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General Robot-Camera Synchronization
Based on Reprojection Error Minimization

Kenji Koide! and Emanuele Menegatti'

Abstract— This paper describes a synchronization method to
estimate the time offset between a robot arm and a camera
mounted on the robot (i.e., robot-camera synchronization)
based on reprojection error minimization. In this method, we
detect a calibration pattern (e.g., checkerboard) from camera
images while projecting the pattern onto the image space with
robot hand poses and forward kinematics. Then, we estimate
the delay of the camera data by finding the robot-camera
time offset which minimizes the reprojection error between the
visually detected and the projected patterns. Since the proposed
method does not rely on any camera-specific algorithms, it can
be easily applied to any new camera models, such as RGB,
infrared, and X-ray cameras, by changing only the projection
model. Through experiments on a real system, we confirmed
that the proposed method shows a good synchronization accu-
racy and contributes to the accuracy of a continuous scan data
mapping task.

I. INTRODUCTION

Vision based inspection systems are widely considered
for industrial applications [1]. To respond to the increasing
demand for rapid and efficient production, a lot of automated
vision-based inspection systems have been exploited for real
systems. However, to our knowledge, most of the existing in-
spection systems are highly dependent on specific production
systems, and their reusability is very limited.

SPIRIT !, an industrial robot project, aims to develop a
“general” inspection robot framework. In this framework, the
product to be inspected, the robot, and the camera for in-
spection can be easily replaced with ones for new inspection
tasks. For this purpose, all the components which compose
the framework have to be independent of the specific product,
robot, and camera model. In particular, the generality with
respect to the camera model is important. The framework
has to be able to handle various imaging sensors in a unified
system, to name a few: RGB-D, thermographic, and X-ray
cameras.

Robot-Camera synchronization is one of the essential tasks
for visual inspection systems. Usually, there is a delay on
images acquired with a camera due to encoding, decoding,
and buffered communication [2]. In scenarios where a robot
performs a continuous scan motion while mapping images in
the robot space, the synchronization accuracy has a signifi-
cant impact on the final mapping accuracy. If the camera is
not synchronized with the robot, we cannot refer the correct
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robot pose at the moment an image was acquired, and cannot
map the image in the correct position in the robot space.

Hardware-based synchronization is the most reliable and
accurate way to synchronize two or more devices. Typi-
cally, to synchronize data from multiple devices, the data
acquisition of each device is triggered by using an external
hardware signal [3]. With such a hardware mechanism, data
from different devices can be synchronized in the order of
100 nanoseconds [4]. However, hardware synchronization
mechanisms require the devices to have a hardware interface
and a special data acquisition mode for triggering the data
acquisition using the external signal. In case devices (in our
case, camera and robot) do not have such synchronization
interfaces, we need a software-based method, which uses
only data acquired by the devices, to synchronize them.

Several methods for software-based robot-camera synchro-
nization have been proposed [5], [6], [7]. They first detect a
calibration pattern using the camera while moving the robot
hand where the camera is mounted, and then estimate the
camera poses (i.e., camera motion) with respect to the cali-
bration pattern. The time delay between the camera and robot
motion sequences is estimated using, for instance, cross-
correlation techniques [6]. There are also several techniques
to perform spatial and temporal calibration simultaneously
[8]. The problem here is that we need to explicitly estimate
the camera pose with respect to the calibration pattern for
each input image. For pinhole cameras, typically a PnP
algorithm [9] is used to estimate the camera pose from an
image. However, in the case with a non-pinhole camera,
usual PnP algorithms cannot be used to estimate the camera
pose. For instance, with some special camera models (e.g.,
X-ray source-detector camera model), it is not possible to
estimate the camera pose from a single image.

The idea to use the reprojection error term for robot-
camera calibration is introduced by [10]. They estimate the
robot-camera transformation by minimizing the reprojec-
tion error. Since this method does not require to explicitly
estimate the camera pose with respect to the pattern for
each image, it does not rely on any camera model-specific
algorithms, and it can be applied to different camera models
by changing the projection model. It has been shown that the
reprojection error minimization-based method works well on
both pinhole and source-detector camera models on real sys-
tems with RGB and X-ray cameras. Following [10], in this
work, we introduce a reprojection error minimization-based
method to achieve a general robot-camera synchronization
method.

In this paper, we propose a general robot-camera synchro-
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Fig. 1: The proposed robot-camera synchronization method.

nization method based on reprojection error minimization
(see Fig. 1). We first collect a sequence of robot hand
poses and a sequence of images of a calibration pattern
(e.g., checkerboard). Then, we synchronize the robot and
the camera by finding the time offset which minimizes the
reprojection error between the visually observed calibration
patterns and the patterns reprojected with the robot hand
poses and forward kinematics. Since the proposed method
does not rely on any camera-specific algorithms, like PnP
algorithm, it can be applied to any camera models by
changing only the projection model.

II. METHODOLOGY

Fig. 1 shows an overview of the proposed method. We
estimate the time offset At by comparing sequences of
non-synchronized robot hand poses and camera images. To
compare them, we first move the robot hand along a certain
path (e.g., sine curve above the calibration pattern), and
record a sequence of robot hand poses and a sequence
of images of the calibration pattern. Let R be the robot
hand pose sequence, and Z be the calibration pattern image
sequence. Let us assume that we collected N images and K
hand poses, and the calibration pattern consists of M points.

Let pi be the i-th point of the calibration pattern detected
from the j-th image with timestamp £ (in the camera time).
Given a robot-camera time offset At, we calculate the robot
hand pose R, at the corresponding robot time ¢ = £+ At by
interpolating the discrete robot hand poses R. We use Slerp
(Spherical linear interpolation) [11] to interpolate the robot
hand poses:

R, = Slerp(R,1). (1)

With the interpolated robot hand pose R;, we project each
point of the calibration pattern p° into the camera space.

@)

where, p! is the projected i-th point of the pattern at robot
time ¢. We can use any projection function suitable to
describe the camera. For instance, we use a pinhole camera

pz = P’I"Oj(Rt,pi),
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Fig. 2: A snapshot of the synchronization experiment.

model for RGB cameras [12], and a source-detector camera
model for X-ray cameras [13].
The reprojection error is defined by:
N M
E(At) = Z Z |9t — Proj(Slerp(R,t + At),p")|. (3)

t 1

We estimate the robot-camera time offset Af which mini-

mizes the reprojection error:

At = arg min E(At).
At

“4)

In this work, we find the optimal time offset Af using
exhaustive search in the range [—0.2s,0.2s]. Since the re-
projection error shows a good convexity as shown in Fig.
3, this search process can be improved with a line search
method [14].

III. EXPERIMENTS
A. Robot camera synchronization

To validate the proposed method, we conducted an ex-
periment on a real system. Fig. 2 shows a snapshot of the
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Fig. 3: The reprojection error with different time offset At.

The reprojection error is minimized at At = —0.056 [sec].

experimental environment. We mounted a camera (Pointgrey
Flea3) on a robot arm (Universal robot URS), and placed a
calibration pattern so that the camera can see it. The robot-
camera transformation and the calibration pattern pose are
estimated with an automatic calibration technique [15]. We
moved the robot along a sine curve above the calibration
pattern (width=0.4[m], height=0.3[m], altitude=0.5[m]), and
recorded images and robot hand poses while the robot was
moving. We fed these sequences of images and robot hand
poses to the proposed method and estimated the time offset
between the camera time and the robot time.

Fig. 3 shows the plot of the reprojection errors E versus
the time offset At. We can see that the reprojection error is
minimized at the point At = —0.056 [sec]. This means that
the images (camera time) are delayed from the robot hand
poses (robot time) 0.056 [sec], and by adding this offset
to the camera timestamp, we can obtain the corresponding
timestamp in the robot time.

Fig. 4 shows the reprojected and the visually observed
patterns at the frame when the robot was moving at the
maximum speed (sin(phase = ), about 0.25 [m/sec]).
The green points are the reprojected pattern with the robot
hand pose and forward kinematics, and the blue points
are the pattern visually detected from the image. Before
synchronization, the pattern reprojected based on the robot
hand are obviously precede the visually detected pattern.
With the estimated time offset, the reprojected pattern is
well synchronized with the visually detected pattern, and we
observe very small reprojection errors between them.

B. Continuous scan data mapping

To demonstrate that the camera and the robot are well
synchronized with the proposed method, we conducted a
continuous scan data mapping experiment. With the same
setting as Sec. III-A, we recorded images and robot hand
poses. We estimate the plane of the calibration pattern from
the very first frame of the images, and then project all the
images acquired with the continuous robot motion onto the

121

(b) After synchronization (At = —0.056 [sec])

Fig. 4: The visually observed (blue) and the projected (green)
points before and after the synchronization. The robot was
moving at about 0.25 [m/sec]

calibration pattern plane with the robot hand poses (without
any image processing, such as image stitching and align-
ment). Fig. 6 shows the images projected and accumulated on
the calibration pattern plane. 47 images are accumulated in
total. Without synchronization, the positions of the projected
images deviate due to the delay of the camera images, and
as a result, the accumulation image is blurred. With the
estimated time offset, the images are synchronized with the
robot hand poses and precisely projected on the plane, and
we observe a clear accumulation image with the continuous
scan.

IV. CONCLUSIONS

This paper proposed a robot-camera synchronization
method which estimates the robot-camera time offset by
minimizing the reprojection error. Since the proposed method
does not rely on any camera-specific algorithms, it can
be applied to any imaging sensors by changing only the
projection model. The experimental results show that the
proposed method can be applied to real systems, and it
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Fig. 6: The continuous scan data mapping results. 47 images are accumulated in total.

contributes to the accuracy of continuous scan data mapping
tasks.

We are planning to apply the proposed method to real
X-ray imaging systems to show that the method can be
applied to new imaging sensors with a small modification
of the projection model. We are also planning to conduct
further assessment of the synchronization accuracy, and how
it affects the continuous scan data mapping accuracy.
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