrogen atmos-
phere revealed that the polymer layers do not exhibit an LCST
transition without the presence of water. Temperature only
plays a minor role in a pure nitrogen environment, where the

samples show thermal expansion of 0.6% of their film thickness
between 20 and 50 °C, independent of the cross-linker amount
and the deposited thickness. However, the refractive index
values of the polymer layers in water at 50 °C give a measure
for water being trapped in the system in the collapsed state
(see Figure 5b). Additionally, also the respective thickness
values measured in water at 50 °C give evidence that water is
retained in the system (in the collapsed state). The percentage
of thickness difference compared to the dry state is at around
+20% for all samples of both cross-linker series. At high
deposited film thickness, the values of n at around 1.46
independent of the cross-linker amount are in agreement with
what has been previously reported for this regime.13 At low
film thickness, the refractive index at 50 °C is found to
decrease, with the effect being more pronounced for the less
cross-linked films. Presumably, higher hydrophobicity (water
contact angle of 60−90°)15 compared to the substrate (water
contact angle of ∼40°) induces differences in swelling behavior
during diffusion for different distances from the substrate and
hence film thickness regimes. During swelling, this would lead
to a water-rich layer close to the substrate. However, this has
not been confirmed from fitting the SE data. With the film
thickness being large enough (at around 100 nm), these
substrate-induced effects anyways seem negligible. As the mesh
size also influences diffusivity, the cross-linker amount is found
to determine the magnitude of the investigated effect.
As described previously, the free volume of the thin films

accessible to water vapor has been investigated. The magnitude
of the initial refractive index increase while introducing water
vapor into the nitrogen filled system can display differences in
the available free volume (see Figure 6). The refractive index
difference is found constant for both cross-linker series and
shows just one smaller value for the lowest film thickness of the

Figure 5. Refractive index n (measured at 633 nm) (a) in nitrogen
environment at 25 °C and (b) in water at 50 °C after heating
(collapsed state) of the polymer layers plotted as a function of
deposited film thickness (ddep) as measured by spectroscopic
ellipsometry (dotted lines are for guidance of the eye).

Figure 6. (a) Refractive index n (at 633 nm) as measured via SE
during relative humidity exposure of two differently cross-linked 70
nm-thick p(NIPAAm-co-DEGDVE) samples (the inset shows a zoom
of the region below 40% relative humidity, where the increase in
refractive index Δn was evaluated). (b) Refractive index difference Δn
as a measure of the free volume of the thin films prone to uptake of
water vapor plotted as a function of deposited film thickness ddep
(dotted lines are for guidance of the eye).

Macromolecules Article

DOI: 10.1021/acs.macromol.8b02120
Macromolecules 2018, 51, 9692−9699

9696

http://dx.doi.org/10.1021/acs.macromol.8b02120
http://pubs.acs.org/action/showImage?doi=10.1021/acs.macromol.8b02120&iName=master.img-006.jpg&w=151&h=217
http://pubs.acs.org/action/showImage?doi=10.1021/acs.macromol.8b02120&iName=master.img-007.jpg&w=151&h=221


more cross-linked samples (see Figure 6a). This hints no
influence of the free volume accessible via this water uptake on
the thickness dependence of the LCST. However, the
refractive index difference is lower for the less cross-linked
series. As mentioned previously, the less cross-linked films
swell more than the more cross-linked ones. As swelling also
occurs in humidity and causes the refractive index to decrease,
it leads to a lower refractive index difference for the less cross-
linked samples (see Figure 6b). Hence, the free volume is only
partially probed. The water molecules just adsorb up to a point
where swelling is more prominently observed in refractive
index behavior. Therefore, the shape and position of the
LCST, swelling in humidity, and density are possibly
influencing this measurement as well as just the adsorption
of water molecules into the free volume of the investigated
polymeric systems. However, the investigated films swell
already by changing the environment from 0 to 10% RH
(see the Supporting Information), which is promising for
utilization in sensing applications.
To deepen the understanding of the results of the refractive

index measurements in a nitrogen environment (see Figure
5a), XRR measurements have been used to investigate the
density of the thin films. The position of the critical angle of
total reflection is proportional to the electron density of the
investigated layers.19 By assuming the nominal percentages of
cross-linking and knowing the molecular weight and number of
electrons of the respective monomers, an estimation of the
mass density of the investigated thin films could be derived.
For that, the average number of electrons of an individual
polymeric structure can be assumed to be constant for films of
the same composition in one series of similar cross-linking.
Therefore, the mass density evaluated from the XRR
measurements has been plotted as a function of deposited
film thickness for different amounts of cross-linking (see Figure
7). The mass density values are found to lie in a range of 1.1−

1.3 g/cm3, which is in agreement with literature values. The
mass density of emulsion polymerized pNIPAAm microgels
cross-linked by 2.5 mol% N,N′-methylenbis(acrylamide) (BIS)
has been reported to be around 1.15 g/cm3.24 The differences
in cross-linking (amount and chemical nature) and different
polymerization techniques account for the differences in
density reported in the present work. In the thickness study,
the density decreases in the low film thickness regime of up to
∼70 nm for both cross-linker series. At higher film thickness,
the density increases again, with values surpassing the ones at
low film thickness. Overall, the mass density of the more cross-

linked thin films has been evaluated to be higher than the one
of the less cross-linked samples. Therefore, XRR results are
found to be in agreement with the refractive index as measured
with SE in a nitrogen environment (see Figure 5a) and mimic
the trend of the LCST values as a function of deposited film
thickness for both cross-linker series with inverse proportion-
ality. Not knowing the exact compositions, the exact polymer
molecular weight and, therefore, also the exact number of
electrons of the polymeric structures results in large error bars
of the mass density estimates. However, the measured critical
angles of total reflection (see the Supporting Information)
infer a correlation between the density of the polymeric matrix
and the position of the LCST of the respective p(NIPAAm-co-
DEGDVE) thin film samples.
As aforementioned, by choosing a slow heating rate (0.5 °C/

min), the chance of kinetic effects interfering with the
evaluation of the LCST from the SE measurements in water
has been minimized. Long-term kinetic effects cannot be ruled
out, as it has been reported to take polyelectrolyte thin films
several days to reach a constant film thickness during swelling
in relative humidity.25 In addition, a difference in density
among thin films of different thicknesses is generally caused by
a variation of the deposition conditions. However, similar
deposition rates, in the range 1.6−2.0 nm/min, were
measuredfor all of the investigated samples in the case studies,
excluding fluctuations of this parameter having an effect on the
molecular weight of the resulting thin films.20 In the literature,
Bonnet et al. reported two growth regimes in iCVD
polymerization of p(neo-pentyl methacrylate) thin films,
stating that the initial stages of a deposition exhibit a lower
deposition rate and therefore yield lower molecular weight thin
films.26 In the present study, no significant variation of the
deposition rate has been observed via in situ laser
interferometry upon deposition. Overall, the deposition rate
has not been noted to change more than 10% over time during
a single deposition process. Bonnet et al. also did not report on
changes in the density of the investigated thin films;26 although
the changes in density are delicate in the present work, they
lead to consistent and significant changes in swelling behavior.
A possible explanation would be local depletion of monomer at
the substrate level during one deposition with time, as higher
cross-linking would lower the LCST, as described previously.
This would lead to a gradient of cross-linking, with high film
thickness samples exhibiting more cross-linking and therefore
lower LCST values. However, the maximum swelling was
comparable for the similarly cross-linked samples within a
thickness series (120 and 60% swelling for the less and more
cross-linked films at 20 °C, respectively), pointing out that a
gradient in cross-linking in the layer can be excluded, as it
would possibly also lead to an altered maximum swelling value.
In the film thickness range up to ∼70 nm, the opposite LCST
behavior compared to the region above 70 nm has been
observed. In particular, the LCST was found to decrease
toward lower film thickness, but still, the maximum swelling of
the corresponding films compared well to the ones of the films
with higher LCSTs of similar cross-linking. In contrast to the
photo-cross-linked thin films reported on by Harmon et al.,13

the iCVD thin films grow steadily from the substrate with
cross-linking happening during film growth. Hypothetically,
the copolymerization of the two chemical species used in the
present work, NIPAAm and DEGDVE, yields local differences
in composition and morphology of the thin films, resulting in
differences of the average mass density of the resulting thin

Figure 7. Mass density as calculated from the critical angle of total
reflection evaluated from XRR measurements as a function of
deposited film thickness (ddep) for differently cross-linked sample
series (dotted lines are for guidance of the eye).
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films. These differences then lead to a variation of the swelling
behavior and therefore of the LCST transition.

■ CONCLUSIONS

In this work, pNIPAAm-based thin films have been successfully
prepared with different degrees of cross-linking and film
thickness by iCVD. The understanding of the shape and
position of their LCST transition has been deepened, as effects
of both cross-linking and film thickness have been investigated.
Increasing the DEGDVE cross-linker amount leads to a lower
maximum swelling degree and a lower LCST. (Mass) density
(as evaluated from SE and XRR) mimics the trends of the
LCST as a function of cross-linking and deposited film
thickness. Hence, an increase in the density of the polymeric
matrix leads to a decrease in the transition temperature. The
density in the dry state can be increased by adding more cross-
linker. Both investigated thickness series exhibit a maximum
density at a film thickness of about 70 nm, leading to a
minimum in LCST for the respective similarly cross-linked
thickness series. As deposition conditions within the thickness
series have been carefully set constant, either local fluctuations
in the reaction chamber or differences in the copolymerization
procedure of NIPAAm and DEGDVE over time during one
deposition process have been deemed responsible for the
differences in density as a function of film thickness. When the
polymer is cross-linked in the dry state, thickness-dependent
compression leads to a lower LCST at higher film thickness.13

The present work provides a further understanding of the
proposed hypothesis and adds to it the correlation to the mass
density of the polymeric thin films. The role of gradients in
water diffusivity due to the substrate−polymer interface
altering the hydrophobicity within the investigated systems
as a function of film thickness needs to be further addressed.
However, these detailed insights should raise awareness about
the influence of growth conditions as well as behavior on a
plethora of material’s properties.
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