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Towards Object Detection and Pose Estimation in Clutter using only
Synthetic Depth Data for Training

Stefan Thalhammer, Timothy Patten and Markus Vincze

Abstract— Object pose estimation is an important problem in
robotics because it supports scene understanding and enables
subsequent grasping and manipulation. Many methods, includ-
ing modern deep learning approaches, exploit known object
models, however, in industry these are difficult and expensive
to obtain. 3D CAD models, on the other hand, are often
readily available. Consequently, training a deep architecture
for pose estimation exclusively from CAD models leads to a
considerable decrease of the data creation effort. While this
has been shown to work well for feature- and template-based
approaches, real-world data is still required for pose estimation
in clutter using deep learning. We use synthetically created
depth data with domain-relevant background and randomized
augmentation to train an end-to-end, multi-task network to
detect and estimate poses of texture-less objects in cluttered
real-world depth images of an arbitrary amount of objects. We
present experiments and ablation studies on the architectural
design choices and data representation with the LineMOD
dataset.

I. INTRODUCTION

Assembly systems in manufacturing are subject to in-
creasing number of variants, smaller lot sizes and shorter
life cycles. As such, the application of assistance or robotic
systems is expected to reduce error rate and increase capacity
[6]. Typically, the task of assistance systems in an industrial
context is robust object detection as well as pose estimation.
However, developing methods that deliver accurate estimates,
especially for texture-less objects, is still an open research
problem.

Recently deep learning advanced the state of the art for
computer vision tasks, however, the advent of deep networks
for 3D pose estimation has yet to be fully realized [9].
While deep networks achieve superior performance, they
require a huge amount of training data [12]. Capturing and
annotating these data is time and labour consuming, often re-
quiring physical instances, which is problematic in fast paced
manufacturing environments. Industrial applications typically
have CAD data readily available, therefore, we propose to
take advantage of this by directly training models for pose
estimation of texture-less objects using only synthetic depth
images for training.

Accurate pose estimation systems consist of multiple
steps, firstly creating initial pose candidates and subsequently
refining these using one or more refinement and verification
steps. In this work we address the task of creating an initial
pose estimate for further refinement.

1All authors are with the Faculty of Electrical Engineering and In-
formation Technology, TU Wien, 1040 Vienna, Austria {sthalham,
patten, vincze}@acin.tuwien.ac.at

Fig. 1. Control point regression and pose computation in real-world images,
trained using rendered and augmented data.

Feature- and template-based approaches for pose estima-
tion employ meshes or point clouds to create templates or
hash tables in order to detect objects and estimate their
pose at runtime [2], [4], [10]. Consequently, these methods
require no real-world data for training. Current deep learning
approaches do not close the domain gap, i.e. traversing from
synthetic to real-world data without a decrease in perfor-
mance, and therefore need real-world data during training
time. We address the task of training deep pose estimators
only from synthetic depth data by rendering and augmenting
these data in terms of background information and sensor
noise through random shape perturbations.

Pose estimation is a non-trivial task for learning-based
approaches, consequently strong approaches tend to train
separate models for the detection and the subsequent pose
estimation. Often the models for pose estimation are also
trained separately for distinct classes [19], [22], [24]. How-
ever, end-to-end learning, i.e. training and deploying multiple
stages of a vision pipeline at once, is desired to reach a high
frame rate. Additionally, when deep architectures are trained
on multiple objectives, i.e. in a multi-task fashion, the learned
features are stronger, which has been shown to be beneficial
for each individual task [5]. Especially when employing pre-
trained models in a domain different from RGB, e.g. on
depth data, retraining the backbone with additional guidance
is desired to create stronger features. Our multi-task, end-
to-end models for pose estimation are consequently trained
with the capacity to estimate the poses of different classes
simultaneously.

In summary, we propose a method for texture-less ob-
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ject pose estimation in real-world depth images using only
synthetic data for training. Figure 1 outlines our proposed
approach.

The contributions are the following:

• We present an approach for simultaneous object detec-
tion, classification and pose estimation in a multi-task,
end-to-end manner, of an arbitrary number of texture-
less objects in real-world depth images. For training we
only need meshes of the desired objects.

• We present our findings by evaluating on a standard
dataset, the LineMOD [8].

The remainder of the paper is structured as follows. Sec-
tion 2 summarizes related work. The approach is described
in section 3. Section 4 presents the results and evaluation.
Section 5 concludes with a discussion.

II. RELATED WORK

The attention of pose estimation research has recently
shifted to texture-poor or texture-less objects. Currently, the
domain is dominated by template or hand-crafted feature-
based approaches [9]. However, estimating object poses
using deep architectures is gaining popularity due to the
state-of-the-art performance for other computer vision tasks.

While there are manifold approaches to estimate the poses
using colored images, depth data is usually only used for
refinement [27]. Only very few employ depth data only
[17], [16], [22]. However, depth data already gives strong
cues about the shape and consequently also about the pose
of the object. A major advantage of using only depth data
to train networks for pose estimation is the possibility to
exclusively train models using CAD data, independent of
the color variations of the manufactured object.

A. Classical Approaches

Point-Pair features create a strong basis for pose estimation
pipelines. Point pairs are matched between the test scene
and the provided models then stored in a hash table. Votes
are accumulated to create hypotheses, subsequently refined
using ICP and non-maxima are suppressed. Hypotheses are
favoured when the detected 3D edges match the model
contours. These approaches do not use RGB data and have
multiples stages, subsequently removing or refining pose
hypotheses [4], [26].

Template matching methods can also exhibit strong pose
estimation results. Hodan et al. [10] use a sliding win-
dow with cascading evaluation. Pre-filtering differentiates
between the object and background. Hypotheses are gener-
ated for every window by hashing. Hypotheses verification
consists of verifying size, normals, gradients, depth template
and color. Object pose refinement is initialized from the
verified hypotheses using particle swarm optimization.

While these approaches usually yield strong pose esti-
mates, they are slow compared to end-to-end learning based
approaches and lack high detection performance.

B. Learning-based Approaches

Learning-based approaches yield strong results for some
pose estimation tasks, but they are currently not on par with
classical approaches.

Random forest approaches can be used to sample pose
hypotheses, which are used to choose and iteratively refine
promising pose estimates [1], [23].

A common practice for pose estimation using deep learn-
ing is to treat the translation and the rotation part of the pose
separately [11], [14], [19], [22], [27]. While the center of the
detected bounding boxes already results in feasible trans-
lation estimates in image space [11], translation regression
is desired when dealing with occlusions [22], [27]. When
estimating the rotational part of the pose separately either
regression [27] or classification [11], [22] can be employed.
While regression of the rotation is computationally more
efficient and natural due to the smooth representation space,
classification yields better results in practice [11], [22].

For pose estimation using depth only, pixel-wise seg-
mentation can be employed to create masks and then to
be matched against previously computed templates [16]
resulting in similar performance as classical approaches.

One of the strongest approaches for object pose estimation
using deep learning is the regression of virtual control points
[3], [19], [24], i.e. regressing a 3D bounding box projected
into image space and alike. The regressed control points
are used to solve Perspective-n-Points (PnP) in order to
obtain a pose estimation. This approach is used for RGB
images and models are trained separately for each object
or even decoupled from detection. Considering the task
of pose estimation as a translation regression problem is
promising because CNNs exhibit translation equivariance
between image and feature space.

We employ one model for detection, classification and
pose estimation, independent of the amount of objects of
interest. Our approaches modifies RetinaNet [13] to include
pose estimation in their one-staged architecture. We use Reti-
naNet due to the very strong object detection performance
on diverse datasets and its fast computation, running with
approximately ten frames per second (fps). We consequently
regard pose estimation as a multi-task, end-to-end learning
approach, using only translation regression and subsequent
PnP for pose calculation. Compared to other pose estimation
approaches using depth images, our method is one-staged,
uses no refinement and deals with diverse objects simultane-
ously at approximately five fps.

III. 6D POSE ESTIMATION FROM SYNTHETIC DATA

We render synthetic depth data in Blender from a virtual
scene resembling the area of deployment of our model. These
data are subsequently augmented and annotated using a
randomized noise model and are used for supervised training.
We base our architecture on RetinaNet [13] and add an
additional branch in order to enable multi-task, end-to-end
6D object pose estimation in complete scenes. The additional
branch takes the features concatenated by the feature pyramid
network as inputs and outputs n virtual control points as

204



D
ra

ft
Fig. 2. Virtual scene to render synthetic training data from (top).
Augmented synthetic depth image used for training (bottom).

defined in [3]. RetinaNet is currently considered one of
the strongest object detectors and additionally exhibits tight
bounding box estimates, thus ideally fitted for control point
regression.

Since CNNs yield translation equivariance between image
and feature space it is reasonable to regard pose estimation
as regression tasks, in the context of deep learning. The
authors of [24] showed that a similarly simple approach
for RGB-data can achieve state-of-the-art results without
limiting general applicability.

A. Training Dataset Creation

We use only synthetically created training data and deploy
our model on real-world depth scans. We create synthetic
depth data with a diverse scene setup and various background
information and additionally apply noise heuristics in order
to produce training data with high variation regarding views
and occlusion patterns [25]. This has been shown to gener-
ate high quality data to train deep architectures for object
detection and classification. An example for a virtual scene
can be seen in the top image of Figure 2.

1) Data Rendering: We render 15,000 training images
of virtual scenes exhibiting the expected variations of the
area of deployment. For each image, we randomly place five
to eight objects of interest with repetition. The objects are
annotated with a bounding box, 6D pose and pixel-level class
correspondences. The camera pose is sampled similar to the
expected poses in the test set.

The output of the synthetic data creation step is a depth
image, a binary mask indicating visible image regions and
a mask indicating pixel-level class correspondences. The
binary mask provides information about image regions with
invalid depth values depending on the imaging geometry of
infrared depth sensors.

2) Dataset Creation: The synthetic dataset used for train-
ing is created by combining the outputs of the rendering step.

The binary mask is applied to the synthetic depth images
using randomized morphological operations. This results in
missing image regions similar to real-world depth scans.
Blur is added to minimize the discrepancy between depth
gradients in the real-world and synthetic images. The syn-
thetic depth values are rounded to the nearest quantization
value based on the hypothesized sensor’s depth resolution.
This operation reduces the domain shift between synthetic
and real depth images. Additional noise is added to the
quantized depth values using an offset chosen randomly from
a Gaussian distribution, assuming non-linearly increasing
noise. Further randomness of the appearance of occluded
scene parts, depth and lateral noise is added by warping
the depth images through the application of pixel offsets
using the Perlin noise technique [18], which was shown to
significantly improve the performance of trained models [25].
The augmentation process is sampled twice per rendered
image to create a dataset of approximately 30,000 images.

B. Network Architecture

We use RetinaNet1 [13] with ResNet-50 [5] backbone
and pretrained on ImageNet [20] as feature extractor and
detector. We add an additional network branch for control
point regression, parallel to the classification and detection
branches.

1) Data Representation for Pose Estimation: We regress
eight control points to exactly encapsulate the object’s di-
mensions in 3D. In general, an arbitrary number of control
points can be chosen and regressed. Those points are virtual,
i.e. they do not represent actual object parts, thus can be
chosen arbitrarily in the objects’ coordinate frame. Using
the camera intrinsics and the calculated corresponding object
pose these points are projected into image space.

The design of the additional branch is based on Reti-
naNet’s bounding box regression branch. We slightly mod-
ify it by adding l2 regularization of the weights of every
convolution layer with the hyperparameter set to 0.001. We
perform experiments using other penalties, dropout and batch
normalization but that resulted in decreased performance.
The 16 values representing the x and y components of the
eight control points are regressed for every object class (n)
separately. The architecture of our control point estimation
branch is shown in Figure 3.

2) Loss: The overall loss to minimize is defined as

L = Lbox +Lcls +Lbox3D (1)

1https://github.com/fizyr/keras-retinanet
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Fig. 3. Our multi-task, end-to-end network architecture.

where Lbox, Lcls and Lbox3D are the losses for bounding box
regression, object classification and control point regression,
respectively. We use smoothed l1 loss for bounding box
regression and focal loss for classification. The control point
regression loss is formally, per image, defined as

LP =
1
m ∑

o∈gt

∣∣∣∣Pro jT (cp)−Pro jT̂ (cp)
∣∣∣∣k (2)

where m is the total number of object instances o in the
ground truth gt of an image, Pro jT and Pro jT̂ are the
projection and the estimation projection of the control points
cp onto the image plane and k the desired norm. As norm
we use smooth l1.

We weight the contribution of each of the loss parts
differently. Our experiments showed that weighting Lbox3D
such that its magnitude is twice the magnitude of Lbox and
four times the magnitude of Lcls, results in good recall and
precision regarding detections and reasonable pose estimates.

The estimated control points during test time are repro-
jected into 3D space and the object’s pose is simultaneously
estimated using PnP. For our purpose we use the iterative
RANSAC based algorithm.

3) Data Augmentation: In order to prevent the network
from overfitting to the limited amount of training data we
apply extensive data augmentation of the training images.
Every input image is randomly augmented online using a
superposition of translation and scaling up to 20 percent
each.

IV. EXPERIMENTS

All the experiments are conducted on the LineMOD
dataset [8]. LineMOD contains approximately 1,100 test
images for each of the 13 dataset objects. Each object
is placed in a heavily cluttered scene and annotated with
bounding box, class and 6DoF pose. We provide ablation
studies, specific for the task at hand. Comparing image
preprocessing, regularization strategies and possible loss
functions for the control point regression branch. In order
to provide a reasonable comparison against the state of the
art we compare against [4], [7] and [23].

A. Experimental Setup

For testing we use only the depth images of the LineMOD
dataset that are captured using a Microsoft Kinect V1.

Images are converted to three channel RGB images, coloured
based on the depth gradient using the approach of Naka-
gawa et al. [15]. The ablation study shows the benefit of
this. Image regions with missing depth values are inpainted
using OpenCV2 and depth cuts are applied to image regions
farther than two meters.

Our networks are trained using the Adam optimizer with
adaptive learning rate. Ablation studies are trained for 20
epochs using 10,000 images. Comparison against state of the
art is trained for 100 epochs with 30,000 images. We use a
batch size of one and an initial learning rate of 10−5. We
choose the best performing model after the above mention
amount of epochs to provide comparisons. All networks are
trained on a Nvidia GeForce GTX 1080.

B. Ablation Studies

We perform three studies to adapt RetinaNet to our needs.
Firstly we compare different dataset augmentations and depth
image representations, secondly we evaluate which loss to
use for bounding box regression and thirdly we show an
ablation study regarding regularization applied by the control
point regression branch. All studies are performed on a
validation set of 2400 images, taken uniformly from all
classes of the LineMOD dataset.

1) Image Representation: We compare different options
for of the augmentations applied to the depth images, as well
as possibilities for depth to three channel image conversion.

Table I provides results in terms of recall and precision
of detections with an Intersection over Union (IoU) higher
than 0.5, and percentage of rotation estimates below a five
degree deviation from the ground truth. Depth refers to
repeating the depth images three times and converting it to
eight bit, rgb refers to color coding the depth images based
on the normal direction [15]. Options for augmentation are
either perlin, which refers to only augmenting the synthetic
training images by removing occluded image regions due
to the imaging geometry and warping pixel locations using
Perlin noise, and full, which refers to additionally adding blur
and depth noise and quantizing depth values as described in
section III-A.

Using color coded depth images with full augmentation
applied shows best detection and rotation estimation results.

2https://opencv.org/
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TABLE I
EXPERIMENTS REGARDING IMAGE DATA REPRESENTATION AND

AUGMENTATION APPLIED.

Representation depth rgb
Augmentation perlin full perlin full

Recall 83.61 82.72 86.67 89.77
Precision 94.65 89.54 93.91 93.59

Rotation < 5◦ 6.93 5.07 6.76 7.33

TABLE II
LOSS FUNCTIONS USED FOR CONTROL POINT REGRESSION AND THEIR

INFLUENCE ON THE DERIVED ROTATION ESTIMATES.

Loss mse l1 smooth l1
Rotation < 5◦ 6.03 4.78 7.33

2) Loss Function: Using a pose regression branch similar
to the bounding box regression branch suggests to use a
similar loss function.

Table II presents results of different loss functions used
for regressing the virtual control points. Care was taken to
weight the individual loss parts in a way to preserve the
above mentioned ratio between bounding box, classification
and pose losses. The percentage of rotation estimates below
a five degree deviation from the ground truth is provided for
mean squared error (mse), absolute error (l1) and Huber loss
(smooth l1). Smooth l1 provides the strongest control point
estimates evaluated using rotation estimation.

3) Regularization: Regularization reduces the generaliza-
tion error, thus reducing the model’s performance discrep-
ancy between the training and the validation/test set. Since
our data domains for source and target are very different it is
not straight forward to decide which regularization strategy
to apply. Table III provides information about regularization
applied and their influence on the networks performance. All
regularization strategies applied here are only applied to the
control point regression branch. Batch normalization (bn) is
applied to each convolution layer’s output except from the
last, weight decay (wd) is applied to all the weights of the
convolution kernels and dropout (do) tested here is applied
to the inputs of the last convolution layer with a probability
of 20 percent.

The metric 5cm 5◦ refers to the metric defined in [21], 6D
pose refers to the metric defined by [8], where we evaluate on
ten percent of the mesh-model diameter, and proj. 2D refers
to the reprojection of the object mesh to the image using the
estimated pose. The pose is considered as true if the average
pixel difference is smaller than a threshold. For this we use
five pixels. Results show that only l2 weight decay with a
hyperparameter of 0.001 improves results on the validation
set.

C. Comparison Against the State of the Art

For evaluation against the state of the art we use the metric
defined in [8] as well as the F1-score from the harmonic
mean of the precision and recall as in [23]. Unlike [23]

TABLE III
REGULARIZATION APPLIED BY THE NETWORK, TESTED ON DIFFERENT

METRICS.

Metric bn wd(0.01) wd(0.001) wd(0.0001) do(0.2)
Rot. < 5◦ 0.0 6.84 7.85 7.03 1.83

5cm 5 0.0 3.36 5.02 3.76 0.0
6D pose 0.0 4.82 6.62 6.17 0.35
proj. 2D 0.0 18.06 22.33 23.48 0.5

TABLE IV
F1-SCORE COMPARISON OF OUR METHOD AGAINST COMMON

STATE-OF-THE-ART METHODS.

Method LINEMOD[7] Drost[4] Tejani[23] ours
Ape 53.3 62.8 85.5 34.0

Benchvise 84.6 23.7 96.1 52.2
Driller 69.1 59.7 90.5 31.6
Cam 64.0 51.3 71.8 52.4
Can 51.2 51.0 70.9 51.2
Iron 68.3 40.5 73.5 46.5

Lamp 67.5 77.6 92.1 26.0
Phone 56.3 47.1 72.8 66.2

Cat 65.6 56.6 88.8 60.6
Holepuncher 51.6 50.0 87.5 46.6

Duck 58.0 31.3 90.7 44.6
Eggbox 86.0 82.6 74.0 54.0

Glue 43.8 38.2 67.8 30.5
Average 63.0 51.7 81.7 46.8

we train only one model and not separate models for every
object. While [23] and [7] use RGB and depth, [4] only
uses depth data. Consequently, we consider [4] as the most
relevant method to compare against. Table IV provides a
comparison of our approach against the state of the art.

Our method exhibits comparable results to Drost et al. [4]
when taking the false-positive rate into account. When con-
sidering detections above 0.5 IoU as true our method exhibits
a recall and precision of 96.71 and 94.43 percent respectively
on the LineMOD dataset.

Figure 4 shows control point estimation of the object Glue
on the left and the corresponding ground truth on the right. A
severely distorted 3D bounding box estimation of the object
is visible, the box appears to vanish in one dimension. This
happens often for the object Glue, leading to the conclusion
that for objects with a small size along one dimension the
control points have to be chosen significantly higher than the
corresponding dimension.

Figure 5 shows the 3D bounding box of the object Lamp,
defined by the estimated control points, on the left and again
the corresponding ground truth on the right. A detection with
good alignment of the estimated 3D box and pose, with
respect to the ground truth, is visible.

V. CONCLUSION

In this paper we presented a deep learning architecture
for multi-task, end-to-end 6D object pose estimation for
an arbitrary number of objects from only depth images.
The architecture was trained entirely from synthetic data
that is generated to resemble real-world data. Experiments
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Fig. 4. Warped 3D box detection of the object glue

Fig. 5. 3D box detection of the object lamp

with the LineMOD dataset showed promising results. Our
ablation studies provide valuable information for detection,
classification and pose estimation of texture-less objects in
clutter.

Future work will tackle the improvement of the 3D
bounding box regression results. Experiments with other
data modalities will also be conducted. We will furthermore
investigate the benefits of enforcing orthogonality on the
boxes. Additional architecture modifications will be tested to
disentangle the control point estimation per object further in
order to enhance pose estimation. Other directions for future
work include addressing object symmetries and tuning the
parameters for the generation of the synthetic training data to
randomize the applied noise more specifically to the desired
sensor.
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