
D
ra

ft

A Dynamical System for Governing Continuous, Sequential and
Reactive Behaviors

Raphael Deimel

Abstract— In interaction with humans or movable objects,
robots not only need to react to surprising information quickly,
but they also need to synchronize their motions with the world,
which can be done by introducing decision points (discrete
state transitions), or by continuously adjusting the execution
velocity. We present a novel dynamical system based on stable
heteroclinic channel networks that can represent static, marko-
vian states as well as continuous transitions between states in
a compact and consistent state vector. This so-called phase-
state machine can implement regular state machine semantics,
but it additionally has the built-in capability to provide and
adjust phases and blend consecutive movement primitives for
smooth operation. In this paper, we investigate the dynamic
properties, present examples for programming specific state
machine semantics, and demonstrate the sequencing and mixing
of continuous movement primitives.

I. INTRODUCTION

Behaviors involving interaction (e.g. human-robot object
handover [14], reactive manipulation strategies [3]) can often
be described by directed graphs that sequence simpler behav-
ior generation systems. The most prominent formalism used
is the hybrid automaton [15], which is a state machine that
activates and deactivates specific controllers and trajectories.
For fluid interactions though, we often want behaviors that
violate the strict temporal separation between motion gener-
ators. We want consecutive motions to blend into each other.
We want to preserve estimates by control (e.g. the weight of
a tool) across control switches. Or we want to mix motions
to communicate uncertainty to an interaction partner. None
of these behaviors are impossible to implement using hybrid
automata, but require us to fragment and obfuscate the state
graph by introducing many additional states and transitions
to handle deviating or unclear situations. In addition, to
achieve reactivity in real systems it is common for controllers
to bypass the state machine abstraction all together by
exchanging information with other controllers or perception
directly.

We believe that these unwieldy solutions are the symptom
of a limitation of the conventional discrete state machine,
which cannot represent transitions with nonzero duration
between its states. Introducing continuous, time-extended,
and nonexclusive (non-Markovian) transitions in between
(Markovian) states provides an elegant compromise between
providing a notion of time, and independent, separate seg-
ments at the same time. The former enables synchronization
and blending, while the latter divides complex behaviors in

The author is with the Control Systems Laboratory, Technische Univer-
sität Berlin, Germany

We gratefully acknowledge financial support for the project MTI-engAge
(16SV7109) by BMBF .

Movement Primitives

transition
velocity

exponents

transition
biases

time scale

state
connectivity

decomposition

Stable

Heteroclinic

Channel

Network

transition/state
activations

transition
phases

pre-
compute

Fig. 1: By decomposing the system state into activation and
phase values, dynamical systems with stable heteroclinic
channels [4] can orchestrate phase-based movement primi-
tives.

to independent segments that are easier to learn, optimize,
and reason with. System evolution becomes continuous at
any point in time, while conventional state graphs can be
recovered by ignoring transitions.

In order to provide continuous, time-extended, nonexclu-
sive transitions, we could extend the hybrid automaton to
provide explicit “transition states” in between control states.
Though, one would need to add a state for each possible
combination of transition and regular state, and for any
combinations of transitions sharing the same predecessor
state, as those could be active concurrently. In this paper,
we investigate an entirely different approach: we implement
a discrete state machine using a dynamical system instead of
implementing a dynamical system using a discrete state ma-
chine. We achieve this by constructing a dynamical system
whose attractor consists of a network of “stable heteroclinic
channels” (SHC) [11], connected by saddle points which

Proceedings of the ARW & OAGM Workshop 2019 DOI: 10.3217/978-3-85125-663-5-15

91

D
ra

ft

can be interpreted as transitions and states respectively. In
previous research, stable heteroclinic channels have been
treated as discrete transitions [4], [11], the transitions are
continuous in their nature and extended over time though.
The SHC formalism provides a straightforward method
to construct states (saddle points) and arbitrary transitions
(channels) between those states. This paper extends the
formalisms to assign an activation value for any possible
state and any possible transition as well as to assign a phase
variable for each transition. We further will demonstrate
how to use those activation and phase values to adjust
periods of each transition individually and how to integrate
(perceptual) information continuously and context-dependent
on the current state.

The activation and phase values can also be used directly
to govern phase-parameterized movement primitives such as
DMPs [13] or ProMPs [9], which we will demonstrate for a
robotic arm.

II. RELATED WORK

The problem domain addressed by the phase-state ma-
chine has traditionally been addressed with hybrid dynamical
systems [15], and more specifically with hybrid automata.
The main difference of phase-state machines w.r.t. hybrid
automata is, that states are not necessarily digital, transitions
are not discrete, and transitions with a common predecessor
can stay in (unstable) superposition. Confusion may arise
from the difference in semantics for state and state transition:
In a hybrid automaton, trajectories or primitives happen
during a state, while in the proposed phase-state machine
trajectories happen during a state transition. Conversely,
in hybrid automata synchronization barriers and delays are
implemented by state transitions (guarded jumps), while in
the the phase-state machine, it is implemented by dwelling
in states.

The work on the phase-state machine builds on prior work
that proposed a straightforward method to “program” states
and transitions [11], [4]. Their systems have been used as
central pattern generators [4], controllers were associated
with states and not transitions, though, emulating a hybrid
automaton. Phase-state machines are intended to govern a
set of motion primitives such as ProMPs. [9], [6], DMPs [2]
or others [8] to synthesize actual robot behavior. A recent
publication on ProMPs proposes a library of actions and
associated transition triggers to concatenate actions [5], albeit
it focuses on segmenting and organizing primitives, and not
on sequencing and synchronizing their execution.

III. METHOD

Fig. 1 shows all components of a phase-state machine. The
core consists of a Lotka-Volterra-type differential equation,
which evolves according to the equation:

ẋ=x◦(α−P·xγ)·η(t)+δ̇ (t) (1)

where x is an n-dimensional state vector, vector α and matrix
Pn×n are parameters defining the attractor landscape, and
◦ denotes element-wise multiplication (Hadamard product).

The terms η and δ̇ are control inputs and used to modify
the system behavior and will be explained in detail further
down. Vector α is called the growth rate parameter, as it
influences how fast the value of a state variable grows during
a transition. P is a matrix that sets the excitation or inhibition
between the state variables so that one saddle point on
each coordinate axis is created to represent a discrete state.
Further we assume δ̇ ∼W (µ,σ) to be generated by a Wiener
process. The system is therefore numerically integrated using
the Euler-Maruyama integration scheme:

x(t+∆t)=x(t)+E [ẋ(t)]·∆t+

√
∆t

∆t
·N (0,σ) (2)

a) Inputs to influence system behavior: In order to
influence the evolution of the dynamical system, we provide
two inputs to the differential equation system: vectors δ̇
and the scalar η . Departing a state (i.e. a saddle point)
happens by pushing the system in the direction of the desired
subsequent state with δ̇ of Eq. 1. Dwell time is dependent
on the magnitude of δ̇ . The scalar η adjusts the speed at
which the system evolves.

b) Construction of P: The matrix P is constructed using
the rules published by Horchler et al. [4] (Eq. 5):

Pji=





αi/β j if i=j
αi−α j/ν j

β j
if Tji=1

αi+α j/β j otherwise

(3)

based on the desired state connectivity matrix T , where Tji=
1 indicates an edge from state i to j, otherwise Tji=0. For
simplicity, we fix some parameters of the SHC-system: αi=
α0 (uniform growth rates), βi=1.0 (unit state magnitudes),
and νi=1.0 (symmetric channels). The scalar α0 determines
how quickly the system evolves, i.e. it parameterizes the time
scale. For examples in this paper, α0=30.

c) Parameter γ: The γ parameter can be used to modify
the shape of the heteroclinic channels. In previous work [4],
γ =1. Fig. 2 shows the effect of other values. With γ =2
channel direction is orthogonal to the current state axis,
which simplifies interpretation of input δ̇ , which is why γ =2
is chosen for all subsequent systems.

A. Extensions to the SHC system

The key difference between the state-machine like be-
havior of the SHC system and the proposed phase-state-
machine is the notion of continuous transition phases. The
state vector x sparsely encodes discrete states (one state per
dimension), but it also implicitly encodes which transition
happens and what the progress (its phase) of the transitions
is. In order to specify the behavior of each state and transition
independently of each other, we compute two sparse matrices
that organize state and transition activations (matrix Λ),
and the phases of all transition (matrix Φ). The nonlinear
differential equations of the original SHC formulation [4]
are further augmented with the signals A(t), B(t) and E(t).

92

D
ra

ft

x0

0.0
0.2

0.4
0.6

0.8
1.0

x1

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

(a) γ =0.5

x0

0.0
0.2

0.4
0.6

0.8
1.0

x1

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

(b) γ =1

x0

0.0
0.2

0.4
0.6

0.8
1.0

x1

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

(c) γ =2

x0

0.0
0.2

0.4
0.6

0.8
1.0

x1

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

(d) γ =3

Fig. 2: Effect of γ on the attractor shape for a three-state cycle.

a) State and Transition Activation Matrix Λ: In order to
sparsely encode which transition or state currently is active,
we expand the state vector x into a matrix:

Λtransitions =
16·x⊗x·|x2|

(x⊗1+1⊗x)4+|x|4
◦T (4)

The equation is chosen such that Λ ji=1.0 when the system
is close to the plane spanned by states i and j, which is
where a channel from saddle point i to j may be located.
The outer product x⊗x forces Λ ji=0 when x is close to the
predecessor’s or successor’s state axis. Multiplication with
T adds information about the direction of the transition by
assigning the activation to either the upper or the lower
triangle of the matrix. State activation is computed as the
residual of transition activation, i.e. states are only active if
no transition is:

λ states =
x2

∑x2 ·
(

1−∑Λtransitions
)

(5)

As the diagonal of Λtransitions does not have meaningful
values, we can conveniently combine all activations into a
single matrix Λ:

Λ ji=

{
Λtransitions

ji j 6= i
λ states

i j= i
(6)

State activation is scaled so that ∑Λ=1.0. This property
allows us to interpret Λ as a set of coefficients for linear
combination of motion generators.

b) Transition Phases Matrix Φ: The state vector
sparsely encodes the discrete states (one state per dimension),
but it also implicitly encodes the progress of transitions. Due
to the attractor landscape, transitions happen in the plane
spanned by the preceding and succeeding state vector. We
therefore can compute the progress of a transition from state
i to j by simply subtracting the values of the involved state
axes:

Φ ji =
|x j|

|xi|+|x j|
(7)

which yields phase variables that grow from 0 to 1 during
their associated transitions.

B. Secondary Extensions to the SHC System
Based on Λ and x we can implement behaviors that are

not possible with plain SHC networks.

a) Transition velocity adjustment: Modifying transition
velocities with α as proposed in [4] is quite limited: we
need to ensure that α j < ·αi ·νi to maintain stability of the
heteroclinic from state i to j. This severely limits the avail-
able range of variation. We therefore implement a different
approach: the growth rate is scaled uniformly by the scalar η
in Eq. 1, but only during transitions to maintain the stability
properties close to the meta-stable saddle points. Λ allows
us to specify η for each transition and state independently,
using a n×n matrix A:

η =2∑Λ◦A (8)

If A ji=0, then transition i→ j will happen with “regular”
speed as set by α0. Positive values speed up exponentially,
negative values slow down. The unmodified behavior can be
recovered by setting A=0

b) Transition Biases: In order to integrate information
from perception and higher-level control, we can use δ̇
(Eq. 1) to either push the system away from a meta-stable
state, or to stabilize the state. This results in triggering
or delaying the start of a transition respectively. In most
practical applications though, we will want to specify the
bias towards a specific transition instead of towards a specific
successor state, as in the latter values are dependent on the
current state. For example, when in state i, the bias towards
itself (the ith component) should be zero to avoid shifting
the saddle point along coordinate i, while at the same time
we may want it to be nonzero during its predecessor state.
In order to achieve independence of the biasing input from
the current state, we define a matrix of stochastic biases
∆̇∼W (B,E) which is parameterized by two n×n matrices
that specify the mean value B ji and noise value E ji for each
transition i→ j individually. Due to the orthogonality of state
vectors we can aggregate using x:

δ̇ =
(
∆̇◦((1−x)⊗x)

)
·x (9)

The mask (1−x) ensures that saddle points are not shifted
by ∆̇ accidentally. The behavior as in [4] can be recovered
by setting B=0 and E=ε⊗1.

c) Complete system: When Eq. 1, 8 and 9 are merged,
we get the following equations for computing the phase-state
machine:

E [ẋ(t)]=x◦(α0−P·xγ)·2∑Λ(x)◦A+(B◦((1−x)⊗x))·x (10)

93

D
ra

ft

σ =(E◦((1−x)⊗x))·x (11)

C. Visualization
Visualizing an n-dimensional continuous state vector in-

tuitively already is challenging, visualizing the evolution of
two n2-dimensional matrices over time even more so. Pro-
jection into a two-dimensional subspace does not capture the
system’s behavior completely, while at the same time even
the smallest working examples already are four-dimensional
(three state dimensions plus time). In order to achieve an
intuitive visualization even with many dimensions, we adapt
the concept of UML timing diagrams [12] instead, and
adapt it to work with continuous activations and phases.
The diagram consists of a number of lines along a time
dimension. The input data for a diagram are the elements
of the matrices Φ and Λ, referenced by the row and column
indices j and i ∈Z. For each tuple (j,i) we can compute
the function y ji(t)= i+(j−i)·Φ ji(t), assign a corresponding
line width l ji(t)= l0 ·Λ ji(t), and draw the resulting lines
in a single diagram. In such a diagram, active states (i.e.
i= j) are visualized as horizontal lines placed at their index
value, while active transitions are visualized as continuous
curves rising from preceeding state value to the succeeding
state’s value. The vast majority of states and transitions at
any time is inactive and therefore assigned zero line width
to make them invisible, avoiding visual clutter. Line width
further indicates relative activation when several transitions
and states are active at once. Colors are used to aid in dis-
tinguishing individual transitions. This visualization method
is used throughout the rest of the paper. Important points in
time are indicated by gray vertical lines.

IV. DEMONSTRATIONS

In this section, we will demonstrate, how various behavior
patterns of state machines can be implemented with the
proposed system. Some basic patterns (cycling, branching,
delays) have already been demonstrated in previous work [4],
[11]. We replicate those and additionally demonstrate how to
implement common control patterns such as terminal states,
error states, exceptions and resets. We will then demonstrate
special capabilities intrinsic to the phase-state machine, such
as probabilistic decisions, adjustment of transition velocity,
and smooth blending of probabilistic movement primitives.

A. Staying in a State and Leaving a State
The system can be stopped from leaving a state by

applying a negative δ̇ (Eq. 1) to all successor states. Vice
versa, applying a positive δ̇ to a state’s successor state will
push the system to leave the state. In interaction strategies
this is can be used e.g. to synchronize the onset of a motion.

Fig. 3 shows the state and phase evolution of a system
with three states and a cyclic network (0→1, 1→2, 2→0),
and E=10−9. First it is locked into state 1 by setting B31=
−10−7 (and all other biases zero). Then, at 5.0 s B31 is set
to 0.1 for 0.1 s and to 0 thereafter. The applied pulse causes
the system to leave the state almost immediately, which then
continues to cycle through the states.

0 2 4 6 8 10

time

0

1

2

st
a
te

/
tr

a
n
si

ti
o
n
s

(a)

0

1

2

(b)

Fig. 3: Example of stopping in a state, and leaving a state. By
adding a negative input bias (first segment) the system stops
at this state, adding a non-negative pulse at t=5s triggers
the continuation of the state sequence.

0 5 10 15 20 25 30

time

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

st
a
te

/
tr

a
n
si

ti
o
n
s

Fig. 4: Example of a system designed to branch from state
0 into states 1 to 16 and to merge back into state 17. The
desired branch is selected in each iteration by setting a small
ẋbias vector.

B. Branch Out and Aggregation

Work on systems with stable heteroclinic channels already
demonstrated that they can implement arbitrarily complex
state machines [1]. In Fig. 4 we replicate this capability with
a large number of states. State connectivity matrix T is set
up so that from state 0 the state machine branches out into
states 1 to 17 (fan-out of 16), which in turn all lead to state
18 (fan-in of 16) before cycling back to state 0. At the start
of each cycle, B is set to prefer a different successor state.
Figure 4 shows that the dynamical system has no problems
implementing large fan-ins and fan-outs.

C. Excepting To Error States and Resets

Even though undesired state transitions are repelling, we
can still coerce the system to transition to any state at
any time by applying a large enough pulse to B. This
can be used to implement resets and to except into states
not reachable during normal operation (e.g. error states).
Fig. 5 demonstrates this ability with a system that has an
unreachable error state (state 3). By applying a pulse of
∆t=20ms length with total area of 10.0 s to B30, B31, and
B32, we transition to this error state at t=10.0s. Likewise, we
can reset the system to state 0 regardless of the state graph
by applying another pulse at t=20.0s without an explicitly
programmed state transition.

94

D
ra

ft

0 5 10 15 20 25 30

time

0

1

2

3

st
a
te

/
tr

a
n
si

ti
o
n
s

(a)

0

1

3

2

(b)

Fig. 5: Example of excepting to error state 3 (t=10.0), and
resetting the system to state 0 (t=20.0)

0 10 20 30 40 50

time

0

1

2

3

st
a
te

/
tr

a
n
si

ti
o
n
s

(a)

0

2

1 3

(b)

Fig. 6: Example of implementing probabilistic decisions via
bias noise. State 3 is traversed 25% of the cycles.

D. Probabilistic Decisions

An interesting aspect of the phase-state machine is its
built-in capability to select transitions probabilistically. The
original publications of SHC networks use stochastic noise to
destabilize the saddle point equilibria over time to achieve a
finite dwell time at each state [4]. But we can also use noise
injected by the B input to select transitions probabilistically.
Fig. 6 shows a system which branches from state 2 into states
1 and 3. The input matrix B and E=ε⊗1 are set to:

B=




0 10−9 0 10−9

0 0 0 0
10−4 0 0 0

0 0 0 0


 (12)

ε =
[
0 3·10−4 0 10−4

]
(13)

The resulting system behavior is shown in Fig. 6. The
system visits state 1 on average three times more often than
state 3, due to the noise ratio ε1/ε3.

E. Slowing Down and Speeding Up Transitions

A key distinguishing feature of the phase-state machine
system w.r.t. previous SHC networks and regular (discrete)
state machines are the transitions of non-negligible duration.
Transition periods (or phase velocities) can be adjusted for
each transition individually via B. Fig. 8 shows the behavior
of a system with a three-state cycle. After 3 s with A=0
we apply A10=−4, A21=−7, and A02=5. This speeds up
transition 2→0 by a factor of 25, and slows down 0→1 and
1→2 by factor 2−4 and 2−7 respectively. At 20 s, 21 s and
22 s, A21 is set to −6, −5 and −8 respectively to demonstrate
how a transition could be continuously synchronized with

0 5 10 15 20 25

time

0

1

2

st
a
te

/
tr

a
n
si

ti
o
n
s

Fig. 7: Timing diagram

Fig. 8: Example of adjusting transition velocities by more
than three orders of magnitude (t=3s), and adjusting tran-
sition velocities during a transition (t=20s,21s,22s)

perceptual data. The system maintains stability even when
transition durations span more than 3 orders of magnitude.

F. Sequencing ProMPs

Finally, we demonstrate how the phase-state machine
can be applied to motion synthesis by combining it with
probabilistic movement primitives (ProMP) [10], [7]. The
ProMP framework is especially suited as it provides phase-
parameterized trajectories, but it also provides a method to
mix several concurrently active ProMPs depending on an
activation value. Both phases and activations are provided
by the phase-state machine. We used a Panda 7-DoF robot
arm (Franka Emika) to demonstrate trajectories from an
initial pose to two distinct pointing poses (10 examples
each), and translated them into two probabilistic movement
primitives (ProMPs [10]). For returning to the initial pose,
we use the two “pointing” motions but reverse the time-phase
relationship. This results in four distinct movement primitives
that can be associated with specific transitions and states of
a phase-state machine. We use a state graph as shown in
Fig. 9b, α =20, E=10−8, A=−4, and relatively large biases
to leave states quickly:

B=




0 0 10−3 0 10−3

b1 0 0 0 0
0 10−3 0 0 0
b3 0 0 0 0
0 0 0 10−3 0




(14)

In the experiment, b1=0, b3=10−7 in the first five seconds
and b1=10−7, b3=0 afterwards to make the system traverse
both branches. Transitions 0→1 and 0→2 are associated
with one “pointing to” ProMP each. Transitions 1→2→0
and 3→4→0 are associated with ProMPs to return back
to the waiting position (state 0). The return motion is
split across two transitions, with the former implementing
90% of the motion and the latter the remaining 10%. This
is necessary as the phase-state machine cannot implement
bidirectional edges and therefore requires at least three
transitions to implement a cycle. When a state is active, then
its desired joint pose is determined by averaging the desired
poses of all adjacent ProMPs. Fig. 9 shows the resulting
behavior of the system, where the robot arm first points left

95

D
ra

ft

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

DoF 0

−3

−2

−1

0

1

2

3

p
o
si

ti
o
n

0 0 01 2 3 40→1 1→2 3→0 0→ 33→4 4→0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

DoF 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

DoF 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

DoF 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

DoF 4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

DoF 5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

DoF 6

(a) Desired joint poses. (b)

Fig. 9: 7-DoF robotic arm trajectory generated the phase-state machine using ProMPs

(state 1) and then points right (state 3). Blending between
subsequent ProMPs works smoothly, even when they are not
matched perfectly together, e.g. when blending from state 0
to transition 0→3.

V. DISCUSSION

The phase-state machine formalism proposed in this paper
provides behaviors that could – with enough effort – also be
implemented with hybrid automata. We do not need to switch
instantly between control modes though, which makes it easy
to blend motions and guarantee smooth execution. We also
do not need to decide when exactly to switch, as the decision
process too is extended over time. Further, interventions
such as adaptation of execution speed can be incorporated
into the system state at any time, while maintaining a
consistent and complete system state, especially w.r.t. to
activation and phase values. There are also some drawbacks.
Transitions and states have to alternate, so “concatenating”
two continuous trajectories is not possible without inserting
a somewhat superfluous state in between. Also, two states
cannot be mutual successors, i.e. cycling between two states
is not possible. While this limitation can be circumvented by
inserting a state (as done in the paper’s example), it would
be preferable to find a system formulation capable of im-
plementing bidirectional edges. Another open problem is the
relationship to probabilistic formalisms, specifically optimal
control and bayesian inference. The system is capable of
representing probabilistic policies, and it can also accumulate
uncertain evidence over time. It is unclear how input signals
(e.g. elements of B) can be related to conditional probabilities
and hence, how Bayes-optimal decision processes can be
implemented.

VI. CONCLUSION

The paper proposed a novel state vector decomposition
method for SHC networks [4], that computes a consistent
set of transition phases and activation signals. This enables
a simple and effective integration with existing motion gener-
ation frameworks such as ProMPs [9]. Further, the ability to
continuously modify state- and transition-specific parameters
simplifies online-adaptation of desired behaviors. We demon-
strated how the resulting phase-state machine can be used to
represent discrete, markovian states as well as provide con-
tinuous phases and activation values. We demonstrated how
to implement discrete behavior such as branching, error states
and resets. We demonstrated the ability to adjust transition

duration online and by more than three orders of magnitude,
which is not possible with previous SHC networks [4]. We
showed how to enact probabilistic decisions and finally, we
also demonstrated how the phase-state machine can be used
to govern the blending of movement primitives to create
continuous, smooth motion.

REFERENCES

[1] P. Ashwin and C. Postlethwaite, “On designing heteroclinic networks
from graphs,” Physica D: Nonlin. Phen., vol. 265, pp. 26–39, 2013.

[2] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 820–833, 2011.

[3] C. Eppner, S. Höfer, R. Jonschkowski, R. Martı́n-Martı́n, A. Sieverling,
V. Wall, and O. Brock, “Lessons from the Amazon Picking Chal-
lenge: Four Aspects of Building Robotic Systems,” in Proceedings of
Robotics: Science and Systems, 2016.

[4] A. D. Horchler, K. A. Daltorio, H. J. Chiel, and R. D. Quinn, “Design-
ing responsive pattern generators: stable heteroclinic channel cycles for
modeling and control,” Bioinspiration & Biomimetics, vol. 10, no. 2,
p. 026001, 2015.

[5] R. Lioutikov, G. Neumann, G. Maeda, and J. Peters, “Learning
movement primitive libraries through probabilistic segmentation,” The
International Journal of Robotics Research, vol. 36, no. 8, pp. 879–
894, 2017.

[6] G. Maeda, M. Ewerton, G. Neumann, R. Lioutikov, and J. Peters,
“Phase estimation for fast action recognition and trajectory generation
in human–robot collaboration,” The International Journal of Robotics
Research, p. 0278364917693927, 2017.

[7] G. J. Maeda, G. Neumann, M. Ewerton, R. Lioutikov, O. Kroemer,
and J. Peters, “Probabilistic movement primitives for coordination
of multiple human–robot collaborative tasks,” Autonomous Robots,
vol. 41, no. 3, pp. 593–612, 2017.

[8] J. R. Medina, F. Duvallet, M. Karnam, and A. Billard, “A human-
inspired controller for fluid human-robot handovers,” in 2016 IEEE-
RAS 16th International Conference on Humanoid Robots (Hu-
manoids), 2016, pp. 324–331.

[9] A. Paraschos, G. Neumann, and J. Peters, “A probabilistic approach
to robot trajectory generation,” in 2013 13th IEEE-RAS International
Conference on Humanoid Robots (Humanoids), 2013, pp. 477–483.

[10] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Using prob-
abilistic movement primitives in robotics,” Autonomous Robots, pp.
1–23, 2017.

[11] M. I. Rabinovich, R. Huerta, P. Varona, and V. S. Afraimovich,
“Transient Cognitive Dynamics, Metastability, and Decision Making,”
PLoS Comput Biol, vol. 4, no. 5, p. e1000072, 2008.

[12] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual, The (2Nd Edition). Pearson Higher Education,
2004.

[13] S. Schaal, “Dynamic Movement Primitives -A framework for Motor
Control in Humans and Humanoid Robotics,” in Adaptive Motion of
Animals and Machines. Springer, Tokyo, 2006, pp. 261–280.

[14] K. W. Strabala, M. K. Lee, A. D. Dragan, J. L. Forlizzi, S. Srini-
vasa, M. Cakmak, and V. Micelli, “Towards Seamless Human-Robot
Handovers,” Journal of Human-Robot Interaction, vol. 2, no. 1, pp.
112–132, 2013.

[15] A. van der Schaft, “Modeling of hybrid systems,” in An introduction
to hybrid dynamical systems, ser. Lecture Notes in Control and
Information Sciences. Springer, London, 2000, pp. 1–34.

96

