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Optimal Lyapunov-Based Reaching Time Bounds
for the Super-Twisting Algorithm

Richard Seeber∗, Martin Horn

Abstract—The super-twisting algorithm is a second order
sliding mode control law commonly used for robust control
and observation. One of its key properties is the finite time it
takes to reach the sliding surface. Using Lyapunov theory, upper
bounds for this reaching time may be found. This contribution
considers the problem of finding the best bound that may be
obtained using a family of quadratic Lyapunov functions. An
optimization problem for finding this bound is derived, whose
solution may be obtained using semidefinite programming. It is
shown that the restrictions imposed on the perturbations and the
conservativeness of the obtained bound are significantly reduced
compared to existing results from literature.

Index Terms—Variable-structure/sliding-mode control; Con-
vergence Time; Lyapunov Functions; Optimization; LMIs

I. INTRODUCTION

CONTROL in the presence of disturbances or parasitic
nonlinearities acting on a plant is an important topic in

control engineering. One field that offers several techniques for
dealing with this problem is sliding mode control. A common
sliding mode control technique is the so-called super-twisting
algorithm [1], which may be used as a robust control law, see,
e.g., [2], [3], and as an observer, such as, e.g., in [4], [5].
When used as a controller, it can steer the plant towards a
sliding surface in finite time, which is typically constructed
such that desired dynamics are obtained in this sliding mode.

The time it takes to reach the surface, the so-called reaching
time, is an important closed-loop performance characteristic.
Obtaining upper bounds for it is important, especially when
disturbances are present, because these may otherwise delay
convergence in a prohibitive way. Such bounds have exten-
sively been studied in literature, see, e.g., [6], [7], [8], [9].
In [9], these approaches are compared. Each imposes certain
restrictions on the perturbations, and the bounds differ in
conservativeness. For small perturbations, the tightest bounds
are obtained with the approach recently proposed in [9], which
is based on a reaching time computation for the unperturbed
case. Regarding perturbations, it is more restrictive than [7],
however, which is based on a family of Lyapunov functions.
The latter typically yields more conservative bounds, though,
even when selecting the Lyapunov function in an optimal way.

The present contribution revisits this Lyapunov function
family based estimate. As a motivation, a formal analysis of
its conservativeness is first presented. The problem of finding
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the best reaching time bound obtainable using the Lyapunov
function family is then considered. An optimization problem
for this bound is derived, which may efficiently be solved
numerically by means of semidefinite programming.

The paper is structured as follows. In Section II, some pre-
liminaries including the considered Lyapunov function family
and the reaching time estimate in [7] are briefly reviewed.
Section III formally states the problem of finding the best
reaching time bound obtainable using the considered Lya-
punov function family. This problem’s solution—the paper’s
main result—is given in Section IV. Its derivation is discussed
in the following two sections: Section V derives a semidefinite
program for the best reaching time bound that may be obtained
with a given Lyapunov function, and Section VI shows how to
minimize this bound with respect to all considered Lyapunov
functions. Section VII, finally, compares results obtained using
the proposed technique with existing results from literature and
simulations. Section VIII concludes the paper.

II. PRELIMINARIES

This section discusses some notational conventions and then
introduces the super-twisting algorithm and its reaching time
function. It furthermore gives an overview of the considered
Lyapunov function family and the existing reaching time
estimate that is based on it.

A. Notational Conventions
The abbreviation byep := |y|p sign(y) is commonly used

throughout the paper, and bye0 is written for the sign of y.
The trace of a matrix M is denoted by trM. For a symmetric
matrix M = MT, λmin(M) and λmax(M) denote its smallest
and largest eigenvalue, and M � 0 or M � 0 denote positive
semidefiniteness or positive definiteness of M, respectively.

B. Super-Twisting Algorithm
Consider a sliding variable σ governed by σ̇ = u+w1 +w2

with a control input u and perturbations w1 and w2, which
satisfy |w1| ≤ K |σ|

1
2 and |ẇ2| ≤ L, respectively. The super-

twisting control law

u(t) = −k1 bσ(t)e
1
2 − k2

∫ t

0

bσ(τ)e0 dτ. (1)

is used to steer σ to zero in finite time. With the state vari-
ables x1 := σ, x2 := w2 − k2

∫ t
0
bσ(τ)e0 dτ and perturbations

δ1 := w1 |σ|−
1
2 , δ2 := ẇ2, the closed loop is then given by

the system

ẋ1 = −k1 bx1e
1
2 + x2 + δ1 |x1|

1
2 , (2a)

ẋ2 = −k2 bx1e0 + δ2, (2b)
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with δ1 and δ2 bounded by

|δ1| ≤ K, |δ2| ≤ L. (2c)

Solutions of this perturbed nonlinear system are understood in
the sense of Filippov, see [10], and its state is aggregated in
the vector x := [x1 x2]T.

The reaching time function of system (2) with perturbation
bounds K,L is denoted by TK,L and defined as

TK,L(x0) := max
|δ1|≤K
|δ2|≤L

min{τ : x(0) = x0,x(t) = 0 ∀t ≥ τ},

(3)
i.e., it yields the maximum time it takes for trajectories with
initial state x0 to reach the origin for any perturbation.

C. Family of Quadratic Lyapunov Functions

In [7], [11], a family of quadratic Lyapunov functions

V = zTPz, with P =

[
p11 p12

p12 p22

]
� 0 (4)

is proposed. Therein, the matrix P is positive definite and
z = [z1 z2]T = g(x), with the function g given by

g(x) :=
[
bx1e

1
2 x2

]T
. (5)

The time derivative of V along the trajectories of system (2)
satisfies the inequality

V̇ ≤ − 1

|z1|
zTQz, with Q � 0, (6)

provided that the positive definite matrix Q and some positive
constants Θ1, Θ2 satisfy the Riccati inequality

0 � ATP + PA + Q + P

(
K

4Θ1
e1e

T
1 +

L

Θ2
e2e

T
2

)
P

+ (Θ1K + Θ2L) e1e
T
1 , (7)

cf. [11], with the abbreviations

A :=

[
−k12

1
2

−k2 0

]
, e1 :=

[
1
0

]
, e2 :=

[
0
1

]
. (8)

As discussed, e.g., in [7], [11], this inequality can be
rewritten by means of the Schur complement as the equivalent
linear matrix inequality M � 0 with

R := −ATP−PA−Q, (9a)

M :=

R− (Θ1K + Θ2L)e1e
T
1 KPe1 LPe2

KeT
1 P 4Θ1K 0

LeT
2 P 0 Θ2L

 . (9b)

D. Reaching Time Estimation

The Lyapunov function V defined in (4) is known to satisfy
a differential inequality of the form

V̇ ≤ − 2

α

√
V (10)

with α > 0. In [7], this fact is used to compute an upper bound
for the reaching time of system (2). Rewriting (10) yields

d
√
V

dt
≤ − 1

α
. (11)

This shows that the time for V to converge to zero, and thus
the reaching time with initial state x0, is bounded by

TK,L(x0) ≤ α
√
V (x0) = α

√
g(x0)TPg(x0). (12)

In [7], a bound of the form (10) based on eigenvalues of P
and Q is given, which yields the reaching time estimate

TK,L(x0) ≤ T̃K,L(x0) := α̃(P,Q)
√
g(x0)TPg(x0) (13)

with

α̃(P,Q) :=
2λmax(P)

λmin(Q)
√
λmin(P)

. (14)

III. PROBLEM STATEMENT

The considered problem is motivated by the following
result, which shows that the eigenvalue-based reaching time
bound (13) can be quite conservative for large values of k1.

Proposition 1: Consider system (2) with positive parameters
k1, k2 and non-negative perturbation bounds K, L. If

k1 ≥ K +
√

8(k2 + L), (15)

then the ratio of T̃K,L given in (13) and the reaching time
function TK,L for initial states of the form x0 = ce2 with
c 6= 0 and e2 as in (8) is bounded from below by

T̃K,L(ce2)

TK,L(ce2)
≥ k1 +

1

k1
(16)

for any positive definite matrices P, Q that satisfy the Riccati
inequality (7) with any positive scalars Θ1, Θ2.

Proof: Given in the appendix.
To improve the reaching time estimation, the task of finding

the best bound that may be obtained using the quadratic
Lyapunov function family is considered. This involves first
finding a value of α such that the differential inequality (10)
for a given Lyapunov function is as tight as possible. Then,
the resulting reaching time bound is minimized with respect
to all Lyapunov functions from the family.

To formally specify these problems, the function

β(z,P,Q) :=
2 |z1|

√
zTPz

zTQz
(17)

is introduced and the time derivative bound (6) is written as

V̇ ≤ −zTQz

|z1|
= − 2

β(z,P,Q)

√
V . (18)

The differential inequality (10) holds for any α that satisfies
α ≥ β(z,P,Q) for all z 6= 0. To find the smallest reaching
time bound for given matrices P, Q one seeks the smallest
possible value of α that fulfills this relation, i.e.,

α(P,Q) = sup
z
β(z,P,Q). (19)

The best obtainable reaching time bound TK,L is then given
by the minimum of (12) for this value of α with respect to all
positive definite matrices P, Q and positive scalars Θ1, Θ2

that satisfy the Riccati inequality (7):

TK,L(x0) := inf
P,Q
s.t. (7)

α(P,Q)
√
g(x0)TPg(x0). (20)

This paper considers the task of computing α and TK,L.
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IV. MAIN RESULT

Finding TK,L may be achieved by solving the following
scalar nonlinear optimization problem, whose objective func-
tion may be computed by means of a semidefinite program.
Its derivation is discussed in Sections V and VI.

Theorem 1: Consider system (2) with given positive param-
eters k1, k2 and non-negative perturbation bounds K, L. Using
the abbreviations A ∈ R2×2 and e1, e2 ∈ R2 in (8), define
the matrix M(P,Q,Θ1,Θ2) as in (9) and the matrix

N(P,Q, γ, κ) :=

[
γQ−P γe1

γeT
1 κ

]
(21)

with P,Q ∈ R2×2 and Θ1,Θ2, γ, κ ∈ R. Furthermore, let
the function g(x) be defined as in (5), and, for a given initial
state x0 ∈ R2, let f(γ,x0) be the solution of the semidefinite
program

f(γ,x0) := min
P,Q,

Θ1,Θ2,κ

κ (22a)

subject to
M(P,Q,Θ1,Θ2) � 0, P,Q � 0, (22b)

N(P,Q, γ, κ) � 0, g(x0)TPg(x0) = 1. (22c)

If positive definite matrices P, Q satisfying the Riccati in-
equality (7) exist, then this optimization problem is feasible
for sufficiently large values of γ > 0, and the best obtainable
reaching time bound TK,L as defined in (20) is given by the
solution of the scalar nonlinear optimization problem

TK,L(x0) = min
γ≥0

√
f(γ,x0). (23)

Furthermore, this value bounds the reaching time function of
system (2) from above, i.e., TK,L(x0) ≤ TK,L(x0).

Proof: Given in Sections V and VI-A.
Remark 1: Note that unlike (22), the overall optimization

problem for finding TK,L is not a semidefinite program. This
is due to the bilinear term γQ occuring in the matrix N
in (21). Despite this fact, the solution may efficiently be
found numerically by performing a line search with respect
to the scalar decision variable γ. A useful proposition for this
purpose, which permits to constrain the search to values of γ
in a finite interval, is stated in Section VI-B.

V. OPTIMAL DIFFERENTIAL INEQUALITY BOUND

This section considers the task of obtaining the optimal
differential inequality bound α by maximizing β(z,P,Q)
defined in (17) with respect to z, i.e., the optimization problem
(19). This problem is given by

α(P,Q) = sup
z
β(z,P,Q) = sup

z

2 |z1|
√
zTPz

zTQz
. (24)

It yields the best reaching time bound of the form (12) for a
given Lyapunov function from the considered family.

Since the objective function is invariant with respect to any
nonzero scaling of z, i.e., β(λz,P,Q) = β(z,P,Q) for any
λ 6= 0, it is sufficient to restrict considerations to nonzero
values of z that satisfy

zTQz = 2z1. (25)

Squaring the objective function then yields the expression

β(z,P,Q)2
∣∣
zTQz=2z1

= zTPz, (26)

which is to be maximized subject to the constraint (25).
Upper bounds for this non-convex maximization prob-

lem may be found by considering its Lagrangian dual, see,
e.g., [12]. Introducing the Lagrange function L(z, γ) as

L(z, γ) := zTPz− γ(zTQz− 2z1) (27)

with the Lagrange multiplier γ, one has

α(P,Q)2 = sup
z

inf
γ
L(z, γ) ≤ inf

γ
sup
z
L(z, γ). (28)

For a given value of γ, the supremum of L(z, γ) with respect
to z may be found analytically. To that end, first order
necessary and second order sufficient optimality conditions for
a maximum are obtained as

1

2

∂L(z, γ)

∂z
= −zT(γQ−P) + γeT

1 = 0, (29a)

1

2

∂2L(z, γ)

∂z2
= −(γQ−P) ≺ 0. (29b)

Solving (29a) for z and substituting into (27) shows that

sup
z
L(z, γ) = γ2eT

1 (γQ−P)−1e1, (30)

if the matrix γQ−P is positive definite, whereas the problem
is unbounded if this matrix is negative semidefinite or indefi-
nite. Recall now that the matrix N defined in (21) is positive
definite if and only if γQ−P is positive definite and its Schur
complement is positive, i.e., if γQ−P � 0 and

κ− (γeT
1 )(γQ−P)−1(γe1) > 0. (31)

Using (28) and (30), one thus obtains an upper bound for
the optimal differential inequality bound α by solving the
semidefinite program

α2 ≤ inf
γ

γQ−P�0

γ2eT
1 (γQ−P)−1e1 = inf

γ,κ
N�0

κ = min
γ,κ
N�0

κ. (32)

The following proposition shows that this optimization
problem yields not only an upper bound for α, but in fact
α itself, i.e., that equality holds in (28).

Proposition 2: Let positive definite matrices P and Q
satisfying the Riccati inequality (7) be given, and let κ∗ be
the solution of the semidefinite program

κ∗ = min
γ,κ

κ (33a)

subject to

N(P,Q, γ, κ) =

[
γQ−P γe1

γeT
1 κ

]
� 0. (33b)

Then, the optimal differential inequality bound α defined in
(19) is given by α(P,Q) =

√
κ∗. Furthermore, the reaching

time function TK,L of system (2) is bounded by

TK,L(x0) ≤
√
κ∗g(x0)TPg(x0), (34)

with the function g(x) defined in (5).
Proof: Given in the appendix.
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VI. OPTIMAL LYAPUNOV FUNCTION SELECTION

Proposition 2 yields the best obtainable reaching time bound
for a given Lyapunov function from the considered family.
This section considers the optimal selection of the Lyapunov
function such as to obtain the optimal bound TK,L defined in
(20), i.e., the optimization problem

TK,L(x0) = inf
P,Q
s.t. (7)

α(P,Q)
√
g(x0)TPg(x0). (35)

An equivalent optimization problem with a bilinear matrix in-
equality and otherwise linear objective function and constraints
is derived and its numerical solution is discussed.

A. Optimization Problem

Squaring the objective function and using Proposition 2 to
obtain α2, one can write the optimization problem (35) as

TK,L(x0)2 = min
P,Q�0

Θ1,Θ2>0

min
κ,γ

κg(x0)TPg(x0) (36a)

subject to

0 �
[
γQ−P γe1

γeT
1 κ

]
= N(P,Q, γ, κ), (36b)

0 � ATP + PA + Q + P

(
K

4Θ1
e1e

T
1 +

L

Θ2
e2e

T
2

)
P

+ (Θ1K + Θ2L) e1e
T
1 . (36c)

This problem contains the bilinear terms γQ and κP, and is
constrained by the nonlinear matrix Riccati inequality (36c).
As discussed in Section II-C, the Riccati inequality can be
replaced by the equivalent linear matrix inequality

M(P,Q,Θ1,Θ2) � 0, (37)

with the matrix M defined in (9), by applying the Schur
complement. To furthermore eliminate the bilinearity κP, note
that for any positive scalar λ one has

N(λP, λQ, γ, λ−1κ) = DT
λN(P,Q, γ, κ)Dλ, (38a)

M(λP, λQ, λΘ1, λΘ2) = λM(P,Q,Θ1,Θ2), (38b)

(λ−1κ)g(x0)T(λP)g(x0) = κg(x0)TPg(x0), (38c)

with the diagonal matrix Dλ = diag(
√
λ,
√
λ,
√
λ
−1

). Deci-
sion variables scaled in this way thus satisfy all constraints
without changing the value of the objective function. There-
fore, as discussed for example in [13], one can restrict con-
siderations to matrices P that satisfy

g(x0)TPg(x0) = 1. (39)

One thus obtains the following optimization problem with
the linear objective function κ, the linear equality constraint
(39), the linear matrix inequality (37), and the matrix inequal-
ity (36b), which is bilinear in γ and Q:

TK,L(x0)2 = min
P,Q�0

γ,κ,Θ1,Θ2≥0

κ (40a)

subject to

M(P,Q,Θ1,Θ2) � 0, g(x0)TPg(x0) = 1, (40b)
N(P,Q, γ, κ) � 0. (40c)

Theorem 1 may now be proven. Due to (38b), positive
definite matrices P, Q satisfying the Riccati inequality (7), or
equivalently (37), also satisfy (40b) after appropriate scaling.
Thus, the optimization problem (40) is feasible for sufficiently
large values of γ; it is furthermore equivalent to (22), (23),
which completes the proof.

B. Numerical Solution

Due to the bilinear term γQ in the matrix N given in (36b),
the optimization problem (40) is not a convex problem. One
way to solve the problem numerically is to perform a line
search with respect to γ ≥ 0, as suggested in Theorem 1. In
the course of this procedure, it is useful to bound the location
of the minimum from above. In the following, a way for
finding such a bound by solving another semidefinite program
is discussed; this permits to limit the search for the optimal
value of γ to a finite interval of the form [0, γ].

Proposition 3: Let the function f(γ,x0) be defined as in
Theorem 1, and let an initial state x0 ∈ R2 and a positive
constant γ0 be given. Suppose that the semidefinite program
(22) is feasible for γ = γ0. Then, the solution γ of

γ := max
P,Q,Θ1,Θ2

tr(Q)f(γ0,x0) (41a)

subject to
M(P,Q,Θ1,Θ2) � 0, P � 0, (41b)

g(x0)TPg(x0) = 1, Q � 0 (41c)

bounds the location of the minimum of f from above, i.e.,

γ ≥ arg min
γ≥0

√
f(γ,x0). (42)

Proof: Consider any solution P,Q, κ of the optimization
problem (22) with γ > γ. Then, one has due to (31)

f(γ,x0) = κ ≥ γ2eT
1 (γQ−P)−1e1 ≥

γ2

λmax(γQ−P)

≥ γ2

tr(γQ−P)
≥ γ2

tr(γQ)
=

γ

trQ

≥ γγ−1f(γ0,x0) > f(γ0,x0). (43)

Thus, γ cannot be the minimum of the function f .

VII. NUMERICAL COMPARISONS

This section compares the reaching time bound proposed
in Theorem 1 to the eigenvalue based bound (13) and to
the reaching time function based bound proposed in [9]. The
semidefinite programs were solved1 using YALMIP [14] and
SEDUMI [15], and for the line search the MATLAB function
fminsearch was used. For the eigenvalue based approach,
the matrices P, Q are selected as proposed in [7], i.e., by
minimizing2 α̃ given in (14) with respect to all matrices that
satisfy λmin(Q) = 1 and the Riccati inequality (7).

1All computations were done using MATLAB version R2013b, YALMIP
version R20150918, and SEDUMI version 1.3 in standard configuration.

2This minimization may also be performed using semidefinite programming
by minimizing 2v subject to (37), Q � I, λ1I � P � λ2I, and[

λ2 λ1
λ1 v

]
� 0. (44)
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Fig. 1. Comparison of actual reaching time and reaching time bounds for
the unperturbed system with parameters k1 = k2 = 1 and initial state
x0 =

[
cosϕ sinϕ

]T as a function of ϕ.
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Fig. 2. Comparison of reaching time bounds with k1 = k2 = 1 and initial
state x0 =

[
1 1

]T, and simulation results with δ1 = K bx1e0 as a function
of the perturbation bound K for L = 0. For legend see Fig 4.

Fig. 1 shows bounds obtained in the unperturbed case, i.e.,
for K = L = 0, and compares them to the actual reaching
time for initial states on a half circle in the x1-x2-plane. One
can see that the proposed approach significantly improves on
the eigenvalue based reaching time bound and yields results
that are very close to the actual reaching time.

In Figs. 2 and 3, upper reaching time bounds for a particular
initial state are shown as a function of the perturbation bounds
K and L. They are compared to simulation results obtained
for particular choices of perturbations, which constitute lower
reaching time bounds. Compared to the other approaches,
the proposed technique improves the obtained estimates and
extends the range of permitted perturbations.

Fig. 4, finally, shows reaching time estimates and simulation
results as a function of the parameter k1. As suggested by
Proposition 1, the eigenvalue based approach diverges with
increasing k1, while the proposed approach yields values close
to actual reaching times for large values of k1.

VIII. CONCLUSION AND OUTLOOK

This contribution considered the problem of finding the
best reaching time bound for the super-twisting algorithm
that may be obtained using a family of Lyapunov functions.

0 0.2 0.4 0.6 0.8 1
0

50

100

L

re
ac

hi
ng

tim
e

Fig. 3. Comparison of reaching time bounds with k1 = k2 = 1 and initial
state x0 =

[
1 1

]T, and simulation results with δ2 = L bẋ1e0 as a function
of the perturbation bound L for K = 0. For legend see Fig. 4.
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Fig. 4. Comparison of reaching time bounds with k2 = 1 and initial state
x0 =

[
1 1

]T, and simulation results with δ2 = L bx1e0 as a function of
the parameter k1 for K = 0, L = 0.5.

Optimization problems were proposed for finding this bound
for a given Lyapunov function and for finding the best bound
obtainable with any Lyapunov function in the family. These
may efficiently be solved numerically by means of semidefinite
programming. Compared to established results from literature,
the proposed approach increases the range of perturbations and
yields significantly tighter bounds.

It should be highlighted that with this result, a matrix
inequality for imposing a non-conservative upper bound on the
super-twisting algorithm’s reaching time is available. In future
works, this fact enables tackling the problem of systematic
parameter tuning subject to reaching time constraints without
unnecessarily increasing the controller gains. Extending the
results to more general polynomial rather than quadratic
Lyapunov functions may also be studied in the future.

APPENDIX

Proof of Proposition 1: Since TK,L and T̃K,L are homo-
geneous functions of x0, and thus TK,L(ce2) = cTK,L(e2),
T̃K,L(ce2) = cT̃K,L(e2), it suffices to consider c = 1, i.e.,
x0 = e2. It is first shown that trajectories with this initial state
stay in the first quadrant x1, x2 ≥ 0 for all time. To see this,
introduce the state functions v1 = x1 and v2 = x2 − η bx1e

1
2



2475-1456 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2019.2920163, IEEE Control
Systems Letters

with η > 0 and consider a subset of that quadrant characterized
by v1, v2 ≥ 0. In this subset, one has x1 ≥ 0 and, choosing
2η = k1 −K, one obtains for the time derivatives of v1 and
v2 on the set’s borders v1 = 0 and v2 = 0, respectively,

v̇1|v1=0 = x2 ≥ ηx1
1
2 ≥ 0 (45)

v̇2|v2=0 = −k2 + δ2 −
η(−k1x1

1
2 + ηx1

1
2 + δ1x1

1
2 )

2x1
1
2

≥ −(k2 + L) +
(k1 −K)2

8
≥ 0, (46)

provided that (15) is fulfilled. Thus, v1 and v2 never change
sign, and trajectories stay in the considered subset of the
first quadrant. In that quadrant, the time derivative of x2 is
bounded by ẋ2 ≤ −k2 + L according to (2b), and equality
holds with the particular perturbation δ2 = L. Since x2

converges to zero without changing sign, the reaching time
for x0 = e2 = [0 1]T is thus given by

TK,L(e2) =
1

k2 − L
. (47)

A lower bound of the eigenvalue-based reaching time esti-
mate T̃K,L given in (13) for the initial state x0 = e2 will now
be established. To that end, the abbreviation v :=

[
1 k1

]T
is introduced. Using the Riccati inequality (7) and the compo-
nents of P as defined in (4) one then obtains the inequalities

0 ≥ eT
2 (ATP + PA)e2 = p12, (48)

0 ≥ vT(Θ2Le1e
T
1 +

L

Θ2
Pe2e

T
2 P + ATP + PA + Q)v

= Θ2L+
L

Θ2
(vTPe2)2 − 2k2(p12 + k1p22) + vTQv

≥ 2LvTPe2 − 2k2(p12 + k1p22) + vTQv

= −2(k2 − L)(p12 + k1p22) + vTQv

≥ −2(k2 − L)k1p22 + (1 + k2
1)λmin(Q). (49)

Since g(e2) = e2, the estimate (13) is bounded by

T̃K,L(e2) = α̃(P,Q)
√
eT

2 Pe2 =
2λmax(P)

λmin(Q)
√
λmin(P)

√
p22

≥
2
√
λmax(P)

λmin(Q)

√
p22 ≥

2p22

λmin(Q)

≥ 1 + k2
1

(k2 − L)k1
=
k1 + 1

k1

k2 − L
. (50)

Combining (47) and (50) yields the proposition’s claim.
Proof of Proposition 2: Since α ≤

√
κ∗ has already been

established in (32), α ≥
√
κ∗ remains to be shown. To that

end, consider the dual of the semidefinite program (33)

κ∗ = max
X�0

trX

[
P 0
0T 0

]
(51a)

subject to

trX

[
Q e1

eT
1 0

]
= 0, trX

[
0 0
0T 1

]
= 1 (51b)

with decision variable X ∈ R3×3. It yields the same optimal
value as (33), because strictly feasible points, i.e., positive
scalars γ and κ such that N is positive definite, exist, cf. [12].

According to [16, Theorem 2.1], the semidefinite program (51)
has an optimal solution matrix X∗, whose rank satisfies

(rankX∗ + 1) rankX∗ ≤ 2m, (52)

where m = 2 is the number of equality constraints. Thus,
rankX∗ = 1, and X∗ may be written as X∗ = qqT, with
q :=

[
zT v

]T
, a vector z ∈ R2, and a scalar v. Substituting

this optimal solution X∗ into (51) shows that

κ∗ = zTPz, zTQz + 2vz1 = 0, v2 = 1, (53)

and thus zTQz = |2vz1| = 2 |z1| holds. With this z one has

α(P,Q) ≥ β(z,P,Q) =
2 |z1|

√
zTPz

zTQz

=
√
zTPz =

√
κ∗, (54)

which proves the proposition.
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