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Guaranteeing Disturbance Rejection and
Control Signal Continuity for the Saturated

Super-Twisting Algorithm
Richard Seeber and Martin Horn

Abstract—The saturated super-twisting algorithm is a
second order sliding-mode control law for robust control
in the presence of a bounded control input. Its implementa-
tion is based on a switching logic and the resulting control
signal typically exhibits a single jump discontinuity. This
contribution presents novel stability conditions that allow
for tuning the algorithm such that perturbation amplitudes
up to the control input bound are rejected with a continu-
ous control signal. A simplified control law is furthermore
proposed, which is equivalent to the original algorithm
while being easier to implement.

Index Terms—Variable-structure/sliding-mode control,
constrained control, Lyapunov methods.

I. INTRODUCTION

M ITIGATING or eliminating the influence of distur-
bances is one of the main goals of feedback control.

The field of sliding mode control offers several techniques for
dealing with large classes of disturbances, such as bounded
and Lipschitz continuous signals. One commonly used second
order sliding mode control law in that regard is the classical
super-twisting algorithm originally proposed in [1]. Closed-
loop stability conditions and performance indicators, such as
the finite convergence time and chattering amplitudes, have
extensively been studied in literature, see, e.g., [2], [3], [4]
and [5], [6], [7], [8], [9], respectively.

In practice, control input constraints have to be taken into
account. The design of sliding mode algorithms for saturated
actuators or constrained systems in general has thus repeatedly
been studied, see, e.g., [10], [11], [12]. For the super-twisting
algorithm in particular, a number of modifications to deal
with bounded control inputs have recently been proposed and
analyzed in terms of stability, see, e.g., [13], [14], [15]. One
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promising approach is the so-called saturated super-twisting
algorithm [13]. It consists in applying a relay controller
initially, until some switching condition is met, and using
the super-twisting control law afterwards. By means of a
Lyapunov based stability proof it is shown in [13] that the
control input stays within the saturation limits and that all
trajectories converge to the origin. The switch leads to a dis-
continuity in the control signal, however, and the proof in
principle can not guarantee convergence for perturbations that
exceed half the control input bound in magnitude.

This contribution presents a new stability proof that reme-
dies these facts. In particular, it yields conditions for the
rejection of perturbations with any amplitude less than the
control input bound, and permits to tune the switching condi-
tion such that a continuous control signal is obtained. For the
case of a continuous control signal, an equivalent version of
the control law is furthermore proposed that is considerably
easier to implement.

This letter is structured as follows: Section II presents the
considered plant and discusses some notational conventions
and definitions. The saturated super-twisting algorithm and its
existing stability proof are then briefly discussed in Section III.
Its limitations regarding the continuity of the control signal and
the permissible perturbation bounds are illustrated. Section IV
presents the letter’s main results, a stability condition and a
simplified equivalent control law that guarantee disturbance
rejection by means of a continuous control signal. The cor-
responding stability proof is then discussed in Section V; in
addition to the main results, it provides additional conditions
for the case of a discontinuous control signal that extend the
results obtained in [13]. Section VI compares these condi-
tions to results from literature and illustrates the algorithm’s
performance in a simulation. Section VII concludes this let-
ter. Some of the more technical proofs of some lemmas and
propositions are given in an Appendix.

II. PRELIMINARIES

As in [13], a plant

ẋ = u + w (1a)

with the state x, the control input u, and a perturbation w is
considered. The perturbation is assumed to be bounded and

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0003-4430-5626
https://orcid.org/0000-0002-5845-1061


716 IEEE CONTROL SYSTEMS LETTERS, VOL. 3, NO. 3, JULY 2019

composed of two components w1 and w2 that are Hölder
continuous in the state and Lipschitz continuous in time,
respectively, i.e., w = w1 + w2 with

|w| ≤ W, |w1| ≤ K
√|x|, |ẇ2| ≤ L, (1b)

where W, K, and L are non-negative constants.
The control task is to steer the state x to zero despite the

perturbation w by using a control input u that is bounded by

|u| ≤ U. (2)

Therein, U is a positive control input bound. Clearly, this
bound has to exceed the maximum perturbation amplitude W
for the task to be feasible; thus, U > W is assumed. For this
purpose, the following definition is introduced.

Definition 1: A control law is said to globally stabilize the
plant (1) in finite time, if for every initial condition x(0) there
exists a positive time instant τ such that for any admissible
perturbation w one has x(t) = 0 for all t ≥ τ .

The abbreviation �y�p := |y|p sign(y) is commonly used
throughout this letter, and �y�0 in particular is written for the
sign of y. The saturation function satM with positive parameter
M is defined as

satM(y) :=
{

y |y| ≤ M
M�y�0 |y| > M.

(3)

All solutions of differential equations with discontinuous right-
hand side are understood in the sense of Filippov [16].

III. CONTROL ALGORITHM

This section discusses the saturated super-twisting algorithm
and briefly sketches the original stability proof given in [13].

A. Control Law

The saturated super-twisting algorithm consists in applying
a relay controller up to a time instant T , when the state x for
the first time satisfies |x(T)| ≤ γ 2. Therein, γ denotes a non-
negative switching level parameter. For t ≥ T , a super-twisting
control law is used.

The saturated super-twisting control law is thus given by

u =
{

−U�x�0 t < T

−k1�x� 1
2 + v t ≥ T,

(4a)

v̇ =
{

0 t < T
−k2�x�0 t ≥ T,

(4b)

T = inf{t : |x(t)| ≤ γ 2}, (4c)

with initial value v(0) = 0. At the switching time instant, one
has v(T) = 0 and therefore

u(T) = −k1�x(T)� 1
2 + v(T) = −k1γ �x(T)�0. (5)

Thus, one can see that k1γ ≤ U is required for u(T) to satisfy
the control input bound, and that a continuous control signal
is obtained if and only if

γ = k−1
1 U (6)

holds.

Fig. 1. Illustration of the original Lyapunov-based stability proof
from [13] in the �x�1/2-v -plane: a Lyapunov level set, where the con-
trol input bound is satisfied, is guaranteed to be entered at the switching
time instant T if the switching level γ is chosen within the depicted range.

B. Original Stability Proof

With the proof in [13], the perturbation amplitude W must
not exceed half the control input bound U, and obtaining a
continuous control signal is only possible if W is zero. To see
this, the original proof is briefly discussed in the following.

The proof is based on a Lyapunov function, originally
proposed in [2], which is a quadratic form with respect to
the variables �x� 1

2 and v + w. For this Lyapunov function, a
level set is constructed, inside which the control input bound
is satisfied. This is illustrated in Fig. 1 in the �x� 1

2 -v-plane,
where the level set has the shape of an ellipse. As one can
see, the location of the ellipse’s center depends on the value
of the disturbance w. If the trajectory is guaranteed to be inside
this level set for t = T , it stays inside and satisfies the control
input bound for all t ≥ T . Since v is zero at the switching time
instant, the permitted range of the switching level parameter
γ is thus given by the part of the �x� 1

2 -axis that is contained
in the level set for any value of w.

One can see geometrically in Fig. 1 that it is impossible to
obtain a range for γ that includes the choice (6) required for a
continuous control signal, regardless of the ellipse’s shape, for
a nonzero perturbation bound W. Thus, guaranteeing distur-
bance rejection in the presence of a continuous control signal
is impossible with the original proof. Furthermore, one can
see that the maximum perturbation amplitude is constrained
to values W ≤ 0.5U, because the intersection of the level set
for w = W and for w = −W, and thus also the set of permitted
values for γ , is empty otherwise.

IV. MAIN RESULT

In the following, the main results of this letter are stated:
conditions that permit rejecting perturbations with any ampli-
tude W < U while maintaining a continuous control signal,
and a control law that is equivalent to (4) but is easier to
implement.

Theorem 1: For given positive parameters k1, k2, non-
negative perturbation bounds W, K, L, and a positive control
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input bound U, consider the control law (4) with the switch-
ing level γ = k−1

1 U and initial condition v(0) = 0. If the
perturbation bounds satisfy the conditions L < k2 and

K < k1 − √
2L + 2k2, (7a)

W < U
k2

1 − Kk1 − 2k2

k2
1 − Kk1 + 2k2

, (7b)

then this control law globally stabilizes the plant (1) in finite
time with a control input u that is continuous with respect to
time, satisfies |u| ≤ U, and is equivalently obtained via the
control law

u = satU(−k1�x� 1
2 + v), (8a)

v̇ =
{

0 |u| = U
−k2�x�0 |u| < U

(8b)

with initial condition v(0) = 0.
Proof: A proof of Theorem 1 is given in Section V.
Remark 1: The simplified control law (8) essentially uses

conditional integration to prevent integrator wind-up. A similar
modification is proposed in [10] for the so-called “sub-
optimal” second order sliding mode controller, see [17]. The
result also fits nicely into the context of classical anti-windup
schemes for controllers with integral part, with additional
stability guarantees in the presence of disturbances.

Remark 2: Solving (7) for k1 shows that for W < U the
theorem’s conditions are equivalent to k2 > L and

k1 > K + √
2L + 2k2, (9a)

k1 >
K

2
+

√
K2

4
+ 2k2

U + W

U − W
. (9b)

This form of the conditions is useful for tuning purposes,
because it permits to select parameters k1, k2 for any given
value of K, L, and W < U.

Remark 3: One can see from (9) that k1 ≥ √
2k2 is a

necessary condition for the theorem’s applicability. Several
parameter settings have been proposed in literature that satisfy
this condition. It is shown in [9], for example, that choosing
k1 ≈ 2

√
k2 minimizes the chattering amplitude in the presence

of a second order actuator. In [18] it is furthermore shown that
having k1 ≥ 2

√
k2 is desirable if one seeks to minimize the

impact of brief violations of the assumed disturbance bounds
in practice.

Figs. 2 and 3 show block diagrams of the original con-
trol law (4) and the simplified control law (8). One can see
that compared to the former the complexity of the latter is
considerably reduced.

V. STABILITY PROOF

Similar to [13], the proposed stability proof is based on
the construction of an invariant set. To construct this set, the
behavior of the control input u at the saturation limit, i.e., for
|u| = U, is first considered. Computing the time derivative of
|u| for |u| < U along the closed-loop trajectories yields

d|u|
dt

= −k1

2
|x|− 1

2 ẋ�u�0 + v̇�u�0

= −k1

2
|x|− 1

2 (|u| + w�u�0) − k2�x�0�u�0. (10)

Fig. 2. Block diagram of the saturated super-twisting algorithm (4). The
comparison block’s output is one when its input does not exceed γ 2

and zero otherwise, the or-gate’s output is initialized with zero, and the
switches are in the upper position when the input of the switchbox is
non-zero.

Fig. 3. Block diagram of the simplified control law (8) for the saturated
super-twisting algorithm with continuous control input. The comparison
block’s output is one when its input is less than U and zero otherwise.

In the limit, as |u| tends to U, an upper bound is given by

d|u|
dt

≤ −k1

2
|x|− 1

2 (U − W) + k2. (11)

This bound is negative, and thus u can neither exceed nor slide
along the saturation limit |u| = U, if

|x| 1
2 <

k1

2k2
(U − W) (12)

holds. In the following, a Lyapunov level set is designed,
within which x satisfies this bound.

The region, where (12) holds, corresponds to a vertical strip
in the �x� 1

2 -v-plane. The elliptic level sets of the quadratic
Lyapunov function shown in Fig. 1 are therefore not the best
choice for this purpose. A new Lyapunov function V , whose
level sets are tailored to the task at hand, is thus proposed.
For this purpose, the state variables x1 := x, x2 := v + w2 and
new perturbations δ1 := w1|x1|− 1

2 , δ2 := ẇ2 are introduced.
For t ≥ T , the closed-loop dynamics are then governed by

ẋ1 = −k1�x1� 1
2 + x2 + δ1|x1| 1

2 (13a)

ẋ2 = −k2�x1�0 + δ2 (13b)

and the perturbations δ1, δ2 are bounded by

|δ1| ≤ K, |δ2| ≤ L. (13c)

With the state vector x := [
x1 x2

]T, the functions

V1(x1) := (k1 − K)2|x1|, V2(x2) := x2
2, (14)
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Fig. 4. Illustration of the proposed Lyapunov-based stability proof in the
�x�1/2-v -plane: the Lyapunov level set is constructed, inside which the
state bound (12) holds; this guarantees that the control input amplitude
can not exceed U.

and the state space regions

M1 := {x : 0 < x2�x1� 1
2 ≤ (k1 − K)|x1|}, (15a)

M2 := {x : (k1 − K)|x1| < x2�x1� 1
2 }, (15b)

M3 := {x : x2�x1� 1
2 ≤ 0}, (15c)

the proposed function V(x) is defined as

V(x) =
⎧
⎨

⎩

V1(x1) x ∈ M1
V2(x2) x ∈ M2
V1(x1) + V2(x2) x ∈ M3.

(16)

The conditions, for which it is a Lyapunov function for
system (13), are given in the following lemma.

Lemma 1: Suppose that k1 > K holds. Then, the func-
tion V(x) defined in (16) is continuous and positive definite.
Furthermore, if the conditions

k2 > L, k1 ≥ K + √
2(k2 + L) (17)

hold, then V is non-increasing along the trajectories of
system (13), i.e., it is a (weak) Lyapunov function for that
system.

Proof: Given in the Appendix.
Using the proposed Lyapunov function, conditions guaran-

teeing that u satisfies the control input bound (2) after the
switching time instant T are derived. In Fig. 4, this proce-
dure is illustrated in the �x� 1

2 -v-plane: The largest intersection
of a Lyapunov level set, wherein (12) holds, with the �x� 1

2 -
axis is determined. When γ is contained in the interval thus
obtained, (12) and thus |u| ≤ U are guaranteed for all time.
The resulting conditions and their actual computation are given
in the following proposition and its proof, respectively.

Proposition 1: Consider the closed loop formed by the
plant (1) and the control law (4) with positive parameters k1,
k2, a positive control input bound U, and the non-negative
switching level parameter γ ≤ k−1

1 U. If the conditions of
Lemma 1 are fulfilled and the perturbation bounds K and W

additionally satisfy

(k1 − K)2γ 2 + (W + Kγ )2<(k1 − K)2 k2
1(U − W)2

4k2
2

, (18)

then |u| ≤ U holds for all times and |u| = U only holds at
isolated time instants.

Proof: Given in the Appendix.
Condition (18) is the best condition that may be obtained

with the proposed invariant set, but it is quite involved. To
obtain a simpler, though slightly more conservative condition,
one may use the fact that

(k1 − K)2γ 2 + (W + Kγ )2 <
[
(k1 − K)γ + (W + Kγ )

]2

= (k1γ + W)2 (19)

holds, to see that the inequality

k1γ + W<(k1 − K)
k1(U − W)

2k2
(20)

implies (18). Solving this inequality (20) for W yields the
following corollary to Proposition 1.

Corollary 1: Consider the closed loop formed by the
plant (1) and the control law (4) with positive parameters k1,
k2, a positive control input bound U, and the non-negative
switching level parameter γ ≤ k−1

1 U. If the conditions
of Lemma 1 are fulfilled and the maximum perturbation
amplitude W is bounded by

W<
(k2

1 − Kk1)U − 2k1k2γ

k2
1 − Kk1 + 2k2

, (21)

then the control input bound |u| ≤ U holds for all times and
|u| = U only holds at isolated time instants.

Proof: The inequality (21) is equivalent to (20), which
implies condition (18) of Proposition 1.

To actually prove Theorem 1, convergence of trajectories to
the origin for t ≥ T , i.e., finite time stability of system (13),
remains to be shown. Since the proposed Lyapunov function’s
time derivative is not negative definite, and proving finite time
stability would thus require more extensive arguments, the
following result presented in [19] is used in the following.

Lemma 2 [19]: If the parameters k1, k2 and perturbation
bounds K, L satisfy

k2 > L, k1 > K + √
k2 + L, (22)

then system (13) is finite time stable.
Proof: Given in [19, Sec. 3].
Theorem 1 may now be proven. As shown in Section III-A,

the control signal is continuous for γ = k−1
1 U. Furthermore,

conditions (7b) and (21) are equivalent for this value of γ .
Thus, |u| ≤ U holds for all times due to Corollary 1, and
the closed-loop dynamics are given by system (13) after the
switching time instant. Since (7a) and k2 > L imply (22),
Lemma 2 guarantees finite time stability of that system. To see
equivalence of control laws (4) and (8), note that for γ = k−1

1 U
the switching time instant T defined in (4c) can be rewritten
as T = infN with the set N given by

N =
{

t :
∣∣∣−k1�x(t)� 1

2 + v(t)
∣∣∣ ≤ U

}
, (23)



SEEBER AND HORN: GUARANTEEING DISTURBANCE REJECTION AND CONTROL SIGNAL CONTINUITY 719

Fig. 5. Upper bounds for the perturbation amplitude W for K = L = 0
permitted by the proposed conditions and the stability proof in [13] in
case of a continuous control signal.

because v(t) = 0 for t ≤ T . Since |u| < U holds for almost
all t ≥ T , one may replace the condition t ≥ T by |u| < U.
This yields the control law (8), which leads to a continuous
u(t), because the saturation function and involved arguments
are continuous.

VI. COMPARISONS AND SIMULATION RESULTS

This section compares the proposed stability conditions
to those imposed in [13], and illustrates the closed-loop
performance by means of a simulation.

A. Comparison of Perturbation Amplitudes

For γ = 0 or W = 0, the conditions in [13] are given by

W ≤ U

1 +
√

1 + (p12+k1p22)
2

p11p22−p2
12

or γ ≤ U
√

k2
1 + (p11+k1p12)

2

p11p22−p2
12

,

(24)

respectively. Therein, p11, p22 > 0 and p12 are parameters that
satisfy p11p22 > p2

12 and have to be chosen such that

Ṽ(x) = p11|x1| + 2p12�x1� 1
2 x2 + p22|x2|2 (25)

is a Lyapunov function for system (13). Both conditions in (24)
become more restrictive if either γ or W are nonzero. Thus,
W ≤ 0.5U has to hold in any case. Furthermore, choosing
γ = k−1

1 U to obtain a continuous control signal is only pos-
sible, if W = 0 and p11 + k1p12 = 0 hold. This requires the
inequality k1 ≥ √

2k2 to be fulfilled. To see this, evaluate
the time derivative of Ṽ along the trajectories of (13) without
perturbations for x2 = 0; this yields

˙̃V
∣∣∣
x2=0

= −(k1p11 + 2k2p12)|x1| 1
2

= −(k1 − 2k2

k1
)p11|x1| 1

2 . (26)

One can thus see that k1 ≥ √
2k2 is a necessary condition for

Ṽ to be a Lyapunov function in this case.
Fig. 5 shows upper bounds imposed on W by Theorem 1

for the case of a continuous control signal in comparison to
those imposed by the original proof. One can see that in both
cases k1 ≥ √

2k2 has to hold, but only the proposed approach
permits nonzero perturbation amplitudes W.

Fig. 6 depicts the same comparison for the case of a
discontinuous control signal using the bound obtained from
Corollary 1 for γ = 0. One can see that in this case the

Fig. 6. Upper bounds for the perturbation amplitude W for K = L = 0
permitted by the proposed conditions and the stability proof in [13] in
case of a discontinuous control signal with switching level parameter
γ = 0.

original proof is the only one applicable for k1 <
√

2k2, while
the proposed approach imposes a less restrictive condition
otherwise.

B. Numerical Simulation

Fig. 7 compares the saturated super-twisting algorithm’s
performance with a continuous and with a discontinuous
control signal. For demonstration purposes, a constant per-
turbation w = 0.5U = W with U = 5 is applied. Therefore,
K = L = 0 holds, and k1 = √

6k2 with k2 = 1 is chosen
in order to satisfy (9). The simulation was performed using
forward Euler discretization with a step size of 10−4. One can
see that for γ = 0 the closed loop takes longer to converge,
in addition to the discontinuity that is present in the control
signal. While the speed of convergence depends on the pertur-
bation, of course, the depicted behavior is representative for
the obtained performance on average.

VII. CONCLUSION

In this contribution, a novel stability condition for the sat-
urated super-twisting algorithm was presented. It guarantees
disturbance rejection using a continuous control signal and
permits to significantly simplify the control law’s implemen-
tation. It is furthermore straightforward to use for the purpose
of parameter selection. The presented results thus make it
considerably easier to implement and tune the saturated
super-twisting algorithm in practice.

APPENDIX

Proof of Lemma 1: The function V defined in (16) is con-
tinuous, because V1 = 0 for x1 = 0, V2 = 0 for x2 = 0,
and V1 = V2 for x2 = (k1 − K)�x1� 1

2 . It is furthermore posi-
tive definite, because V1 + V2 is positive definite and having
V1 = 0 in case x ∈ M1 or V2 = 0 in case x ∈ M2 leads to
the contradictions

0 < x2�x1� 1
2 = 0 or 0 ≤ (k1 − K)|x1| < 0, (27)

respectively.
Computing the time derivative of V along the trajectories

of (13) yields for x ∈ M1

V̇1 = (k1 − K)2(−k1|x1| 1
2 + �x1�0x2 + δ1�x1� 1

2 )

≤ (k1 − K)2(−K + δ1�x1�0)|x1| 1
2 ≤ 0, (28)
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Fig. 7. Plant state x and control input u obtained in a simulation with
parameters k2 = 1, k1 = √

6, control input bound U = 5, and constant
perturbation w = 2.5 using the saturated super-twisting control law with
a continuous and a discontinuous control signal.

because x2�x1�0 ≤ (k1 − K)|x1| 1
2 , and for x ∈ M2

V̇2 = 2x2�x1�0(−k2 + δ2�x1�0) ≤ 0, (29)

because x2�x1�0 ≥ 0 and k2 > L. In case x ∈ M3, i.e., if
x2�x1�0 ≤ 0 holds, one has

V̇1 + V̇2 = x2�x1�0[(k1 − K)2 − 2k2 + 2δ2�x1�0]

+ (k1 − K)2(−k1 + δ1�x1�0)|x1| 1
2

≤ x2�x1�0[(k1 − K)2 − 2(k2 + L)
] ≤ 0, (30)

because k1 satisfies (17). Thus, one has V̇ ≤ 0, i.e., V is
non-increasing along the trajectories of system (13).

Proof of Proposition 1: Consider the largest level set of the
Lyapunov function V defined in (16), inside which x1 = x is
bounded by (12). It is characterized by V(x)<c1 with

c1 = min

{

V(x) : |x1| = k2
1(U − W)2

4k2
2

}

. (31)

With this x1, the minimum is attained for x ∈ M2 as

c1 = inf
{

V2(x2) : |x2| > (k1 − K)|x1| 1
2

}

= V1(x1) = (k1 − K)2 k2
1(U − W)2

4k2
2

, (32)

because V is bounded by this value from below also in the
two other cases x ∈ M1 and x ∈ M3.

The largest value of V at the switching time instant T ,
denoted by c2 in the following, is now determined. At this
time instant one has |x1| = γ 2 and v = 0, and thus

x2 = v + w2 = v + w − δ1|x1| 1
2 = w − δ1γ. (33)

Restricting considerations to positive values of x1 due to
symmetry, one finds that c2 is given by

c2 = max|w|≤W
max|δ1|≤K

V
([

γ 2 w − δ1γ
]T

)
. (34)

Looking at (16), one can see that this maximum is obtained in
case x ∈ M3, i.e., for x2 ≤ 0, because V is smaller in either
of the two other cases. Thus, one finds

c2 = V1(γ
2) + V2(−W − Kγ )

= (k1 − K)2γ 2 + (W + Kγ )2. (35)

If c2<c1, i.e., (18), holds, then V<c1 holds at the switching
time instant T . Due to Lemma 1, this inequality and thus the
state bound (12) are satisfied for all t ≥ T . Since the relation
|u(T)| = k1γ ≤ U is fulfilled, and d|u|

dt <0 holds as |u| tends
to U as a consequence of (11), the bound (2) is satisfied for
t ≥ T and no sliding along |u| = U occurs.
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