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ABSTRACT 

The simulation of complex industrial welding processes using the Finite Elements method is not usually 

feasible within a reasonable time limit due to the strong non linearities of the physical models and the 

dimensions of the problem. To study many of these industrial cases, we would like to apply simplified 

methods to compute the simulations in acceptable time. We propose a simplified method called Physical 

Fields Shift which allows us to accelerate the computations and obtain an approximation of the strain and 

residual stress state at the scale of the component after the repair process. This method has been applied 

to an overlay welding repair with successful results. 
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INTRODUCTION 

The numerical simulation of welding processes is an extremely complex problem because 

of the strong non linearities of the physical models and their large spatio-temporal 

dimensions. In some industrial cases of welding repair, a large number of passes is 

involved. This large number of passes implies an even greater time expense and thus their 

study through simulations is almost impossible to achieve in an industrial context. An 

example of this type of problem is the simulation of a welding repair process called overlay. 

In this kind of process, more than a hundred passes over two different layers of weld beads 

are required. Bearing in mind that the simulation of a single pass takes around 10 hours, we 

immediately realize that the simulation of the whole process using the classical Finite 

Elements method is not feasible in a reasonable time. 

A simplified method called the Physical Fields Shift is proposed. Firstly the Physical 

Fields Shift method will be explained. Then, we will present a welding procedure that is 

being studied through numerical simulation: an overlay repair operation. In that section, the 

parameters of the reference procedure and the consequences of it are discussed. The goal 
of the following section is to explain the physical models employed in the simulation of an 

overlay repair, focusing on the mechanical behavior. Finally the performance of both 
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methods (the proposed Physical Fields Shift method and the classical Finite Elements 

method) will be compared to empirical data obtained from an industrial overlay procedure. 

 

PHYSICAL FIELDS SHIFT 

In the context of one of EDF’s research projects on welding, numerical simulation is used 

as a way to study the thermo-mechanical consequences of many different welding repair 

processes. These multi-pass simulations usually involve a large number of welding beads 

arranged in several layers of them. The computation time increases at least quadratically 

with the number of beads and thus the whole simulation of the welding procedure is not 

feasible in a reasonable time. To overcome this problem, we propose a simplified method 

called Physical Fields Shift which allows us to accelerate the computations and obtain an 

approximation of the strain and residual stress state at the scale of the component after the 

repair process. 

 

 
 

Fig. 1 Schema showing a multi-pass welding toy case (one layer). 
 

The Physical Fields Shift method is based on the similarities observed between two 

consecutive passes. After a certain number of simulated passes, we observe a propagation 

of the solution in the sense of the deposit of welding beads. In fact, after each pass, the main 

difference between two consecutive passes is a spatial translation. Indeed, on the new bead 

almost the same fields reappear and on the previous beads, the stress and strain accumulate. 

This evolution will be capitalized to obtain an approximation of the next passes. However, 

a reasonable number of beads must be computed before applying the method because this 

observation is not valid on the first beads. Fig. 2 and Fig. 3 show these phenomena in a 

welding test case consisting of a base metal and 20 welding beads similar to the one in Fig. 

1. The curves are plotted over a line that goes from one end of the base to the other, crossing 

the welding area at the center. A zoom is made on the welding area. The first bead is placed 

at 60 𝑚𝑚 from the end of the plate and is 4 𝑚𝑚 large. The last one is placed at 136 𝑚𝑚. 

In the figures, the tenth bead starts at a 100 𝑚𝑚 and the thirteenth starts at 112 𝑚𝑚.    

Let 𝑀 ∈ ℕ be the total number of passes. In order to use the method, we need to compute 
the first m passes by the Finite Elements method, with m < M. The objective of the first 

step is to obtain an approximation of the final state of the (m+1)th pass using the solutions 

of the m and m-1 passes. We assume that the difference between the displacement and stress 

Base metal Y 
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fields of the m+1 and m passes is going to be similar to that of the m and m-1 passes. Let 

𝒔𝒎 and 𝒔𝒎−𝟏 be the fields representing the final state after the simulation of the m+1 and m 

passes respectively. The first step of the method is to compute a field 𝚫𝒔𝒎 containing the 

difference between the m and m-1 passes. This field is called the increment field and it 

represents the evolution of displacement and stress from the m-1 pass to the m and it is 

computed as follows: 

𝚫𝒔𝒎 = 𝒔𝒎 − 𝒔𝒎−𝟏 

 

Fig. 2 Final state of displacement of four consecutive passes (X component). 

When the increment field is calculated, we need to shift it of a distance 𝑑 in the direction 

of the deposit of welding beads. This distance d represents the distance between two beads 

as shown in Fig. 1. The shifted increment field 𝚫�̂�𝒎 approximates the evolution that will 

happen between the m and m+1 passes. Finally, the shifted increment field is used to obtain 

an approximation �̃�𝒎+𝟏 of 𝒔𝒎+𝟏: 
 �̃�𝒎+𝟏 = 𝑠𝒎 + 𝚫�̂�𝒎 
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Fig. 3 Final state of longitudinal stresses of four consecutive passes. 

The method is applied successively until all of the beads are done. The predictions are 

accurate in the welding area (see Fig. 4), but not so much outside of it after applying the 

method many consecutive times. The final step, once all the passes are done, consists in 

using the predictions as input on the welding area for an elastoplastic re-equilibrium to 

obtain an approximation of the final state of the physical fields on the whole structure. 

 
Fig. 4 Approximation of the displacement of the 13𝑡ℎ pass (X component). 

OVERLAY WELDING REPAIR 

Pipes in nuclear power plants sometimes have a thickness defect which could be caused 

during its fabrication or by erosion. When this kind of defect is detected, it needs to be 
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repaired using a method called overlay to ensure their mechanical resistance. This technique 

consists in covering the defected area with one or more layers of welding beads in order to 

achieve a physical and mechanical continuity. We differentiate between partial overlay, 

when only a section of the circumference is welded and complete overlay, when the whole 

circumference is welded. Only the partial overlay is being considered as an example of an 

industrial case in this document. 

 

Fig. 5 Schema of the welding area. 

The pipe on which the procedure is performed is made from P265GH Schedule 80S steel. 

It is 1900 mm long, its external diameter is 323.8 mm and its thickness is 12.7 mm. After 

the operation, we will have a deposition with a thickness of 5.6 mm. A first layer of 3.4 mm 

and a second one of 2.2 mm. The welding beads are deposited on an area of 350 𝑚𝑚 and 

120° of the circumference, as shown in the schema in Fig. 5. The welding parameters of 

the operation are shown in Table 1. 

At the end of the procedure, three different types of deformation on the pipe will be 

observed. Due to the suffered stress during the welding the pipe will bend, changing the 

angle between the extremities of the pipe. Furthermore, the pipe is deformed at the welding 

area and its internal diameter is reduced.  
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Table 1 Welding parameters of the reference experiment. 

Parameters First layer Second layer 

Intensity (𝐴) 193 182 

Tension (𝑉) 17,8 17,8 

Speed (𝑐𝑚 ∙ 𝑚𝑖𝑛−1) 13 12 

Maximum inter-pass 

temperature (°𝐶) 
250 250 

Energy (𝐾𝐽 ∙ 𝑚𝑖𝑛−1) 15,9 16,1 

Number of passes 114 91 

NUMERICAL MODEL  

To simulate a welding procedure, a thermo-mechanical problem is solved using the Finite 

Elements method with code_aster, EDF’s Finite Elements software[1]. The pipe is modeled 

by a 1900 mm cylinder with an external diameter of 323.8 mm and a thickness of 12.7 mm. 

The welding beads are modeled as a volume 5.6 mm thick covering an area of 120 ° and 

350 mm placed in the middle of the pipe. This volume is divided in two layers of 3.4 mm 

and 2.2 mm respectively. Each layer will be partitioned in a 100 sub-layers in the transverse 

sense of welding. These sub-layers will represent the welding beads. The pipe and the 

welding beads are meshed using quadrangular linear elements. The mesh is more refined 

in the welding area and has a total of 345842 elements. A screenshot of the mesh can be 

found in the first appendix. 

The thermo-mechanical problem is solved in two steps. We first solve the thermal 

problem and then use the solution as input data for the mechanical problem. The heat 

problem consists of the classical heat equation in which the heat source is represented as an 

equivalent heat source using a Goldak function [2]. The other boundary conditions are the 

heat exchange with the surrounding air (supposed to be at 20°C) and radiation. Table 2 

shows the parameters used to solve the heat problem. 

The mechanical behavior is supposed to be thermo-elasto-plastic. The thermo-elastic 

behavior is determined by Young’s modulus, Poisson’s coefficient and the coefficient of 

thermal expansion whilst the plastic behavior is described by the von Mises yield criterion 

and isotropic non-linear hardening. The hardening function 𝑅(𝑝, 𝑇), dependent on the 

plastic strain (p) and temperature (T), is computed from stress-strain curves 𝜎(𝜀, 𝑇) 

obtained from experimental measures. In the third appendix an example of the stress-strain 

curves for various temperature values are given. The mechanical evolution is produced by 

the temperature gradients calculated during the resolution of the heat problem. Three points 

are fixed on one side of the pipe, enough to avoid rigid body movements. 
The values of the physical parameters used in the numerical models are shown in the 

second appendix. 
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Table 2 Parameters of the heat problem. 

Parameters Values 

Heat source’s length 10 𝑚𝑚 

Efficiency of the heat source 0.55 

Heat source speed 13/6 𝑚𝑚 ∙ 𝑠−1  

Convective transfer coefficient 20 𝑊 ∙ 𝑚−2 ∙ 𝐾−1  

Emissivity 0.8 

Boltzmann constant 5.67 10-8 𝑊 ∙ 𝑚−2 ∙ 𝐾−4 

RESULTS 

The goal of this section is to compare the performance of the Physical Fields Shift method 

to the classical Finite Elements method. To do so, we will compare the computation time 

of each method and the error between the obtained solution and a reference solution, in this 

case the experimental data. The computation of the Finite Elements method takes a really 

long time, so only the first layer of beads is simulated. This method has already been tested 

with success on an overlay welding procedure in [3]. 

To apply the Physical Fields Shift method, the twenty first passes are simulated using 

the Finite Elements method. The choice of twenty beads is to done to be sure that the quasi-

steady state is achieved. The final instant of the solutions of the 19th and 20th passes are 

used to approximate the final instant of the 21st pass. Then, the final instant of the 22nd is 

computed from the final state of the 20th  pass and the approximation of the 21st pass. The 

final state of the rest of the passes are calculated in the same way using the approximations. 

After the final pass is finished, a quick elastoplastic re-equilibrium is computed introducing 

the predicted stress and strain fields as imposed values on the welding area to calculate the 

final strain on the whole pipe. 
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Fig. 6 Comparison of the final state of displacement computed using the Finite Elements 

method and the Physical Fields Shift method applied 80 times (X component). 

Fig. 7 Comparison of the final state of displacement computed using the Finite Element method 

and the Physical Fields Shift method applied 80 times (Y component). 

The computation time of the Finite Elements simulation is, on average, 2 hours per pass 

for the heat problem and 7 hours per pass for the mechanical problem. The CPU execution 

time of the Physical Fields Shift method is 13 seconds per pass on average. The Table 3 

allows to compare the time needed to study the welding of the first layer using the Finite 

Elements method and the Physical Fields Shift method on the last 80 passes. 
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Table 3 Computation times. 

Method Heat problem 
Mechanical 

problem 

Complete 

problem  

Finite Elements 200h 700h ~ 37 days 

Physical Fields Shift 40h 140h + 18min ~ 7 days 

 

As it can be observed, around 30 days of computations are saved if only the first 20 

passes are computed and then the Physical Fields Shift method is applied. That is effectively 

5 times quicker than using the Finite Elements method to compute the total number of 

welding beads. This gain time may be the difference between a study that can be carried 

out and one that is impossible to do in an industrial context. These computation times could 

be further improved reducing the number of passes that are simulated before the first use 

of the Physical Fields Shift method.   

One of the important measures taken during overlay welding is the bending angle of the 

pipe after the welding. To measure this value, only the displacement fields are necessary. 

The displacement values at the end of the simulation are shown on Fig. 6 (X component) 

and Fig. 7 (Y component). In both cases, the Physical Fields Shift method overestimates 

the values obtained using the Finite Elements method. Those values are plotted over a line 

going from one end of the tube to the other one. The first bead is placed at 775 𝑚𝑚 from 

the end of the tube. We will now compare the bending angles that we calculated using the 

Finite Elements method and the Physical Fields Shift method. The Y component of the 

displacement on one extremity of the pipe is used to compute the arctangent of 𝑌/(𝐿/2) 

where L is the length of the pipe. Both of those results, as well as the data obtained during 

the procedure, are shown in Table 4. 

Table 4 Bending angles (in degrees). 

Method 
Experimental 

data 
Finite Elements 

Physical Fields 

Shift 

Bending angle 0.537 0.56 0.697 

 

In this case, both methods overestimate the bending angle of the experimental data. We 

need to bear in mind that the computation of the angle is very sensitive to small variations 

to the displacement values. The most important results of the Physical Fields Shift method 

is the reduction of the computation time.  

 

 

 

 

CONCLUSION AND FUTURE WORK 

In the context of the EDF’s research projects on welding we are confronted with industrial 

multi-pass problems that are impossible to solve in reasonable time limits, for instance 

overlay welding procedures. The complexity of the classical Finite Elements method, the 
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size of the problems and the huge computation times make most of these studies not 

feasible.  

We have presented a simplified method that allows us to obtain reasonable 

approximations of the final state of an overlay welding procedure in acceptable time limits. 

The results prove that computation times are improved and solutions are valid.  

In addition to this method, these approximations could be used to build reduced order 

models to apply the hyper-reduction method [4] to obtain more precise results in still 

reasonable times. Reduced order models for the first passes could also be built and used for 

parametric studies. Both of these ideas have already been tested in [3] on simple multipass 

welding examples, but not yet on industrial cases.    
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APPENDIX 1: MESH USED FOR THE SIMULATIONS 

 

Fig. 8 Mesh used in overlay simulations with zoom on the welding area. 

APPENDIX 2: PHYSICAL PARAMETERS FOR THE NUMERICAL MODEL 

The following tables include the physical parameters of P265GH Schedule 80S steel: 



Mathematical Modelling of Weld Phenomena 12 

11 

Table 5 Thermo-physical parameters (temperature dependent). 

Temperature (°𝑪) Thermal conductivity (𝑾 ∙ 𝒎𝒎−𝟏 ∙ 𝑲−𝟏) Heat capacity (𝑱 ∙ 𝒎𝒎−𝟑 ∙ 𝑲−𝟏) 

20 4.93E-02 3.71E-03 

100 4.83E-02 3.80E-03 

200 4.67E-02 3.88E-03 

300 4.35E-02 4.02E-03 

400 3.98E-02 4.19E-03 

500 3.59E-02 4.38E-03 

 600 3.23E-02 4.58E-03 

700 2.88E-02 4.79E-03 

800 2.37E-02 5.28E-03 

900 2.54E-02 5.22E-03 

1000 2.67E-02 5.17E-03 

1100 2.80E-02 5.12E-03 

1200 2.94E-02 5.06E-03 

2200 2.94E-01 5.06E-03 

Table 6 Thermo-elastic parameters (temperature dependent). 

Temperature 

(°𝑪) 

Young’s modulus 

(𝑴𝑷𝒂) 

Coefficient of thermal expansion 

(°𝑪−𝟏) 

Poisson’s 

coefficient 

20 2.12E+05 1.11E-05 0.3 

100 2.02E+05 1.15E-05 0.3 

200 1.94E+05 1.22E-05 0.3 

300 1.88E+05 1.28E-05 0.3 

400 1.81E+05 1.33E-05 0.3 

500 1.71E+05 1.38E-05 0.3 

600 1.59E+05 1.43E-05 0.3 

700 1.42E+05 1.49E-05 0.3 

800 1.22E+05 1.25E-05 0.3 

900 1.00E+05 1.34E-05 0.3 

1000 7.92E+04 1.42E-05 0.3 

1100 6.24E+04 1.50E-05 0.3 

1200 4.91E+04 1.57E-05 0.3 
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APPENDIX 3: STRESS-STRAIN CURVES FOR THE HARDENING FUNCTION 

 

Fig. 9 Stress-strain curves used to compute the hardening function. 

 


