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Dynamic parameter identification of the Universal Robots UR5

Nemanja Kovincic1, Andreas Müller1, Huber Gattringer1,
Matthias Weyrer2, Andreas Schlotzhauer2 and Mathias Brandstötter2

Abstract— In this paper, methodology for parameter identi-
fication of an industrial serial robot manipulator is shown. The
presented methodology relies on the fact that any mechanical
system can be written in form linear with respect to some set of
parameters. Based on experimental measurements done on the
Universal Robots UR5, the presented methodology is applied
and the dynamical parameters of the robot are determined in
two ways. First by use of the Moore-Penrose pseudoinverse,
and then by use of optimization. At the end, the ability of the
determined parameters to predict measurements other than the
ones used for the identification is shown.

I. INTRODUCTION
Mathematical model of a real physical system is as good

as it can predict what experiments show. In order to have a
good model both its structure, meaning taking into account
all relevant dynamics, and its parameters must be correct.
Some model parameters, like masses and lengths of robot
links, can be measured, while others, such as temperature
dependent dry and viscous friction, axial and centrifugal
moments of inertia or position of center of mass of segments,
are almost always unknown and must be identified. However,
each parameter can not be separately identified but only
linear combinations of them. The vector whose elements
are linear combination of parameters that can be identified
is called vector of identifiable parameters or vector of base
parameters.

In this paper, procedure for determination of base pa-
rameters and for their identification is explained. Then,
using experimental measurements, the procedure is applied
to parameter identification of the Universal Robots UR5
manipulator. At the end, in order to validate the obtained
parameters, they are used for predictions of experimental
measurements not used for the identification.

II. MATHEMATICAL MODELING
A. Robot dynamics

Differential equations of motion describing dynamics of a
serial robot consisting of N rigid bodies can be written in a
well known form as

M(q)q̈+ c(q, q̇)+g(q)+QR(q̇) = QM, (1)

where q ∈ RN denotes vector of generalized coordinates,
dot over the symbol stands for the derivative with respect
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to time, M(q) ∈ RN,N denotes symmetric positive definite
mass matrix, c(q, q̇) ∈ RN stands for vector of centripetal
and Coriolis terms, and g(q) ∈ RN denotes gravity vector.
Furthermore, vector QR ∈RN stands for friction forces while
QM ∈ RN denotes torques acting on bodies, i.e active or
control torques.

B. Friction model
Dissipative forces is the model are assumed in the form

of Coulomb’s dry and viscous friction, leading to

QRi = rvi q̇i + rcisign(q̇i) , i = 1 . . .N, (2)

where rvi and rci are respectively coefficients of viscous and
dry friction. In order to avoid non-smooth function in the
model, sign function is approximated with tangent hyperbolic
function as

sign(q̇i)≈ tanh(
q̇i

ε
), (3)

where ε is very small number chosen to make slope of the
tangent hyperbolic function very steep around zero.

C. Motor and gearbox dynamics
Assuming that at each joint, a motor and a gearbox are

located leads to motor dynamics in the form

i2G,i CM,i q̈i = iG,i MMot,i = QM,i, i = 1 . . .N, (4)

where, CM,i stand for the rotors axial moment of inertia
corresponding to rotation axis while MMot,i stands for the
motor torque. Note that the previous equations can be divided
by iG,i, however between a motor and a body is the gearbox,
thus torque QM,i, acting on body i, is iG,i times greater than
the motor torque. Also, note that although rotor in a motor
rotates around an axis that is itself in motion and thus making
rotors motion complex in the parallel sense, dynamics of
a motor and gearbox is taken in a much simplified form.
Namely, assuming known gear ratio iG,i, rotor of a motor
driving body i spins around the joint axis with angular
velocity iG,i times greater than relative angular velocity of
the corresponding bodies. Since this rotation is dominant
compared to the motion of the joint axis itself, only it is
taken into account.

III. METHODOLOGY FOR IDENTIFICATION OF
DYNAMICAL PARAMETERS

Methodology for identification of robot parameters is
based of the fact that the equations describing motion of
a system of rigid bodies can be written in linear form with
respect to some set of dynamical parameters, see [2], [3].
For an overview on robot dynamic parameter identification
see [10].
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A. Parameter linear form of the equations of motion
Having the previous in mind, (1) is written as

N

∑
i=1

ΘTi(q, q̇, q̈)pTi = ΘT (q, q̇, q̈)pT = Qo,

ΘT ∈ RN,10N , pT ∈ R10N ,

(5)

where
ΘTi = FT

Ki
×

[ (
v̇K + ω̃vK−g

) ( ˙̃ω + ω̃ω̃
)

0

0 −
(
v̇K + ω̃vK−g

)∼ (Ω̇+ ω̃Ω | − ˙̂Ω− ω̃Ω̂
)
,

]
,

FKi =

[(∂ KvK

∂ q̇
)T (∂ Kω IK

∂ q̇
)T
]T

i
∈ R6,N .

(6)
For the derivation of the previous equation see [7].

Parameter vector pTi is

pTi =
(
m,mρSx,mρSy,mρSz,A,B,C,D,E,F

)T
i ∈ R10, (7)

where ρSx, ρSy and ρSz are projections of the center of mass
of body i onto x, y and z axes of the coordinate frame
positioned, and rigidly connected, to the joint of that body
and whose one axis is the rotation axis of that body. In the
same coordinate system, moments of inertia of i-th body are
denoted as A,B,C,D,E,F . Furthermore, in (6) matrices Ω
and Ω̂ stand for

JK Kω IK =




A −F −E
−F B −D
−E −D C






ωx
ωy
ωz


=

[
Ω Ω̂

]




A
B
C
D
E
F



,

(8)

Ω =




ωx 0 0
0 ωy 0
0 0 ωz


 , Ω̂ =




0 ωz ωy
ωz 0 ωx
ωy ωx 0


 , (9)

vector g denotes acceleration vector of gravity, and ˜(·) is a
skew-symmetric matrix corresponding to a vector (·). Note
that the inertia matrix JK and all vectors in (6) are written
in the body coordinate frames positioned at joints. Vector
Qo in (5), in the absence of motor dynamics and friction,
denotes vector of body torques, while for the case of friction
and motor dynamics is defined in what follows.

B. Parameter linear form of the motor dynamics and friction
forces

Differential equations (4) describing motor dynamics is
written in parameter linear form as

QM =
[
diag(q̈i)

]



i2G,1 CM,1
...

i2G,N CM,N


= ΘT M pT M, (10)

where vector of parameters is

pT M =




i2G,1 CM,1
...

i2G,N CM,N


 . (11)

Dissipative forces defined in (2) are written in parameter
linear form as

QR =
[

diag(q̇i) diag(sign(q̇i))
]



rv1
...

rcN


= ΘR pR, (12)

where diag(·) denotes diagonal matrix, and where parameter
vector is

pR =




rv1
...

rcN


 . (13)

C. Parameter linear form of the equations describing the
whole system

When equations describing all element of the model, i.e.
rigid bodies, motors and friction, are written in parameter
linear form, writing the same form of equations describing
the system in whole is very easy. Namely, combining (5),
(10) and (12), linear form of equations describing the whole
system is

[
ΘT ΘT M ΘR

]



pT
pT M
pR


= Θp = QM,

Θ ∈ RN,13N , p ∈ R13N , QM ∈ RN ,

(14)

where matrix Θ is known as the regressor matrix of the
system. From the previous equations vector Qo from (5) is

Qo = QM−ΘR pR−ΘT MpT M. (15)

D. Determination of the base parameters

Before determination of the base parameters, zero columns
in the regressor matrix are identified and eliminated. Namely,
in the regressor matrix defined in (5), the most general type
of rigid body motion, i.e. translation plus rotation, is assumed
for every body in the kinematic chain. However, when it
comes to robot manipulators, the motion of the first segment
in chain can be described as pure rotation around an axis.
Thus, only columns in the regressor corresponding to the
moments of inertia related to the axis of rotation in parameter
vector (7) are not equal to zero. All other columns in the
regressor matrix for the first body in chain are equal to zero.
Note that if the coordinate frame, located at joint axis of
the second body in chain, is positioned in such a way that
the velocity of its origin is always equal to zero, then the
projection of the center of mass of that body, on the axis of
rotation can not be identified. However, this can be easily
avoided by moving that frame along the axis of rotation.

Computation of the base parameters is based on determi-
nation of independent columns of the regressor matrix Θ by
use of the QR decomposition. This procedure is explained in
details in [5], Appendix 5. Here it is assumed that the base
parameters and the corresponding independent columns are
determined. Thus, (14) can be written as

Θ(q, q̇, q̈)p = ΘB(q, q̇, q̈)pB = QM,

ΘB ∈ RN,b, pB ∈ Rb, QM ∈ RN (16)
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where ΘB is the new regressor with all columns being
independent, and where pB is the vector of base parameters.
Note that the system of equations (45), with N equations and
13N unknowns, is undetermined and thus have none or in-
finitely many solution. Also note that the elimination of zero
columns is not necessary because when calculating the base
parameters, the parameters corresponding to zero columns
are not present. However, elimination of zero columns is the
standard procedure in the determination of base parameters.

In order to determine the base parameters (16), the real
system is excited with specially chosen excitation trajectory
and the generalized coordinates and the motor torques are
measured at m time instances. From the generalized co-
ordinates, the generalized velocities and accelerations are
calculated using filtering and than the new regressor, called
information matrix, is formed as




ΘB|t1
...

ΘB|tm


pB =




QM|t1
...

QM|tm


+ rn, (17)

or written in a simpler form as

ΘBpB = QM + rn, (18)

where rn is the residual error vector. Now instead of an
undetermined, an over determined system of equations is
obtained. This system usually does not admit a solution or
it can be found only for some special cases. However, an
approximate solution of the problem can be found by solving
least squares problem

min
pB
‖1

2
eT e‖, e = ΘBpB−QM. (19)

where the solution is
{

∂
∂p

[
eT e
2

]}T

= ΘT
BΘBpB−ΘT

BQM = 0

=⇒ pB =
[
ΘT

BΘB
]−1ΘT

BQM,

(20)

provided that the matrix
[
ΘT

BΘB
]−1 exists, i.e. if ΘB has full

column rank. Since the matrix ΘB has linearly independent
columns it is a full rank matrix. Note that the matrix[
ΘT

BΘB
]−1ΘT

B is a pseudo inverse of the matrix ΘB, or more
precisely the left Moore-Penrose inverse. Instead of using
the pseudo inverse, the minimization problem (19) can also
be solved using direct numerical optimization.

Assuming that the matrix ΘB is deterministic and that ρn is
zero mean additive independent noise, the standard deviation
of the i -th parameter is, see [5],

σi =

√
(
[
ΘT

BΘB
]−1

)i,i. (21)

If the standard deviation of a parameter is big, then parameter
is considered to be poorly identified.

In order to quantify how good calculated base parameters
predict measured torques, normalized error

eN =
1
m

√
eT e, (22)

is used, where m stands for the number of time samples used
for the calculation of the information matrix. Assuming that
all degrees of freedom are rotational, the unit of this error is
the newton meter.

Here, it is important to note that (19) and (22) have
sense only is all degrees of freedom are of the same type,
e.g. rotational. Otherwise, dimensionless quantities must be
introduced first and only then (19) and (22) have sense.

Finally, note that the good approximate solution of
Eq. (19) can be found only if the excitation trajectory excites
all dynamical parameters of the robot. Determination of such
trajectory is the subject of the next subsection.

E. Determination of the identification trajectory

The identification trajectory that excites all dynamic pa-
rameters, and thus yields good approximate solution for the
parameter identification problem (19), is usually called the
persistent excitation trajectory. The term ”persistent” means
that all parameters must be excited persistently throughout
time, that is, on every time interval during the identification
process. There are various criteria for calculating persistent
excitation, see [8], [1], [4]. However, one of the most used
is the condition number of the matrix Λ = ΘT

BΘB because it
measures the sensitivity of the solution of the least squares
problem to the modeling errors and noise. Thus, ”good”
excitation trajectory is the one whose points in time give
a small condition number of the matrix Λ. Several condition
number based criteria for calculating the persistent excitation
exist in the literature, see [5]. Here, the criteria

min
q,q̇,q̈

cond(Λ(q, q̇, q̈)) =
σmax

σmin
≥ 1 (23)

is used where σmax and σmin denote the maximum and
the minimum singular value of the matrix Λ, respectively.
Since real physical robot cannot achieve arbitrary values
of coordinates, velocities and accelerations, the previous
minimization problem is solved together with constrains

qmin ≤ q≤ qmax,

|q̇| ≤ q̇max,

|q̈| ≤ q̈max,

(24)

where the vectors qmin and qmax denote minimal and maxi-
mal allowed values of the generalized coordinates, the vector
q̇max stands for maximal generalized velocities and the vector
q̈max denotes maximal allowed generalized accelerations.
If the robot can self collide during motion, than also the
requirement that there is no self collision is used as the con-
straint. Besides condition number, determinant of the matrix
Λ can also be used for calculating persistent excitation, see
[4].

In order to solve the minimization problem (23) together
with constrains (24), following [9] the minimization trajec-
tory will be taken in form of a finite Fourier series as

qi(t) =
Li

∑
l=1

( ai,l

ωil
sin(ωilt)−

bi,l

ωil
cos(ωilt)

)
+qi,0, (25)
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where Li is the order of the series, ωi is the base frequency,
qi,0 is the coordinate offset, and ai,l and bi,l are coefficients
of the series. In the general case, all constants in the
previous equation can be used as optimization variables.
However, usually the order of the series is fixed and the rest
variables are used in optimization. With the Fourier series
representation the infinite-dimensional optimization problem
(23) is substituted with finite dimensional one given as

min
a,b,ω,q0

cond(Λ(q, q̇, q̈)) (26)

where
a =

[
a1,1 . . .a1,Li . . .aN,Li

]T

b =
[
b1,1 . . .b1,Li . . .bN,Li

]T

ω =
[
ω1 . . .ωN

]T

q0 =
[
q1,0 . . .qN,0

]T
,

(27)

which is again solved together with the constrains (24) and
the condition that there is no self collision of the robot.
Finally, instead of optimizing all previously mentioned vari-
ables, for example the coordinate offset q0 can be predefined
or the basic frequency ωi can be the same for all bodies.
This lowers the dimension of solution of the problem and
thus also the time needed for optimization algorithm to find
the solution.

IV. UNIVERSAL ROBOTS UR5

As an example for demonstrating the previously de-
scribed methodology for parameter identification, the Uni-
versal Robots UR5 manipulator is used, see Fig. 1. This
manipulator has six degrees of freedom and is a lightweight
collaborative robot.

Fig. 1. Universal Robots UR5, taken from [6].

In Fig. 1, UR5 robot is shown at initial configuration,
together with the coordinate systems of interest and distances

between them. In what follows, the relative position and
orientation of these coordinate frames at initial configuration
are described. Furthermore, all generalized coordinates to be
introduced are measured in positive mathematical directions,
relative to the previous body in the kinematic chain, and
given in radians.

Inertial frame of reference is denoted as Ksxyz, where
x, y and z axis are shown as red, green and blue axis,
respectively. Translating the inertial frame along its z axis,
for value l1,z, coordinate frame K1xyz attached to the first
segment is obtained. The orientation of these two coordinate
frames is the same at initial configuration, while an arbitrary
orientation of the first body is achieved by rotating it in
positive mathematical direction around K1z axis, where the
generalized coordinate describing this rotation is denoted
as q1 = q1(t). Further, coordinate frame K2xyz is obtained
by translating the frame K1xyz along K1y axis, for value
l2,y, and then by rotating it in the positive mathematical
direction around the same axis for angle π/2. An arbitrary
orientation of the second body, with respect to the first, is
obtained by rotation around K2y axis for angle q2 = q2(t).
Next, translating the coordinate frame K2xyz along K2y and
K2z axis for values l3,y and l3,z, respectively, coordinate
frame K3xyz is obtained. Rotating the third body around
K3z axis, again in the positive mathematical direction, its
arbitrary orientation is achieved. This rotation is described
with generalized coordinate q3 = q3(t). The coordinate frame
K4xyz is obtained by translating frame K3xyz along K3z axis
for value l4,z and by rotating it in the positive mathematical
direction around K3y axis for angle π/2. An arbitrary ori-
entation of the fourth body is achieved by rotation around
K4y for angle q4 = q4(t). For obtaining coordinate frame
K5xyz attached to the fifth body in the kinematic chain,
coordinate frame K4xyz is translated along the K4y axis
for value l5,y. By rotating the fifth body around K5z axis,
its arbitrary orientation is obtained, where the generalized
coordinate describing that rotation is q5 = q5(t). Translating
the coordinate frame K5xyz along K5z axis for value l6,z,
coordinate frame K6xyz is obtained. An arbitrary orientation
of the sixths body is achieved by rotation around K6y axis,
and that rotation is described by the generalized coordinate
q6 = q6(t). Finally, the coordinate frame K7xyz, positioned
at the end effector is obtained by translating frame K6xyz
along K6y for value l7,y and than rotating it in the negative
mathematical direction for angle π/2.

With the previously introduced generalized coordinates,
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the orthogonal transformation matrices are

RKs,K1 = Rz(q1),

RK1,K2 = Ry(
π
2
)Ry(q2) = Ry(

π
2
+q2),

RK2,K3 = Ry(q3),

RK3,K4 = Ry(
π
2
)Ry(q4) = Ry(

π
2
+q4),

RK4,K5 = Rz(q5),

RK5,K6 = Ry(q6),

RK6,K7 = Rx(−
π
2
),

(28)

where the rotation matrices corresponding to rotation around
x, y and z axis, are

Rx(qi) =




1 0 0
0 cos(qi) −sin(qi)
0 sin(qi) cos(qi)


 , (29)

Ry(qi) =




cos(qi) 0 sin(qi)
0 1 0

−sin(qi) 0 cos(qi)


 (30)

and

Rz(qi) =




cos(qi) −sin(qi) 0
sin(qi) cos(qi) 0

0 0 1


 . (31)

A. Kinematic analysis

Starting from the angular velocity of the first body and
following the recursive formulation, angular velocities of the
bodies in the kinematic chain are

Kiω I,Ki =RKi,Ki−1 Ki−1ω I,Ki−1 +KiωKi−1,Ki , i= 2 . . .6, (32)

where

K1ω I,K1 =
[
0 0 q̇1

]T
,

K2ωK1,K2 =
[
0 q̇2 0

]T
,

K3ωK2,K3 =
[
0 q̇3 0

]T
,

K4ωK3,K4 =
[
0 q̇4 0

]T
,

K5ωK4,K5 =
[
0 0 q̇5

]T
,

K6ωK5,K6 =
[
0 q̇6 0

]T
.

(33)

With the angular velocities defined, velocity of the origin
of frame Kixyz, written in that frame, is

KivKi = RKi,Ki−1 Ki−1vKi , i = 1 . . .6 (34)

where

K0 vK1 = 0,

KivKi+1 = RKi,Ki−1 Ki−1vKi +Kiω̃ I,Ki KirKi,Ki+1 , i = 1 . . .5;
(35)

and where the index 0 denotes inertial frame of reference.
In the previous equations, vectors KirKi,Ki+1 , i = 1 . . .6 are

K1rK1,K2 =
[
0 l2,y 0

]T
,

K2rK2,K3 =
[
0 l3,y l3,z

]T
,

K3rK3,K4 =
[
0 0 l4,z

]T
,

K4rK4,K5 =
[
0 l5,y 0

]T
,

K5rK5,K6 =
[
0 0 l6,z

]T
.

(36)

Differentiating with respect to time (32), vectors of angular
accelerations of bodies are obtained. Similarly, differentiating
with respect to time (34), and taking into account both
change of intensity and of direction, acceleration vectors of
points Ki, i = 1 . . .6 are obtained as

KiaKi = Ki v̇Ki +Kiω̃ I,Ki KivKi . (37)

B. Parameter linear form of the equations of motion

Since all elements for writing the parameter linear form of
the equations of motion are known, in order to construct the
regressor matrix, it is necessary to substitute them into (6),
(10), and (12). However, the obtained analytical expression
for the regressor is not shown. Instead, it will be assumed that
the regressor matrix Θ(q, q̇, q̈) is known. Then, the parameter
linear form of the equations of motion is

Θ(q, q̇, q̈)p = QM, Θ ∈ R6,78 , p ∈ R78, QM ∈ R6. (38)

where the parameter vector p is

p =




pT
pT M
pR


 ∈ R78, (39)

with its elements defined as

pT =
(
pT 1 . . .pT 6

)
∈ R60,

pTi =
(
m,mρSx,mρSy,mρSz,A,B,C,D,E,F

)
i ∈ R10, i = 1 . . .6,

pT M =
(
i2G,1 CM,1 . . . i2G,6 CM,6

)
∈ R6,

pR =
(
rv1 . . .rv6 rc1 . . .rc6

)
∈ R6,

(40)
where ρSxi , ρSyi and ρSzi are projections of the center of
mass of body i onto the axis of the coordinate frame Kixyz,
respectively, i.e.

KirKi,Si =
[
ρSxi ρSyi ρSzi

]T
, i = 1 . . .6. (41)

Note that, since motion of the first body is described
as pure rotation, only a column in the matrix Θ(q, q̇, q̈),
corresponding to axial moments of inertia for the axis of
rotation is not zero. All other columns in that regressor are
zero.

Substituting random values for vectors q, q̇ and q̈ in the
matrix Θ(q, q̇, q̈), and applying the QR decomposition to the
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resulting matrix, results in the base parameter vector

pB =




i2G,1 CM,1 +C1 +C2 +C3 +C4+

+0.01285m2 +0.01191m5+
+0.01191m6 +0.2267m2 ρSy2

m2 ρSx2

0.425m3 +0.425m4 +0.425m5+
+0.425m6 +m2 ρSz2

A2−C2 +0.1806m3 +0.1806m4+
+0.1806m5 +0.1806m6

i2G,2 CM,2 +B2 +0.1806m3 +0.1806m4+

+0.1806m5 +0.1806m6
D2−0.04818m3−0.04818m4−
−0.001789m5−0.001789m6+
+0.425m3 ρSy3 +0.425m4 ρSy4

E2
F2

m3 ρSx3
0.3922m4 +0.3922m5 +0.3922m6 +m3 ρSz3
A3−C3 +0.1539m4 +0.1539m5 +0.1539m6

B3 +0.1539m4 +0.1539m5 +0.1539m6
D3 +0.04281m5 +0.04281m6 +0.3922m4 ρSy4

E3
F3

m4 ρSx4
0.09465m6 +m4 ρSz4 +m5 ρSz5

A4 +B5−C4 +0.008959m6
B4 +B5 +0.008959m6

D4 +0.01033m6 +0.1092m5 ρSz5
E4
F4

m5 ρSx5
m5 ρSy5 +m6 ρSy6

A5−B5 +C6
C5 +C6

D5 +0.09465m6 ρSy6
E5
F5

m6 ρSx6
m6 ρSz6
A6−C6

B6
D6
E6
F6[

i2G,3 CM,3 . . . i2G,6 CM,6
]T

[
rv1 . . .rc6

]T




.

(42)

Thus, the system of equations

Θ(q, q̇, q̈)p = QM, Θ ∈ R6,78, p ∈ R78, QM ∈ R6 (43)

is substituted with the new system

ΘB(q, q̇, q̈)pB = QM, ΘB ∈ R6,52, pB ∈ R52, QM ∈ R6

(44)
where all columns in the new regressor ΘB are mutually
independent. Note that elements of the vector pB are linear

combination of the model parameters. Also note that the zero
columns from the regressor are not eliminated first, but the
corresponding parameters are still not in the vector pB. They
are eliminated by use of the QR decomposition.

Sometimes, some parameters are known to be zero or they
are negligible compared to some other parameters. In that
case one can chose not to identify them so the corresponding
columns in matrix Θ are eliminated first and then the QR
decomposition is applied to the resulting matrix. This results
in a new base parameter vector.

In this work, for the identification of parameters of the
UR5 manipulator, several parameters are assumed to be
negligible. Namely, centrifugal moments of inertia of links
are assumed to be much smaller that the axial moments of
inertia and thus are not going to be identified. Furthermore, it
is assumed that position of the center of mass of body i does
not have all three projections on the axis of the coordinate
frames Kixyz, i = 1 . . .6, but only one. The motion of the first
body in the kinematic chain is pure rotation and thus only the
axial moment of inertia corresponding to the rotation axis is
identified. For the second body, it is assumed that the center
of mass has projection only on the K2z axis. Similarly, the
center of mass of the third body is assumed to be on K3z
axis. For the forth and the sixth body in chain, it is assumed
that the corresponding centers of mass are on K4y and K6y
axis, respectively. Finally, for the fifth body, the center of
mass is assumed to lie on the K5z axis.

With the previous assumptions, the base parameter vector
pB ∈ R33 is now

pB =




i2G,1 CM,1 +C1 +C2 +C3 +C4 +0.01285m2+

+0.01191m5 +0.01191m6
m2 ρSz2
A2−C2

i2G,2 CM,2 +B2

m3 +m4 +m5 +m6
0.3922m4 +0.3922m5 +0.3922m6 +m3 ρSz3
A3−C3 +0.1539m4 +0.1539m5 +0.1539m6

B3 +0.1539m4 +0.1539m5 +0.1539m6
0.1092m5 +0.1092m6 +m4 ρSy4

A4 +B5−C4 +0.008959m6
B4 +B5 +0.008959m6
0.09465m6 +m5 ρSz5

A5−B5 +C6
C5 +C6
m6 ρSy6
A6−C6

B6
i2G,3 CM,3

i2G,4 CM,4

i2G,5 CM,5

i2G,6 CM,6

rv1
...

rc6




.

(45)

49



D
ra

ft

Note that, if some parameters are not going to be identi-
fied, the new base parameter vector is not obtained by simply
substituting zeros for those parameters in the vector shown
in (42). In what follows the base parameter vector (45) is
going to be identified.

C. Identification results

For the identification of the base parameters, two persistent
excitation trajectories are generated. One is used for param-
eter identification and the other one for validation of the
obtained parameter vector. These trajectories are generated
by solving the optimization problem (26), where the order of
the series in (25) is 5, and where the offset q2,0 =−π/2 and
all others are zero. The rest parameters in Fourier series are
found by optimization. The identification is done on a time
interval of 20 seconds, however, only first 10 seconds are
shown in figures. In Fig. 2 measured angles of the excitation
used for the parameter identification are shown, while Fig. 3
shows measured motor currents for the same trajectory.
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Fig. 2. Persistent excitation trajectories used for the identification
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Fig. 3. Motor current

In order to calculate torques acting on bodies, each motor
current is multiplied with torques constant and by gear ratio.
Thus, body torques are Mi = iG,i ki Ii, i = 1 . . .6. On the UR5
robot, there are two types of motors, one with motor constant
ki = 0.125 Nm/A, i = 1 . . .3, and other with constant ki =
0.0922 Nm/A, i = 4 . . .6. Also, all gears have the same gear
ration, i.e. iG = iG,i = 101, i = 1 . . .6.

In order to form the regressor ΘB, generalized velocities
and accelerations must be calculated from the measured val-
ues of generalized coordinates. When working with the UR5
robot, generalized velocities are obtained from the controller,
while generalized accelerations are calculated using filtering.
The transfer function of the filter used is

y =
s

s
w +1

u, (46)

where s denotes the Laplace variable, w = 2π f is angular
frequency with f = 10 Hz being the corner frequency of the
filter. The values of the corner frequency is determined by
inspecting the frequency content of the measured signals.
Using the filter and Matlab’s ”filtfilt” function, generalized
acceleration are obtained. With the previous preparation
done, one can proceed to the determination of the base
parameters as described in Section III.

Following the methodology for the parameter identifica-
tion, first the information matrix ΘB and vector QM are
formed. Then, base parameter are determined in two ways.
First by using Moore-Penrose pseudoinverse from (20), and
then by using numerical optimization to directly solve the
optimization problem (19), together with the constraint that
all base parameters are positive.

The results for the base parameters obtained by use of
the pseudoinverse are shown in Fig. 4, together with the
corresponding standard deviations. In Fig. 5, base param-
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Fig. 4. Base parameters obtained by pseudoinverse

eters obtained by optimization are shown, again with the
corresponding standard deviations.

Note that the standard deviations are small, and the same
in both figures.

In order to check the quality of the calculated base
parameters vector, predicted torques are compared with the
measured ones and the normalized error (22) is calculated.
Predicted body torques, obtained using the base parameters
vector obtained with the use of the pseudoinverse, are shown
in Fig. 6, Fig. 7 and Fig. 8, while the normalized error reads

eN = 0.0279. (47)
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Fig. 5. Base parameters obtained by optimization
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Fig. 6. Measured and predicted torques - pseudoinverse

For the parameter vector obtained using the optimization,
predicted body torques are shown in Fig. 9, Fig. 10 and
Fig. 11, while the normalized error for this vector is

eN = 0.0301. (48)

Next, calculated vectors of the base parameters are used
for predicting torques obtained using the second excitation
trajectory, shown in Fig. 12.

For the trajectory in Fig. 12, and using the base parameters
obtained by pseudoinverse, prediction of torques are shown
in Fig. 13, Fig. 14 and Fig. 15, while the normalized error
is

eN = 0.0152. (49)
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Fig. 7. Measured and predicted torques - pseudoinverse
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Fig. 8. Measured and predicted torques - pseudoinverse
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Fig. 9. Measured and predicted torques - optimization
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Fig. 10. Measured and predicted torques - optimization
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Fig. 11. Measured and predicted torques - optimization
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Fig. 12. Persistent excitation trajectories used for the parameter validation
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Fig. 13. Validation of the obtained base parameter vector, trajectory from
Fig. 12 - pseudoinverse
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Fig. 14. Validation of the obtained base parameter vector, trajectory from
Fig. 12 - pseudoinverse

Finally, torque predictions of the base parameters vector
obtained by optimization, for trajectory in Fig. 12 are shown
in Fig. 16, Fig. 17 and Fig. 18. The normalized error for this
case is

eN = 0.0163. (50)

V. CONCLUSION

From the identification results several things can be seen.
First, both base vectors can predict measured torques almost
equally good. Although vector obtained by pseudoinverse has
negative parameters corresponding to moment of inertia of
the motor rotors, which is physically impossible, its torque
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Fig. 15. Validation of the obtained base parameter vector, trajectory from
Fig. 12 - pseudoinverse
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Fig. 16. Validation of the obtained base parameter vector, trajectory from
Fig. 12 - optimization
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Fig. 17. Validation of the obtained base parameter vector, trajectory from
Fig. 12 - optimization

predictions are a little bit better as can be seen from the
corresponding normalized errors. However, the consequence
of having physically impossible negative parameters is that
the mass matrix is, for some robot configurations, not sym-
metric or negative definite and thus methods for mass matrix
inversion tailored for symmetric positive definite matrices,
like the Cholesky decomposition, can not be used.

At the end, note that on some figures showing torque
predictions there is an error at zero time. This error is because
of static friction which is greater that the here identified
dynamic one.
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Fig. 18. Validation of the obtained base parameter vector, trajectory from
Fig. 12 - optimization
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