
Computing discrete Morse complexes from simplicial complexes

Ulderico Fugaccia, Federico Iuricichb, Leila De Florianic

aGraz University of Technology, Graz, Austria
bClemson University, Clemson, SC, USA

cUniversity of Maryland, College Park, MD, USA

Abstract

We consider the problem of efficiently computing a discrete Morse complex on simplicial complexes of
arbitrary dimension and very large size. Based on a common graph-based formalism, we analyze exist-
ing data structures for simplicial complexes, and we define an efficient encoding for the discrete Morse
gradient on the most compact of such representations. We theoretically compare methods based on
reductions and coreductions for computing a discrete Morse gradient, proving that the combination of
reductions and coreductions produces new mutually equivalent approaches. We design and implement
a new algorithm for computing a discrete Morse complex on simplicial complexes. We show that our
approach scales very well with the size and the dimension of the simplicial complex also through com-
parisons with the only existing public-domain algorithm for discrete Morse complex computation. We
discuss applications to the computation of multi-parameter persistent homology and of extrema graphs
for visualization of time-varying 3D scalar fields.

Keywords: Shape analysis, topological data analysis, discrete Morse theory, homology, persistent
homology, shape understanding, scientific data visualization.

1. Introduction

In recent years, computational topology has
become a fundamental tool for the analysis and
visualization of scientific data. In particular,
the efficient development of software tools for
extracting topological features from data has
led to an increasing number of applications of
topology-based approaches in shape analysis and
understanding, and in particular in the analysis of
sensor [1] and social [2] networks, in chemistry [3],
in astrophysics [4], in medicine [5]. Several math-
ematical tools have been studied for computing a
compact, topologically-equivalent object starting
from a simplicial complex of large size. Examples
of these tools are the discrete Morse complex [6],
the size graph [7], and the tidy set [8].

Discrete Morse Theory (DMT) [6] is a power-
ful theory defined in a completely combinatorial
setting, that aims at the construction of a dis-

crete representation of a given simplicial complex,
based on a discrete Morse gradient (also called
Forman gradient or discrete gradient field) from
which a homology-equivalent chain complex, the
discrete Morse complex is built. The Forman gra-
dient and the associated discrete Morse complex
have been used both for the analysis and visualiza-
tion of scalar fields [9], and for computing standard
and persistent homology [10, 11, 12].

In very recent research areas, like the analysis
of higher dimensional scalar fields [13] or in the
analysis of shapes based on multi-parameter persis-
tent homology [14, 15], there is a need for efficient
methods capable of encoding a Forman gradient on
higher dimensional simplicial complexes.

In this work, we introduce the first complete
study for implementing a Forman gradient on high
dimensional simplicial complexes. We start from a
theoretical evaluation of the various methods used
for building a Forman gradient, which are gener-
ally called reduction-based or coreduction-based.

Preprint submitted to Elsevier November 13, 2018

ar
X

iv
:1

81
1.

04
48

5v
1

 [
cs

.C
G

]
 1

1
N

ov
 2

01
8

We describe a third method initially formulated in
[16], obtained by interleaving reductions and core-
ductions, and we prove the equivalence of all three
techniques. This equivalence will provide us the
freedom to implement the method that best fits
any given data structure.

To this aim, we undertake a theoretical and ex-
perimental evaluation of the three most common
data structures for encoding simplicial complexes.
Here, we focused on data structures with avail-
able public-domain implementations. Our exper-
iments clearly show that the Generalized Indexed
data structure with Adjacencies (IA∗) [17], a data
structure encoding only the vertices and a subset
of the simplices of the complex, is the only one that
can suitably scale to higher dimensions without be-
ing affected by the exponential growth in the num-
ber of simplices. We propose a solution to com-
pactly encode a Forman gradient attached to the
IA∗ data structure.

Based on the latter encoding, we have de-
fined and implemented an efficient, dimension-
independent, algorithm for computing a Forman
gradient and for retrieving the discrete Morse com-
plex defined by it, which is fundamental for com-
puting, among others, homology and persistent ho-
mology. We compare our approach to the one
developed in [11] and implemented in the soft-
ware library Perseus [18] which computes a discrete
Morse complex using a data structure implement-
ing the Hasse diagram of the complex, the Inci-
dence Graph. Our experiments show that our ap-
proach is more efficient and it is also easy to paral-
lelize.

The remainder of the paper is organized as fol-
lows. Section 2 introduces some preliminary no-
tions about simplicial complexes, simplicial and
persistent homology, and discrete Morse theory.
Section 3 reviews some classical topological data
structures for simplicial complexes as well as al-
gorithms for computing a Forman gradient and a
discrete Morse complex. In Section 4, we intro-
duce, evaluate and compare the data structures for
compactly encoding a simplicial complex and we
discuss a new compact encoding for the Forman
gradient. In Section 5, we present the reduction
and coreduction-based algorithms used for comput-
ing a Forman gradient. Section 6 is devoted to the
formal proof of the theoretical equivalence of these
approaches, while, in Section 7, we introduce a new

approach based on the interleaving of the two. In
Section 8, we describe a coreduction-based algo-
rithm for building a discrete Morse complex based
on the IA∗ data structure and on the compact rep-
resentation of the Forman gradient. In Section 9,
we evaluate the performances of our algorithm on
a variety of input complexes. Finally, in Section
10, we draw some concluding remarks and discuss
applications of our approach to single and multi-
parameter persistent homology computation and to
the analysis and visualization of time-varying 3D
scalar fields.

2. Background

In this section, we introduce some notions which
are at the basis of our work. We briefly define and
discuss simplicial complexes, simplicial homology
and persistent simplicial homology, as well as dis-
crete Morse theory.

2.1. Simplicial complexes

A k-simplex σ is the convex hull of k+ 1 affinely
independent points in the Euclidean space. For in-
stance, a 0-simplex is a single point, a 1-simplex
an edge, a 2-simplex a triangle, and a 3-simplex a
tetrahedron. Given a k-simplex σ, the dimension
of σ is defined to be k, and denoted as dim(σ). Any
simplex σ′, which is the convex hull of a non-empty
subset of the points generating σ, is called a face
of σ. Conversely, σ is called a coface of σ′.

A simplicial complex Σ is a finite set of simplices
such that:

• each face of a simplex in Σ belongs to Σ;

• each non-empty intersection of any two sim-
plices in Σ is a face of both.

We define the dimension of a simplicial complex
Σ, denoted as dim(Σ), as the largest dimension of
its simplices. Given a simplex σ of Σ, we define
the star of σ as the set of the cofaces of σ in Σ. A
simplex σ is called a top simplex if its star consists
only of σ itself. Given a simplex σ face/coface of
σ′, σ and σ′ are said to be incident. For k > 0,
two k-simplices in Σ are said to be adjacent if
they share a face of dimension k − 1, while two
0-simplices u and v in Σ are called adjacent if they
are both faces of the same 1-simplex.

2

Queries on a simplicial complex are often ex-
pressed in terms of the topological relations defined
by the adjacencies and incidences among its sim-
plices.

• Boundary relations: given a q-simplex τ and
a k-simplex σ with q > k, we say that σ is in
boundary (q, k)-relation with τ if σ is a face of
τ . We denote as bdq,k(τ) the set of simplices
in boundary (q, k)-relation with τ .

• Coboundary relations: given a q-simplex τ and
a k-simplex σ with q > k, we say that τ is
in coboundary (k, q)-relation with σ if τ is a
coface of σ. We denote as cbdk,q(σ) the set of
simplices in coboundary (k, q)-relation with σ.

• Adjacency relations: given two k-simplices σ
and σ′, we say that σ is in adjacency (k, k)-
relation with σ′ if σ is adjacent to σ′. We de-
note as adjk,k(σ) (or, simply adj(σ)) the set of
simplices in adjacency (k, k)-relation with σ.

In the following, we will call immediate bound-
ary and coboundary relations those boundary and
coboundary relations involving simplices of con-
secutive dimensions. In the following, we will of-
ten refer to them as bd(·) and cbd(·) or, when
we need to explicit the complex Σ with respect
to these relations are considered, as bdΣ(·) and
cbdΣ(·). Figure 1 illustrates the topological re-
lations of a 1-simplex (edge) σ0 in a simplicial
complex Σ. Simplices in the immediate bound-
ary, immediate coboundary and adjacency relations
are depicted in blue, red, and green, respectively.
Specifically, bd1,0(σ0) = {v1, v3}, cbd1,2(σ0) = {τ},
and adj1,1(σ0) = {σ1, σ2, σ3, σ4}.

Simplicial complexes are a subclass of the more
general class of cell complexes [19]. They are ex-
tensively used because of their combinatorial prop-
erties and of the possibility of representing collec-
tions of unorganized sets of points, usually called
point clouds. Alpha-shapes [20], Delaunay trian-
gulations [21], Čech complexes [22], Vietoris-Rips
complexes [23], witness complexes [24, 25, 26] and
graph-induced complexes [27] are different ways for
endowing a point cloud with a simplicial structure.
Čech complexes are the most classical way to build
a simplicial complex starting from a point cloud,

Figure 1: Topological relations of edge σ0. Immediate
boundary relation bd1,0(σ0) consists of the two blue vertices
v1, v3. Immediate coboundary relation cbd1,2(σ0) consists
of the red triangle τ . Adjacency relation adj1,1(σ0) consists
of the four green edges σ1, σ2, σ3, σ4.

but their construction requires exponential time in
the number of the input points [23].

Vietoris-Rips (VR) complexes [23] represent a
compromise between Čech complexes and the ap-
proximations based on subsampling adopted by
witness [24, 25, 26] and graph-induced [27] com-
plexes. Let G = (N,A) be a graph, a clique in G
is defined as a complete subgraph of G. The flag
complex of G, denoted as Flag(G), is the simplicial
complex whose simplices correspond to the cliques
of G. Given a finite set of points P in a metric
space (such as the Euclidean space) and a positive
real number ε, the Vietoris-Rips (VR) complex is
the flag complex of the graph whose set of nodes
coincides with P and having an arc for each pair
of points in P whose distance is at most ε. Figure
2(a) shows, for each point of a set P , the neighbor-
ing points at a distance less or equal to ε. Figure
2(b) shows the edges connecting points in P whose
mutual distance is less or equal ε. Figure 2(c) shows
the cliques computed on graph G and the resulting
VR complex Σ.

2.2. Simplicial and persistent homology

Simplicial homology provides invariants for shape
description and characterization. Given a simpli-
cial complex Σ, we define the chain complex asso-
ciated with Σ as the pair C∗(Σ) := (Ck(Σ), ∂k)k∈Z,
where:

• Ck(Σ) is the free Abelian group whose ele-
ments, called k-chains, are linear combinations
with integer coefficients of the k-simplices of Σ;

• ∂k : Ck(Σ) → Ck−1(Σ) is the homomorphism
encoding the boundary relations between the
k-simplices and those (k − 1)-simplices of Σ
such that ∂2 = 0.

3

(a) (b) (c)

Figure 2: Construction of a VR complex Σ: given a finite set of points P , the disks of radius ε are computed (a); an edge is
created for each pair of points at distance less than ε (b); the VR complex is retrieved by adding a simplex for each clique
of the obtained graph (c).

Given C∗(Σ), we denote as Zk(Σ) := ker ∂k
the group of the k-cycles of Σ, and as
Bk(Σ) := Im ∂k+1 the group of the k-boundaries
of Σ. The kth homology group of Σ is defined as
Hk(Σ) := Hk(C∗(Σ)) = Zk(Σ)/Bk(Σ). Intuitively,
homology groups reveal the presence of “holes”
in a simplicial complex Σ. The non-null elements
of each homology group are cycles, which do
not represent the boundary of any collection of
simplices of Σ. The rank βk of the kth homology
group of a simplicial complex Σ is called the kth

Betti number of Σ. In particular, β0 counts the
number of connected components of Σ, β1 its
tunnels and holes, and β2 the shells surrounding
voids or cavities.

Persistent homology [28, 29, 30] aims at overcom-
ing intrinsic limitations of standard homology by
allowing for a multi-scale approach defined through
a filtration. Let Σ be a simplicial complex, a filtra-
tion F of Σ is a finite sequence of subcomplexes
{Σm | 0 ≤ m ≤ M} of Σ such that ∅ = Σ0 ⊆
Σ1 ⊆ · · · ⊆ ΣM = Σ. The p-persistent kth ho-
mology group Hp

k (Σm) of Σm consists of the k-
cycles included from Ck(Σm) into Ck(Σm+p) mod-
ulo boundaries.

Figure 3 shows an example of a filtration of a sim-
plicial complex Σ. Persistent homology detects the
changes in the homology of Σ and it allows distin-
guishing between relevant homology classes, such
as the 1-cycle in Σ1 which is born at step (a) and
persists until the end of the filtration, and negligi-
ble homology classes like, for instance, the 1-cycle
which is born at step (b) and immediately dies at

(a) (b) (c)

Figure 3: A filtration of a simplicial complex Σ. In (a),
Σ1 consists of two different connected components and one
non-boundary 1-cycle (a); in (b), Σ2 gains a non-boundary
1-cycle while it becomes connected; finally, in (c), the 1-
cycle created at step (b) becomes the boundary of the unique
triangle in Σ3 and its contribution in homology vanishes.

step (c).

2.3. Discrete Morse theory

Discrete Morse theory due to Forman [6, 31] pro-
vides a powerful tool for analyzing the topology of
an object. It has been defined for cell complexes
but, for the sake of simplicity, we will review dis-
crete Morse theory in the context of simplicial com-
plexes.
A simplicial complex Σ is endowed with a function
f : Σ → R, called a discrete Morse function if, for
every simplex σ in Σ,

• c+(σ) := #{τ ∈ cbd(σ) | f(τ) ≤ f(σ)} ≤ 1,

• c−(σ) := #{ρ ∈ bd(σ) | f(ρ) ≥ f(σ)} ≤ 1.

It is easy to show (see [6], Lemma 2.5) that, for
a discrete Morse function, c+(σ) and c−(σ) cannot
be simultaneously equal to 1. A k-simplex σ in Σ

4

(a) (b)

Figure 4: (a) A discrete Morse function on a simplicial com-
plex and (b) the corresponding Forman gradient (red sim-
plices are critical simplices).

is called critical simplex of index k (or, k-saddle)
if c+(σ) = c−(σ) = 0. A critical simplex of index
0 is called a minimum, while a critical simplex of
index d = dim(Σ) a maximum. Figure 4(a) shows
a discrete Morse function f defined on a simplicial
complex. Each simplex is labeled with the corre-
sponding value of function f . Vertex 1 is critical
(minimum), since f has a higher value on all edges
incident to it. Edge 5 is critical (saddle), since f
has a higher value on the incident triangle 7, and
lower values on its vertices.

A discrete vector field V on Σ is a collection of
pairs of simplices (σ, τ) ∈ Σ×Σ such that σ ∈ bd(τ)
and each simplex of Σ is in at most one pair of
V . A discrete Morse function f : Σ → R induces
a discrete vector field V = {(σ, τ) ∈ Σ × Σ |σ ∈
bd(τ) and f(σ) ≥ f(τ)}, called a Forman gradi-
ent (or, equivalently, gradient vector field) of f on
Σ. A pair (σ, τ) ∈ V can be depicted as an arrow
from σ to τ . Given a discrete vector field V , a V -
path (or, equivalently, a gradient path) is a sequence
[(σ1, τ1), (σ2, τ2), . . . , (σr, τr)] of pairs of k-simplices
σi and (k + 1)-simplices τi, such that (σi, τi) ∈ V ,
σi+1 is a face of τi, and σi 6= σi+1. A V -path is a
closed path if σ1 is a face of τr different from σr.
It has been proven that a discrete vector field V is
the Forman gradient of a discrete Morse function if
and only if V is free of closed paths [6].

Given a Forman gradient V on a simplicial com-
plex Σ, the discrete Morse complex associated with
Σ is a chain complex M∗ := (Mk, ∂̃k)k∈Z, where:

• groups Mk are generated by the critical k-
simplices;

• the boundary maps ∂̃k are obtained by follow-
ing the gradient paths of V (see Subsection 8.2
for a detailed description).

(a) (b)

Figure 5: (a) A Forman gradient computed on a simplicial
complex and (b) the graph structure formed by the gradient
paths (boundary maps ∂̃k) connecting the critical simplices
(groups Mk).

A discrete Morse complex M∗, associated with
a simplicial complex Σ, provides a homologically
equivalent representation of Σ (see [6], Theorem.
8.2). If we consider a simplicial complex Σ, and
we compute a Forman gradient V on it (see Figure
5(a)), we obtain a discrete Morse complexM∗ hav-
ing its cells in one-to-one correspondence with the
critical simplices of V . M∗ can be described as a
graph having nodes in correspondence of the criti-
cal simplices of V , and having the arcs in one-to-one
correspondence with the gradient paths connecting
such nodes (see Figure 5(b)).

Since Σ and M∗ are homologically equivalent,
computing the homology on M∗ is preferable due
to the fact that the cells inM∗ are generally fewer
than the simplices in Σ. As shown in [32], the ho-
mological equivalence between a simplicial complex
Σ and a discrete Morse complex M∗ associated
with Σ can be generalized to persistent homology
by requiring that the Forman gradient V is filtered
with respect to the filtration F considered. For-
mally, given a filtration F = {Σm | 0 ≤ m ≤ M}
of a simplicial complex Σ, a Forman gradient V
of Σ is filtered with respect to F if, for each pair
(σ, τ) ∈ V , there exists m ∈ {1, . . . ,M} such that
σ, τ ∈ Σm and σ, τ /∈ Σm−1.

3. Related work

In this section, we review the state-of-the-art on
data structures for encoding simplicial complexes
and on algorithms for computing a discrete Morse
complex.

5

3.1. Topological data structures for simplicial com-
plexes

Several topological data structures for encoding
a simplicial complex have been proposed in the lit-
erature, mainly for simplicial complexes in low di-
mensions, and focusing on triangle and tetrahedral
meshes (see [33] for a survey). We consider here
data structures specific for simplicial complexes in
arbitrary dimensions.

The most general dimension-independent data
structure for cell and simplicial complexes is the
Incidence Graph. An Incidence Graph (IG) [34]
is a topological incidence-based representation of a
simplicial complex which encodes all the simplices
as nodes of a graph and their immediate boundary
and coboundary relations as its arcs. The Simpli-
fied Incidence Graph (SIG) [35] and the Incidence
Simplicial (IS) data structures [36] are simplified
representations of the IG. A comparison among
IG, SIG and IS is presented in [37], while an im-
plementation of all these data structures is included
in the Mangrove Topological Data Structure library
available in the public domain [38].

In the case of triangle and tetrahedral meshes,
adjacency-based data structures are the most
widely used thanks to their compactness and ef-
ficiency. The Generalized Indexed data structure
with Adjacencies (IA∗) [17] generalizes such repre-
sentations and is capable of encoding non-manifold
simplicial complexes of any dimension. Recently, a
topological data structure has been proposed for
simplicial complexes embedded in the Euclidean
space in [39], where topological relations can be ef-
ficiently extracted in parallel on different portions
of the domain.

In recent years, new data structures have been
developed well suited to perform specific tasks. The
Simplex Tree (ST) [40] has been defined to effi-
ciently extract boundary relations for computing
persistent homology. The Simplex Tree encodes all
simplices in the complex and tends to be more ver-
bose than the IA∗ data structure, as shown in [39].
An implementation of the ST is available in the
Gudhi public domain library [41]. The Maximal
Simplex Tree (MST) and the Simplex Array List
(SAL) [42] are optimized versions of the ST . To
the extent of our knowledge, there are no imple-
mentations of these data structures. The skeleton
blocker data structure [43] has been created specif-
ically to perform edge contraction on a simplicial

complex, but it can be efficiently initialized only
when working with flag complexes. An implemen-
tation of the latter is provided in the Gudhi library
[41].

3.2. Computing a discrete Morse complex

The process of building a discrete Morse com-
plex from a simplicial complex typically consists
of two steps: (i) computing the Forman gradient
and identifying the critical simplices, and (ii) ex-
tracting the boundary maps. We can classify al-
gorithms for computing a Forman gradient as: un-
constrained [44, 45, 46, 47, 11, 48] and constrained
algorithms [49, 50, 51, 10, 52, 53, 54, 55]. Uncon-
strained algorithms compute a Forman gradient on
a cell/simplicial complex when no scalar value is
provided. The aim is to create a homologically
equivalent representation of the input complex hav-
ing as few critical cells as possible. Constrained
algorithms start from a cell/simplicial complex en-
dowed with a scalar function F0 defined on its ver-
tices, and aim at constructing a Forman gradient
that best fits F0 [50, 51, 10, 52]. The discrete Morse
complex is used in the analysis and visualization of
scalar fields as a compact representation of the field
behavior. The aim is to obtain a decomposition of
the dataset in regions of influence for each critical
simplex. Ascending and descending traversal tech-
niques [55, 56, 57] for the V -paths of the Forman
gradient have been developed for reconstructing the
ascending and descending Morse cells, respectively.
We refer to [9] for an in-depth description of these
methods. When computing persistent homology on
a simplicial complex Σ [58, 59, 60], the aim is to ob-
tain a complex which is a compact version of Σ and
has the same persistent homology [10, 32, 61]. To
this aim, the gradient V-paths need to be visited by
starting from the critical simplices and by travers-
ing the paths in a descending manner. A detailed
description of this process is provided in Subsection
8.2.

4. Encoding a simplicial complex endowed
with a Forman gradient

In this section, we consider the problem of en-
coding a simplicial complex endowed with a dis-
crete vector field in a compact way. We start with

6

an analysis of existing data structures for simpli-
cial complexes. Then, driven by the need to iden-
tify the most efficient data structure to adopt in
our algorithm, we perform an experimental com-
parison among them. Finally, we show how we can
encode a Forman gradient efficiently using a com-
pact data structure which represents only vertices
and top simplices. This is particularly challenging
since a representation for a Forman gradient V on a
complex Σ requires encoding the pairings between
two simplices of consecutive dimension for all sim-
plices in Σ.

4.1. Encoding a simplicial complex

We analyze here three data structures for en-
coding a simplicial complex, namely the Incidence
Graph (IG) [34], the Simplex Tree (ST) [40, 62],
and the Generalized Indexed data structure with
Adjacencies (IA∗ data structure) [17]. The IG is
the most widely-used data structure for simplicial
complexes, the ST has been used in topological
data analysis applications, being implemented in
the Gudhi library, the IA∗ data structure is a com-
pact representation for simplicial complexes encod-
ing only vertices and top simplices. Implementa-
tions in the public domain exist for all of them, and
on such implementations we base our experimental
comparisons.

The Incidence Graph (IG) for complex Σ de-
scribes its Hasse diagram [63], i.e., the graphical
representation of the partially ordered set gener-
ated by all the simplices of Σ and their incidence
relations. The IG can be viewed as a directed graph
GIG = (NIG, BIG ∪ CIG) in which:

• the nodes in NIG are in one-to-one correspon-
dence with the simplices of Σ; with abuse of
notation, we will indicate with σ both a node,
and its corresponding simplex;

• a directed arc in BIG (boundary arc) con-
nects two nodes (τ, σ) in NIG with dim(τ) =
dim(σ) + 1 if σ is a face of τ ;

• a directed arc (coboundary arc) in CIG con-
nects two nodes (σ, τ) in NIG with dim(τ) =
dim(σ) + 1 if τ is a coface of σ.

In Figure 6(b), the IG representing the simplicial
complex Σ depicted in Figure 6(a) is shown. Nodes
are colored according to the dimension of the

simplex they represent. Note that, for simplicity,
we have shown only one undirected arc for each
pair of mutual incident nodes, since if a directed
arc exists from τ to σ in BIG, arc (σ, τ) must exist
in CIG By storing the incidence relations between
simplices of consecutive dimension, the IG is
efficient in the retrieval of topological relations,
but the large amount of information encoded
makes it unsuitable for complexes of large size and
of high dimensions [37].

The Simplex Tree (ST) [40] encodes also all the
simplices of a simplicial complex Σ as the IG, but
only a subset of the incidence relations encoded in
the IG. The ST is based on a total order selected
on the vertices of Σ. Let I(v) be the position in the
total order of a vertex v ∈ Σ. Given a k-simplex
σ = {v0, ..., vk} in Σ, maxv(σ) = max(I(vi)) is the
latest vertex of σ in the total order. The ST can
be viewed as a graph GST = (NST , AST) in which:

• the nodes in NST are in one-to-one correspon-
dence with the simplices of Σ, and a node
σ ∈ NST is labeled with I(maxv(σ));

• a directed arc (σ, τ) ∈ AST connects two nodes
in NST , if σ is in the immediate boundary of
τ , and I(maxv(τ)) > I(maxv(σ)).

Nodes corresponding to the vertices of Σ are con-
nected to the root of the Simplex Tree. If we select
a path from the root to a node σ = {v0, ..., vk},
we have that: (i) labels {l0, ..., lk} are encountered
sorted by increasing order along the path and each
label appears exactly once; (ii) each label corre-
sponds to a vertex of σ, more precisely li = I(vi),
for each i = 0, ..., k.

In Figure 6(c), we show the Simplex Tree rep-
resentation of the simplicial complex depicted in
Figure 6(a). The order of the vertices is indicated
by the numbers depicted in blue, while the remain-
ing numbers indicate the labels of the nodes corre-
sponding to the k-simplices, with k > 0. For the
sake of clarity, we are not showing the connections
between the vertices and the root. Note that the
Simplex Tree is order dependent, in the sense that
we can have different ST s for the same complex.
For example, Figure 6(d) shows the ST obtained
for Σ by using a different order for its vertices.

From the two graph representations, we see that
NIG = NST and that AST ⊂ ACB , since it contains

7

(a) (b) (c) (d)

Figure 6: A simplicial complex Σ (a) and its representation through an Incidence Graph (b) and through a Simplex Tree
(c); a Simplex Tree using a different ordering for the vertices (d). Blue dots are associated with the vertices of Σ, green
dots with its edges and red dots with its triangles.

all those arcs (σ, τ) ∈ ACB for which I(maxv(τ)) >
I(maxv(σ)). The Simplex Tree has been designed
with the task of efficiently performing only bound-
ary queries. In order to be able to perform also
coboundary queries, an extended version of the
Simplex Tree has been proposed in [40]. This ex-
tended version contains a circular list linking all the
nodes having the same label and the same dimen-
sion and an arc from a node to its parent. This ver-
sion is not implemented in the Simplex Tree in the
public domain library Gudhi [41]. In [42], two com-
pressed optimization of the latter have been pre-
sented, namely the Maximal Simplex Tree and the
Simplex Array List, sharing the same functionali-
ties but reducing the number of nodes encoded. To
the best of our knowledge, no implementations are
provided for these latter.

As mentioned before, more compact representa-
tions for a simplicial complex can be obtained by
encoding only the vertices and top simplices. To
be able to extract boundary, coboundary and ad-
jacency relations efficiently, the simplest represen-
tation would encode: (i) for each top k-simplex σ,
its boundary defined by the references to its k + 1
vertices, and its adjacencies defined by references
to the simplices adjacent to σ along a (k − 1)-face;
(ii) for each vertex v, its star, defined by the the
list of all top simplices incident in v. It can be
noticed that storing the entire star of a vertex v
is not necessary, since the star can be efficiently
reconstructed by navigating the top simplices inci-
dent in v through the encoded adjacencies. This
constitutes the basis for the Generalized Indexed
data structure with Adjacencies (IA∗) [17].

We can describe the IA∗ data structure as a
graph GIA = (NIA, AIA) in which NIA = N0 ∪

Ntop, with set N0 corresponding to the vertices of
Σ, and set Ntop corresponding to the top simplices
of Σ. The set of arcs in AIA is the disjoint union of
three subsets A(t,0),A(t,t), A(0,t) defined as follows:

• A(t,0) (boundary arcs): a directed arc (σ, v),
where σ is in Ntop and v in N0, belongs to
A(t,0) if v is a vertex of σ;

• A(t,t) (adjacency arcs): an undirected arc
(σ, τ), where σ and τ are k-simplices in Ntop,
belongs to A(t,t) if σ and τ share a (k−1)-face;

• A(0,t) (coboundary arcs): a subset of the arcs
(v, σ), where v in N0 and σ is in Ntop, such
that v is on the coboundary of σ, as defined
below.

Given a vertex v, we consider the subgraph
GIA(v) = (NIA(v), AIA(v)) of GIA where:

• NIA(v) consists of all nodes σ ∈ Ntop such that
v is a vertex of σ;

• AIA(v) consists of all arcs in A(t,t) connecting
pair of nodes in NIA(v).

Thus, an oriented arc (v, σ) is encoded in A(0,t)

for each connected component in GIA(v), where
σ is any top simplex in NIA(v) belonging to such
component.

In Figure 7, we show the nodes and the arcs en-
coded in the IA∗ data structure (see Figure 7(b))
for the simplicial complex in Figure 7(a). Blue
nodes denote vertices, while green and red nodes
denote top edge and triangles, respectively. Undi-
rected arcs represent adjacency relations among top
simplices, i.e., arcs (τ1, τ2) and (σ1, σ2). Boundary

8

(a) (b)

Figure 7: A simplicial complex Σ (a) and its representation
through the IA∗ data structure (b). Blue dots correspond
to vertices, green dots correspond to top edges and red dots
to top triangles.

arcs are denoted by arrows, while coboundary arcs
by dotted arrows.

The space required by the IA∗ data structure
depends on the structure on the complex, i.e., the
number of arcs in A(t,t) and in A(0,t) depends on the
connectivity of the top simplices. If we restrict our
consideration to an important subclass of simpli-
cial complexes, that of simplicial pseudomanifolds,
we can get some insights for comparing the space
required by the IA∗ data structure to that of the
IG. Recall that a simplicial d-pseudomanifold is
a (d− 1)-connected simplicial d-complex such that
any (d−1)-simplex is on the boundary of either one
or two d-simplices.

If Σ is a d-pseudomanifold, we have that the
number of arcs in A(t,0) originating from a top k-
simplex σ is equal to k + 1. The number of arcs
in A(t,t) originating from a top k-simplex σ is also
equal to k+1. Thus, |A(t,t)| is equal to |A(t,0)| and,
thus, the total cost of storing the boundary and the
adjacency arcs in the IA∗ data structure is equal
to 2|A(t,0)|. We can observe that c = 2|A(t,0)| is ex-
actly the cost of storing in the IG all the boundary
arcs connecting a d-simplex to a (d−1)-simplex plus
all the dual coboundary arcs connecting a (d− 1)-
simplex to a d-simplex. In the IA∗ data structure,
besides c, we have the cost cst of storing some top
simplices in the star of the vertices. For each vertex
v, cst is equal to the number of connected compo-
nents of GIA(v). In the worst case this might be
equal to the number of d-simplices having v on their
boundary. However, in the IG we need to take into
account the cost of encoding the other boundary
and coboundary arcs which connect k- and (k−1)-
simplices (with k < d), which will be clearly much

higher than cst.

4.2. Experimental evaluation

This subsection provides an experimental com-
parison among the IG, the ST and the IA∗ data
structure. In our experiments, we have used three
kinds of data sets. The first data sets are volume
data that have been tetrahedralized. Each ver-
tex of the dataset has an associated scalar value.
The DTI-scan is a Diffusion Tensor MRI Scan
of a human brain, the VisMale dataset is a CT-
scan of a man’s head and the Ackley dataset is
a synthetic function discretizing Ackley’s function
[64]. The datasets in the second group are networks
obtained from real data on which cliques have
been computed. Two of these datasets (Amazon1,
Amazon2) are graphs representing the “Customers
Who Bought This Item Also Bought” feature of
the Amazon website. If a product i is frequently
co-purchased with product j, the graph contains a
directed edge from i to j (notice, we are considering
the graph undirected). The third graph represents
a road network in California where intersections
and endpoints are described by nodes and the roads
connecting these intersections or road endpoints are
described by undirected edges (roadnet). The
datasets in the third group are point clouds ex-
tracted from a 2-sphere on which a Vietoris-Rips
complex has been computed (datasets S1.0, S1.2,
S1.3).

In our comparisons, we use the Simplex Tree
(ST) implementation in the Gudhi library [41], the
Incidence Graph (IG) implemented in Perseus [18],
which is a public domain tool for computing the
discrete Morse complex, and the IA∗ data struc-
ture implemented in [65]. Table 1 summarizes the
characteristics of the datasets we used and their
storage costs using the three data structures. For
each dataset, we provide the dimension of the re-
sulting simplicial complex (column d), the number
of its vertices (column |Σ0|) and of its top simplices
(column |Σtop|), the size of the complex (column
|Σ|), and the storage cost required by the three data
structures, expressed in gigabytes.

We can observe that the storage cost of the
IG and of the ST increases based on the total
number of simplices. The IG implemented in the
Perseus library often runs out of memory, while
the ST has much higher limits. The storage cost
of the IA∗ data structure depends on the number

9

Dataset d |Σ0| |Σtop| |Σ| Storage Cost
IA∗ IG ST

DTI-scan 3 0.9M 5.5M 24M 0.97 11.9 2.4
VisMale 3 4.6M 26M 118M 4.7 - 9.7
Ackley4 4 1.5M 32M 204M 6.8 - 12.8
Amazon01 6 0.2M 0.4M 2.2M 0.12 1.6 0.3
Amazon02 7 0.4M 1.0M 18.4M 0.28 9.8 1.5
Roadnet 3 1.9M 2.5M 4.8M 0.8 3.3 1.0
Sphere-1.0 16 100 224 0.6M 0.003 0.9 0.04
Sphere-1.2 21 100 285 26M 0.0032 - 1.5
Sphere-1.3 23 100 382 197M 0.0034 - 11.01

Table 1: Datasets used in the experiments and storage costs
for encoding the corresponding simplicial complex with the
three data structures IA∗, IG and with the ST . The storage
costs are expressed in gigabytes.

of top simplices. This means that simplicial
complexes in low dimensions (like Roadnet or the
volumetric datasets) may require comparatively
more memory than, for example, Sphere-1.3
(being a 23-simplicial complex composed by less
than 400 top simplices). It is clear that the IA∗

data structure is always more compact than the
ST . The ratio between the storage costs of the
two data structures roughly depends on the ratio
between the number of top simplices and the size
of the complex. The worst-case scenario occurs for
(Roadnet dataset) where the IA∗ data structure
requires 20% less memory than the ST , while in
the case of Sphere-1.3 the storage cost for the
IA∗ data structure is negligible with respect to the
11 gigabytes required by the ST .

4.3. Encoding a Forman gradient

In this subsection, we describe how to encode a
discrete gradient field, like the Forman gradient V ,
on the data structures encoding a simplicial com-
plex Σ.

If we consider the Incidence Graph G represent-
ing Σ, we see that the arcs of G describe all the pos-
sible pairings that can be defined on Σ by consider-
ing two simplices of consecutive dimension. A For-
man gradient can be encoded on the IG by adding
one bit flag to each arc a in CIG indicating whether
the nodes incident in a are also a valid pair in V .
Because of this reason, the IG has been selected
in the Perseus tool [18]. This encoding cannot be
extended to the Simplex Tree since this latter en-
codes only a subset of the coboundary arcs of the
IG.

Figure 8: Gradient pairs encoded in a triangle. Pair between
vertex v0 and edge (v0, v2) is identified by moving on the
first bit reserved for the 1-simplices (3 positions). We move
forward of one position for each edge preceding (v0, v2) on
the triangle (2 positions). We do not have to move forward
since v0 has position 0 on the edge.

We describe here a new representation which al-
lows for a compact encoding of a Forman gradi-
ent on the IA∗ data structure and, in general, for
any data structure which encodes vertices plus top
simplices. In this case, the encoding for the gradi-
ent pairs needs to be attached to the top simplices
only. The representation that we have defined en-
codes, for each top k-simplex τ , a bit-vector of
length

∑k
i=1

(
k+1
i+1

)
(i+ 1) representing all the pos-

sible pairings on its boundary. The first k + 1 bits
encode the pairing between τ and one of its (k−1)-
faces. Then, recursively, for each i-face of τ , i + 1
bits are stored until, for each 1-face, 2 bits are en-
coded storing the pairings with one of its vertices.
For example, considering a 2-simplex (triangle), 3
bits are reserved for encoding the pairings with the
boundary edges. Then, for each of them, 2 bits are
reserved for encoding the pairings with the bound-
ary vertices (see Figure 8).

If two paired simplices ρ and σ are both on the
boundary of τ , the resulting pair will be encoded in
the bit-vector of τ . Let j and l (with j + 1 = l) be
the dimensions of ρ and σ, respectively, we check
the bit associated with the corresponding pair com-
puting:

• the position
∑k
i=l+1

(
k+1
i+1

)
(i+ 1) of the first bit

reserved for l-simplices in τ ;

• the position of σ on the boundary of τ obtained
enumerating the faces of τ ;

• the position of the vertex in σ that is not in ρ.

For example, in Figure 8, we consider the pairing
between the 0-simplex v0 and the 1-simplex v0v2.
The bits reserved for the 1-simplices start at posi-
tion 3. The position of v0v2 on the boundary of the
triangle is 1, so we discard the first two bits. Vertex

10

v2 is missing in v0 and its position is 1. Then, the
bit representing their pairing relation is at position
3 + (2 · 1) + 1.

We have implemented a prototype of the gradi-
ent encoding based on the dynamic bitset provided
by the Boost C++ library. With such encoding,
we have been able to represent the gradient frame
representation up to 40-dimensional simplicial com-
plexes. Using more involved libraries and architec-
tures could overcome the current limitations, but it
might greatly affect computation times.

5. Reductions and coreductions for discrete
Morse complexes

Reduction and coreduction operators [45] are two
homology-preserving operators used for reducing
the size of a simplicial complex without affecting
its homology. For this reason, reduction and core-
duction operators can be used in a preprocessing
approach to compute homology, or persistent
homology of a simplicial complex [32, 45, 46, 47].
Reduction and coreduction pairs can be fruitfully
used also in the context of discrete Morse theory
in order to define a Forman gradient. In this
section, we present the two methods based on such
operators, and we propose a new strategy, while
providing also a theoretical comparison of all these
techniques.

A reduction on a simplicial complex Σ corre-
sponds to a deformation retraction of a simplex
which is the face of only one other simplex in the
complex. The problem is that, in most situations,
available reductions are quickly exhausted. In or-
der to overcome this issue, coreductions have been
introduced [45], where a coreduction can be viewed
as the dual operation with respect to a reduction. A
coreduction is not feasible on a simplicial complex,
while it is available in the context of S-complexes
[45]. For the sake of simplicity, we consider an S-
complex as a simplicial complex in which some sim-
plices may be not present even if their cofaces are
in the complex. For instance, all the complexes de-
picted in Figure 9 are S-complexes. In particular,
the complexes obtained after performing a coreduc-
tion operator are examples of S-complexes which
are not simplicial complexes.
Given an S-complex Σ, a pair (σ, τ) of elements of
Σ, such that the coefficient of σ in ∂τ is ±1, is

(a) (b)

Figure 9: (a) Removal of the reduction/coreduction pair
(σ, τ), and (b) corresponding pairing of simplices σ and τ
in the gradient.

called a reduction pair if cbdΣ(σ) = {τ}, a coreduc-
tion pair if bdΣ(τ) = {σ}.

When simplifying a simplicial complex Σ, the ef-
fect of a reduction/coreduction is that of changing
the structure of Σ, by removing a pair of simplices
without affecting its homology (see Figure 9(a)).
When building a Forman gradient V , the same
pair is not removed from Σ, but added as a pair to
V (see Figure 9(b)).

A coreduction-based algorithm builds a Forman
gradient using coreduction pairs and free simplices
[11], where a free simplex is a simplex with an
empty boundary. The algorithm works on two sets
of simplices: the set of paired simplices V , initial-
ized as empty, and the set of non-excised simplices
Σ′, initialized as Σ. While Σ′ admits a coreduction
pair, the algorithm excises a coreduction pair (σ, τ)
from Σ′ and adds it to V . When no more core-
duction is feasible, a free simplex is excised from
the complex and labeled as critical. The algorithm
repeats these steps until Σ′ is empty. Since no
simplicial complex admits a coreduction pair, any
coreduction-based algorithm performs as its first
step the excision of an arbitrary vertex v, which is a
free simplex by definition, and declares it as critical.
The removal of v turns Σ′ into an S-complex and
unlocks the possibility of pairing through a core-
duction any vertex u adjacent to v.

A reduction-based approach performs reductions
and removals of top simplices [48]. We recall that
a top simplex is a simplex with an empty cobound-
ary. The algorithm works on two sets of simplices:
the set of paired simplices V , initialized as empty,
and the set of non-excised simplices Σ′, initialized
as Σ. While the set of non-excised simplices Σ′

11

admits a reduction pair, the algorithm excises a re-
duction pair from Σ′ and adds it to V . When no
more reduction is feasible, a top simplex is excised
from the complex and labeled as critical. The al-
gorithm stops when Σ′ is empty. Differently from
a coreduction-based algorithm, whose first step is
necessarily the removal of a vertex, the initial step
in a reduction-based approach can involve the ex-
cision of a feasible reduction pair or the removal
of a top simplex. Similarly to the previous case,
if no reduction pair is available, the approach has
to label an arbitrary top simplex as critical and to
remove it from Σ′. After such a removal, the situ-
ation is analogous to the starting one and, so, the
same strategy can be applied.

In order to minimize the size of the discrete
Morse complex, in both approaches the creation of
a critical simplex is performed only if no more core-
duction, or reduction is feasible. Actually, even if
this condition is not satisfied, the acyclicity of the
gradient paths is still guaranteed. In the following,
we refer to this two approaches, also in the case
in which critical simplices can be created when it
is not strictly necessary, as coreduction-based algo-
rithm and reduction-based algorithm, respectively.

6. Equivalence of reduction and coreduction
sequences

In this section, we prove the equivalence between
the use of reduction and coreduction operators in
the construction of a (filtered) Forman gradient and
we introduce another class of methods which could
operate reductions and coreductions in an inter-
leaved way. The equivalence among these three
methods will give us the freedom to choose the one
that best fits our data structure.

In order to better understand how the removal
of a coreduction, or of a reduction pair affects the
coboundary and the boundary of the simplices of
a simplicial complex, we first discuss some prelim-
inary results.

Remark 1. Let τ be a simplex and let σ be one of
its faces, then there exists dim(τ)−dim(σ) faces of
τ in cbdτ (σ).

Lemma 1. In a coreduction-based algorithm, each
removal operation does not modify the coboundary
of the remaining simplices.

Proof. Let Σ be a simplicial complex on which the
coreduction-based algorithm is executed. Clearly,
the removal of a free simplex does not modify
the coboundary of any remaining simplex. Let us
consider only removals of coreduction pairs. Let
(σ, τ) be a feasible coreduction pair in the set
of non-removed simplices Σ′. The only simplices
whose coboundary can be modified by the core-
duction pair are those belonging to bdΣ′(τ) and to
bdΣ′(σ). Since, for the feasible coreduction pair
(σ, τ), bdΣ′(τ) = {σ}, the thesis is obtained by
proving that, before performing the coreduction,
bdΣ′(σ) = ∅. Suppose that there exists ν ∈ bdΣ′(σ).
By Remark 1, there exists in Σ a simplex σ′ 6= σ
such that σ′ ∈ bdΣ(τ) and ν ∈ bdΣ(σ′). Since (σ, τ)
is a feasible coreduction pair in Σ′, simplex σ′ must
have been already removed, i.e., σ′ 6∈ Σ′. Let us
proceed by induction. If (σ, τ) is the first coreduc-
tion pair performed in the coreduction-based algo-
rithm on complex Σ, then σ′ has been removed as
a free simplex, but, since ν ∈ bdΣ(σ′) and ν ∈ Σ′,
this leads to a contradiction.

Assume now that, for any removal of a core-
duction pair performed before (σ, τ), the simplex
of smaller dimension of the pair is free. Since
ν ∈ bdΣ(σ′) and ν ∈ Σ′, σ′ cannot be removed
as a free simplex, or by a coreduction pair removal
of the kind (ν′, σ′). So, σ′ has been removed by
operating a coreduction pair removal of the kind
(σ′, τ ′), which leads to a contradiction of the in-
ductive hypothesis.

Lemma 2. In a reduction-based algorithm, each
removal operation does not modify the boundary of
the remaining simplices.

Proof. Let Σ be a simplicial complex on which
the reduction-based algorithm is executed. Clearly,
the removal of a top simplex does not modify the
boundary of any remaining simplex. Let us con-
sider only removals of reduction pairs. Let (σ, τ) be
a feasible reduction pair in the set of non-removed
simplices Σ′. Similarly to Lemma 1, proving that,
before performing the coreduction, cbdΣ′(τ) = ∅
is sufficient. If there exists ν ∈ cbdΣ′(τ), then,
by Remark 1, there exist dim(ν) − dim(σ) ≥ 2
faces of ν in cbdΣ′(σ). But this leads to a con-
tradiction, because (σ, τ) is a reduction and, thus,
#cbdΣ′(σ) = 1.

We are now ready to formalize and to prove

12

the equivalence between the coreduction-based and
reduction-based algorithms.

Proposition 1. Given a simplicial complex Σ and
the Forman gradient V produced by a reduction-
based algorithm, it is always possible to obtain the
same Forman gradient through a coreduction-based
algorithm. The reverse is also true.

Proof. For the sake of brevity, we only prove that
the Forman gradient produced by a reduction-
based algorithm on Σ can be obtained with a
coreduction-based algorithm. The proof of the re-
verse is entirely similar (by using Lemma 1). Let
Σ be a simplicial complex and let

R1
1, R

1
2, . . . , R

1
i1 , R

2
1, R

2
2, . . . , R

2
i2 , . . . , R

n
1 , R

n
2 , . . . , R

n
in

(1)
be the ordered sequence of reduction pairs and
top simplices removed during the execution of a
reduction-based algorithm, where, for 1 ≤ l ≤ n
and 1 ≤ j ≤ il − 1, Rlj represents a reduction pair

and, for each 1 ≤ l ≤ n, Rlil represents a top sim-
plex.

According to the notation adopted in (1), Fig-
ure 10(a) depicts the ordered sequence of reduction
pairs and top simplices removed during the exe-
cution of a reduction-based algorithm. We want
to prove that, by using the same removals, it is
possible to obtain a sequence of coreduction pairs
and free simplices compatible with a coreduction-
based algorithm producing the same Forman gra-
dient. Figure 10(b), for example, shows a sequence
of coreduction pairs and free simplices compatible
with a coreduction-based algorithm obtained by re-
versing the reduction-based sequence depicted in
Figure 10(a) and producing the same Forman gra-
dient.

We consider the following sequence obtained tak-
ing sequence (1) in reverse order:

Rnin , R
n
in−1, . . . , R

n
1 , R

n−1
in−1

, . . . , R1
i1 , . . . , R

1
2, R

1
1

(2)
Consider (2) as an ordered list of removal oper-

ations performed on Σ. The following properties
hold:

1. For each 1 ≤ l ≤ n and 1 ≤ j ≤ il − 1, Rlj is a
feasible coreduction pair.

2. For each 1 ≤ l ≤ n, Rlil is a free simplex.

To prove the two properties, we denote with:

• Σlj the simplicial complex obtained in (1) after

performing all the removal operations up to Rlj
included;

• Slj the S-complex obtained in (2) after per-

forming all the removal operations up to Rlj
excluded.

We have that, for each value of l and j,

Σlj t Slj = Σ (3)

1. LetRlj = (σ, τ) with 1 ≤ l ≤ n and 1 ≤ j ≤ il−1.
We have to prove that it represents a coreduction in
the sequence (2), i.e., bdSl

j
(τ) = {σ}. By Lemma 2,

in (1), τ cannot be removed before the simplices in
bdΣ(τ). So, all the simplices in bdΣ(τ) \ {σ} belong
to Σlj . Then, by (3), bdSl

j
(τ) = {σ} and, thus, (σ, τ)

is a feasible coreduction in Slj .

2. Let Rlil be the simplex σ. We have to prove that
it represents a free simplex in the sequence (2), i.e.,
bdSl

il

(σ) = ∅. Analogously to 1., by Lemma 2, in

(1), all the simplices belonging to bdΣ(σ) are in
Σlil . Then, by (3), bdSl

il

(σ) = ∅ and, thus, σ is a

free simplex in Slil .
Sequence (2) satisfies properties 1. and 2. So, it
represents a sequence of removals compatible with
a coreduction-based algorithm producing on Σ the
same Forman gradient of (1).

It is interesting to understand if the equivalence
between reduction-based and coreduction-based al-
gorithms still holds with the further condition that
allows for the introduction of a critical simplex
only if no reduction [coreduction] pair is available.
Proposition 1 ensures that, given a reduction [core-
duction] sequence produced on a simplicial complex
Σ by an algorithm requiring such a condition, it
is always possible to find a coreduction [reduction]
sequence inducing the Forman gradient on Σ. In
spite of this, Proposition 1 does not guarantee that
a sequence produced by an algorithm satisfying the
condition mentioned above exists. Figure 11 shows
that, in general, this does not hold. The Forman
gradient depicted in Figure 11 can be considered as
produced by a reduction-based algorithm starting

13

(a)

(b)

Figure 10: (a) A sequence of reduction pairs (green arrows) and top simplex removals (red simplices) produced by a
reduction-based algorithm on a simplicial complex and (b) the sequence of coreduction pairs resulting in the same gradient
than (a).

Figure 11: A Forman gradient on a simplicial complex that
cannot be produced by a coreduction-based algorithm in
which critical simplices are introduced only when no more
coreduction pair is feasible.

with the removal of the top simplex τ and introduc-
ing critical simplices only when it is strictly neces-
sary. This Forman gradient cannot be produced
by a coreduction-based algorithm in which critical
simplices are introduced only when no more core-
duction pair is feasible because such an algorithm
applied to this simplicial complex necessarily pro-
duces a Forman gradient with just one critical sim-
plex of dimension 0 and two critical simplices of
dimension 1.

7. Interleaving reductions and coreductions

A new method to build a gradient field V on a
simplicial complex is to execute removals of reduc-
tion and coreduction pairs in an interleaved way.
We denote as interleaved-based algorithm an algo-
rithm producing a discrete vector field by using re-
movals of reduction and coreduction pairs, of top
simplices and of free simplices. Given a simplicial
complex Σ, pairs of simplices are excised from Σ by
arbitrarily choosing between reduction or coreduc-
tion pairs. When no more pairs can be removed,

a free simplex or a top simplex is excised from the
complex and labeled as critical. The algorithm re-
peats these steps until Σ is empty.

Here, we prove that such an algorithm actually
produces a Forman gradient and that all interleaved
methods are equivalent.

Proposition 2. Given a simplicial complex Σ, the
discrete vector field V produced by any interleaved-
based algorithm is a Forman gradient.

Proof. Given two pairs (σ, τ), (σ′, τ ′) in V , we de-
fine (σ, τ) ≤ (σ′, τ ′) if there exists a V -path start-
ing with (σ, τ) and ending with (σ′, τ ′). In order to
prove the thesis, i.e., that V is free of closed V -path,
it is enough to prove that ≤ define a partial order
on V . Consider set V as built in any intermediate
step of the proposed algorithm and let (σ, τ) be the
last pair inserted in V . The following properties
allow to achieve the thesis:

1. (σ, τ) is a minimal element with respect to
the elements already inserted in V originating
from a coreduction pair;

2. (σ, τ) is a maximal element with respect to
the elements already inserted in V originating
from a reduction pair.

Suppose that condition 1 does not hold. Then,
there must exist an already performed coreduction
pair (σ′, τ ′) such that σ ∈ bd(τ ′). This implies that,
at the step in which (σ′, τ ′) has been performed,
σ, σ′ ∈ bd(τ ′). But this is impossible, otherwise the
coreduction pair (σ′, τ ′) could not have been per-
formed.

14

Suppose that condition 2 does not hold. Then,
there must exist an already performed reduction
pair (σ′, τ ′) such that σ′ ∈ bd(τ) and this implies
that, at the step in which (σ′, τ ′) has been per-
formed, τ, τ ′ ∈ cbd(σ′). But this is impossible,
otherwise the reduction pair (σ′, τ ′) could not have
been performed.

Having proven that any possible interleaved
method leads to a Forman gradient, we are now
interested in understanding if these different ap-
proaches could produce equivalent results or not.
As an immediate consequence of Lemma 1 and
Lemma 2, we can claim the following result.

Remark 2. In each interleaved-based algorithm,
each coreduction pair and free simplex removal can-
not make a reduction pair feasible; each reduction
pair and top simplex removal cannot make a core-
duction pair feasible.

Finally, we can prove that all interleaved meth-
ods are equivalent.

Proposition 3. Given a simplicial complex Σ
and the Forman gradient V on it produced by
an interleaved-based algorithm, it is always pos-
sible to obtain the same Forman gradient with a
reduction-based algorithm or, equivalently, with a
coreduction-based algorithm.

Proof. We prove that the sequence of removals pro-
duced by an interleaved-based algorithm on a sim-
plicial complex can be also obtained with a se-
quence of coreduction pairs and free simplex re-
movals. By Remark 2, we can suitably order such a
sequence, moving all the coreduction pairs and the
free simplices at the beginning, thus creating a new
sequence equivalent to the previous one. We apply
to the last part, composed only of reduction pairs
and top simplices, of this new sequence the same
sorting strategy proposed in Proposition 1 to trans-
form a reduction-based sequence to a coreduction-
based sequence, and in this way, we obtain the the-
sis.

From both an application and a theoretical point
of view, it is interesting to find a method to build
a Forman gradient which minimizes the number of
critical simplices. It is known that, in general, this
problem is NP-hard [66]. The previous results show
that, from a theoretical point of view, the use of

different simplification operators (such as reduction
and coreduction pairs), or the combination of more
than one, does not actually affect the number of
resulting critical simplices.

For the sake of completeness, let us note that the
results proven in this section still hold when the
above-described approaches are applied to build a
filtered Forman gradient. This is due to the fact
that the satisfaction of the condition required to
guarantee that V is a filtered Forman gradient with
respect to a filtration F does not take into account
if the pairs of V have been created thanks to a
reduction or a coreduction operator.

8. A coreduction-based algorithm for com-
puting a discrete Morse complex

In this section, we describe an algorithm based
on the IA∗ data structure for computing a dis-
crete Morse complex. The algorithm consists of two
steps: (i) computation of a (filtered) Forman gra-
dient through a coreduction-based approach, and
(ii) extraction of the boundary maps defining the
discrete Morse complex.

8.1. Construction of a (filtered) Forman gradient

The theoretical equivalences proven in Section 6
and Section 7 tell us that there is no preferable
homology-preserving operator for computing a For-
man gradient. Here, we introduce a new dimension-
independent algorithm, that can also runs in par-
allel, which uses a representation of the simplicial
complex as an IA∗ data structure and the encoding
of the Forman gradient discussed in Subsection 4.

The basic underlying approach is the
coreduction-based algorithm, introduced in
[11] and implemented there only for regular grids.
We summarize it for simplicial complexes. When
considering simplicial complexes, the coreduction-
based algorithm computes a Forman gradient by
using coreduction pairs starting from the simplices
of lowest dimension. The set of k-simplices of
complex Σ is considered by increasing values of k,
starting from k = 0. As long as a coreduction pair
exists between a k-simplex σ and a (k+ 1)-simplex
τ , pair (σ, τ) is added to the Forman gradient V .
When no k-simplex can be paired, one simplex is
randomly chosen and declared critical. When all
k-simplices have been paired or denoted as critical,

15

the working dimension k is increased by one. Since
no coreduction pair is feasible on a simplicial
complex, at the first step, an arbitrary vertex v is
denoted as critical in V to trigger coreductions.
In [32], the coreduction-based approach is used
for persistent homology computation, and thus by
considering a filtration of the original complex. If
each simplex is paired only with another simplex
belonging to the same filtration value, the result-
ing discrete Morse complex will have the same
persistent homology of the original complex.

The dimension-independent coreduction-based
algorithm proposed here, unlike previous ones, uses
a local approach that allows us to work on the stars
of the vertices independently, which makes it par-
ticularly suitable for a parallel implementation. We
define an indexing on the vertices of the input sim-
plicial complex Σ, and we extend the indexing to all
the simplices in such a way that each simplex in Σ
has an index equal to the maximum of the indexes
of its vertices. With such indexing, the coreduction
pairs can be computed locally to the lower star of
each vertex. Given a vertex v, a simplex σ belongs
to the lower star of v (denoted as St−(v)) if: (i) σ
is a coface of v, and (ii) v has lowest index value
among the vertices of σ. Algorithm 1 illustrates the
process for computing a Forman gradient on a sim-
plicial complex Σ having an indexing F0 defined on
its vertices.

The algorithm iterates on the vertices of Σ, ex-
tracting first the top simplices in the lower star of
v, denoted as LTv, which are encoded in a list. For
each vertex v, the algorithm iterates on the dimen-
sion of the simplices in the lower star of v. The
algorithm works, for each dimension, with two sets
of simplices: the set of k-simplices that can be de-
clared critical, denoted as CRv (row 12), and the
set of (k + 1)-simplices to pair (row 14), denoted
as STv. CRv and STv have a maximum size equal
to the maximum, by varying k, of the number of
k-simplices in the lower star of a vertex in Σ, and
they are encoded as balanced binary search trees.
A candidate simplex is extracted from set STv (row
16) and paired with its unique unpaired face (row
18). Recall that a simplex τ can be paired with
another simplex σ by coreduction if σ is the only
unpaired face of τ . If there are no coreductions
available (row 21), a new critical simplex is taken
from CRv. Every time a simplex is paired or set
as critical, it is also removed from STv or CRv, re-

Algorithm 1 - FormanGradient(Σ,F0)

1: INPUT: Σ, d-dimensional simplicial complex
2: INPUT: F0, indexing of vertices of Σ
3: OUTPUT: V , Forman gradient; C, set of crit-

ical simplices
4: Σ0 := vertices of Σ
5: V := ∅
6: C := ∅
7: for v ∈ Σ0 do
8: k := 0
9: STv := {v}

10: LTv := LowerTop(v,Σ, F0)
11: while k <= d do
12: CRv := STv
13: k := k + 1
14: STv := LowerStar(v,Σ, F0, LTv, k)
15: while CRv 6= ∅ do
16: (σ, τ) := getNextPair(v,Σ, STv, CRv)
17: if (σ, τ) 6= ∅ then
18: addPair(σ, τ, V)
19: Remove(τ, STv)
20: Remove(σ,CRv)
21: else
22: σ = getF irstCritical(CRv)
23: addCritical(σ,C)
24: remove(σ,CRv)
25: end if
26: end while
27: end while
28: end for

spectively. When set CRv is empty, the working
dimension is increased. The algorithm terminates
when all the simplices in the lower star of each ver-
tex v have been paired, or set as critical.

The procedures and the functions, on which Al-
gorithm 1 is based, are:

• Function LowerTop(v,Σ, F0): computes all
the top simplices of Σ belonging to the lower
star of v and encodes such simplices in list LTv.
This is performed by navigating the star of ver-
tex v through the adjacency arcs in the IA∗

data structure. Thus, it works in time O(tv),
where tv denotes the number of top simplices
in the star of v.

• Function LowerStar(v,Σ, F0, LTv, k): ex-
tracts all the k-simplices belonging to the lower

16

star of v from LTv and encodes such sim-
plices in STv. This operation is performed
by cycling on the elements of LTv and collect-
ing the k-faces of each top simplex that are
also incident in v. The extraction of the k-
simplices of a top simplex of dimension i is
performed in O(

(
i+1
k+1

)
). If we denote as tv,i

the number of top simplices of dimension i
incident in v, the total number Nk of sim-
plices extracted is Nk =

∑d
i=1 tv,i

(
i+1
k+1

)
) in the

worst case, since some simplices are contained
within the boundary of more than one top sim-
plex. Since each of such simplices is inserted in
STv, LowerStar(v,Σ, F0, LTv, k) may require
O(Nk logNk) time in the worst case.

• Procedure addPair(σ, τ, V): adds a new pair
to V . Since the gradient pairs are encoded on
the top simplices only, we have to find the top
simplices incident in both σ and τ . This is
done by examining all the top simplices in the
star of a vertex of σ and detecting all those
having τ on their boundary. For each of these
latter, we update the corresponding bit-vector.
The operation requires O(tw), where tw de-
notes the number of top simplices incident in
a vertex w of σ.

• Function getNextPair(v,Σ, STv, CRv): iter-
ates on the set of unpaired simplices STv se-
lecting the first simplex available for a core-
duction. For each simplex τ in STv, the sim-
plices on the boundary of τ containing v are
extracted, and then, for each of such bound-
ary simplices σ, the membership of σ to CRv
is checked. In the worst case, we will need to
check the membership of all the elements in
CRv. This leads to a worst-case complexity of
O(k|STv||CRv| log |CRv|).

• Function getF irstCritical(CRv): returns the
first simplex in the set of candidate critical
simplices CRv. Since CRv is implemented as
a balanced binary search tree, the worst-case
time complexity is O(log |CRv|).

• Procedure Remove(σ,CRv): eliminates a sim-
plex from CRv (or STv). Since both CRv
and STv are implemented as a balanced binary
search tree, the worst-case time complexity is
O(log |CRv|).

For each dimension, the computation cost is
dominated by the cost of executing Function
getNextPair(STv, CRv,Σ). If we denote as crm
and as stm the maximum size of CRv and STv, re-
spectively over all dimensions, the time complexity
for a single vertex v is O((d− 1)stmcrm log(crm)).
Note that both crm and stm can be of the order of
the number of k-simplices incident in v. Since the
algorithm computes the Forman gradient locally to
the lower star of each vertex, the approach is easy
to parallelize by running Algorithm 1 on multiple
vertices at a time. Results are shown in Section 9.

We prove the correctness of Algorithm 1 by show-
ing that it is a coreduction-based algorithm ensur-
ing that the generated discrete vector field V is a
filtered Forman gradient.

Proposition 4. Let Σ be a simplicial complex,
F0 : Σ0 → R be an injective function and F be
the filtration of Σ naturally induced by F0. Given
Σ and F0 as input, Algorithm 1 returns a filtered
Forman gradient with respect to F .

Proof. Algorithm 1 processes the lower stars of the
vertices of Σ independently. Without loss of gener-
ality, we can assume that the lower stars are pro-
cessed in a sequence ordered by ascending values
of function F0. In this way, we obtain an ordered
sequence of simplices added to the gradient V and
to the set of critical simplices C. We prove that
this sequence, denoted as S, actually represents a
feasible sequence of coreduction pairs and free sim-
plices for Σ. Let us consider a pair of simplices
(σ, τ) declared as a pair of V during the processing
of the lower star St−(v) of v. Let σ′ be a simplex
in bdΣ τ different from σ. If σ′ ∈ St−(v), then σ′

has to be already added to V or to C. Otherwise,
if σ′ 6∈ St−(v), then there exists a vertex w of Σ
such that σ′ ∈ St−(w) and F0(w) < F0(v). So,
σ′ has to be already added to V or to C during
the processing of St−(w). In both cases, (σ, τ) can
be considered as a feasible coreduction pair in the
sequence S. Similarly, any simplex σ added to C
during the processing of a lower star can be con-
sidered as a free simplex in the sequence S. So,
Algorithm 1 is a coreduction-based algorithm and
then, thanks to Proposition 2, it returns a Forman
gradient. Moreover, since Algorithm 1 pairs only
simplices belonging to the same lower star and, by
the definition of F , these simplices have the same

17

filtration value. Thus, the returned Forman gradi-
ent V is necessarily filtered with respect to F .

8.2. Extracting the discrete Morse complex

The discrete Morse complexM∗ associated with
a (filtered) Forman gradient V on Σ is retrieved
by navigating the paths of V . The output consists
of the boundary maps ∂̃k : Mk → Mk−1. These
latter can be seen as the arcs of a graph in which
the nodes correspond to the critical simplices and
each arc has a multiplicity which corresponds to a
gradient path between two critical simplices.

Extracting the boundary maps by visiting the
paths of V may cause simplices to be visited more
than once, as discussed in [10]. In the worst case,
a critical k-simplex may be connected by V -paths
to all the k-simplices of Σ (this set is denoted as
Σk). Moreover, each k-simplex of this set can be
visited, via multiple V -paths, more than once; in
the worst case each simplex will be visited O(|Σk|)
times. The resulting worst-case complexity for re-
trieving the boundary maps of a single critical k-
simplex can be quadratic in the number |Σk| of k-
simplices of Σ.

Even if this is a very rare case, some solutions
have been proposed to guarantee lower complex-
ity bounds by either using a Boolean function for
marking the visited simplices [67, 57], or by us-
ing a priority queue [55] for limiting the number of
simplices visited more than once. Both approaches
have limitations however. The approach in [67] is
useful for reconstructing a combinatorial represen-
tation for the connectivity of the critical simplices,
but it does not visit all the possibile paths, which is
necessary for retrieving the correct boundary maps
in Z. The approach in [55] can successfully retrieve
the correct boundary maps, but it requires a input
scalar function to be defined all over the simplices
of Σ.

The algorithm presented here is based on the
general approach outlined in [10].

Algorithm 2 illustrates the steps required for
traversing the gradient paths in a descending fash-
ion. Starting from a critical k-simplex τ , a breadth-
first traversal is performed by navigating from τ
to its adjacent k-simplices passing through their
shared (k − 1)-simplices. The breadth-first traver-
sal is supported by a queue Q. Given a k-simplex
τ0 extracted from the queue Q (row 8), we examine
all the (k − 1)-simplices σ in the boundary of τ0

Algorithm 2 - BoundaryMaps(Σ,τ ,V)

1: INPUT: Σ, d-dimensional simplicial complex
2: INPUT: τ , critical k-simplex
3: INPUT: V , Forman gradient
4: OUTPUT: M , boundary maps as collections of

arcs
5: Q := ∅
6: Q.enqueue(τ)
7: while Q 6= ∅ do
8: τ0 := Q.dequeue()
9: for σ1 ∈ getBoundary(τ0,Σ) do

10: if isPaired(σ1, V, τ1) then
11: Q.enqueue(τ1)
12: else
13: Add(M, τ1, σ1)
14: end if
15: end for
16: end while

(row 11). For each (k− 1)-simplex σ, if σ is paired
with a k-simplex τ1 (row 12), τ1 is added to the
queue (rows 15 and 16). If σ is a critical simplex,
then σ is stored as on the boundary of τ .

In Figure 12(a), we show an example of the de-
scending traversal performed by starting from crit-
ical triangle τ . For each edge on the boundary of
τ , the paired triangle is visited and enqueued (indi-
cated in red in Figure 12(b)). The process contin-
ues recursively for each new triangle (Figure 12(c))
until the entire region associated with τ has been
covered. When a critical edge σ is encountered,
the relation with τ is stored in the boundary maps
(Figure 12(d)).

The procedures and the functions, on which Al-
gorithm 2 is based, are:

• Function getBoundary(τ,Σ): returns the im-
mediate boundary of k-simplex τ , i.e., its (k−
1)-faces. Extracting the immediate boundary
is performed by taking all the combinations of
the k vertices of τ , and it is a linear process in
the number of vertices of τ .

• Function isPaired(σ, V, τ1): returns the value
True if (k − 1)-simplex σ is paired with a k-
simplex in V and the value False otherwise. In
the former case it returns the paired simplex
τ1. This is done by considering all the top sim-
plices in the star of a vertex w of σ and visiting

18

(a) (b) (c) (d)

Figure 12: Descending traversal starting from τ . Expanding the gradient V -paths the critical edge σ is encountered and
stored as connected to τ .

the gradient encoding of those top simplices
which are incident in σ. The time complex-
ity is O(tw) in the worst case, where tw is the
number of top simplices incident in vertex w.

Algorithm 2 is executed for each critical sim-
plex in the Forman gradient. For each k-simplex
τ popped from Q, the for loop is performed up
to k times. For each simplex σ on the boundary
of τ we check whether it is paired or not O(tw).
Then, we can conclude that each iteration of the
while loop takes O(ktm), where tm is the maxi-
mum of the number of top simplices tk considered
in isPaired at the varies of σ. The algorithm has
O(qktm) worst-case time complexity, where q is the
number (counted with multiplicity) of k-simplices
of Σ inserted in the queue Q.

9. Experimental results

In this section, we evaluate the performances of
the coreduction-based algorithm for Forman gra-
dient computation and of the algorithm for com-
puting the boundary maps that give a Morse com-
plex, described in Section 2.3, which are based on
the encoding of the original simplicial complex as
an IA∗ data structure. As described in Section
8, computing the Forman gradient focusing on the
lower star of each vertex is an operation well suited
for distributed, or parallel implementation. To test
the gain in performances of such an approach, we
have implemented also a parallel version of our gra-
dient computation algorithm based on OpenMP.
We compare our two implementations (sequential
and parallel) with the implementation provided by
Perseus which computes the Morse complex using

Dataset |Σ| |C| IA∗ IA∗p IG

DTI-scan 24M 0.14M (171x) 3.1m 0.7m 77.3h
VisMale 118M 0.94M (125x) 29.2m 6.5m -
Ackley4 204M 0.01M (104x) 1.1h 19.7m -
Amazon1 2.2M 0.16M (13.7x) 14.5s 3.7s 20.9h
Amazon2 18.4M 0.37M (49.7x) 281.9s 68.3s >200h
Roadnet 4.8M 0.75M (6.4x) 15.8s 6.06s >200h
S1.0 0.6M 16 (105)x 56.8s 22.1s 61.7s
S1.2 26M 12 (107)x 4.2h 1.8h -
S1.3 197M 7 (108)x 173h 74.3h -

Table 2: Compression factor achieved by using the discrete
Morse complex instead of the original simplicial complex.
Column |C| indicates the number of critical simplices, as
opposed to the number of simplices |Σ|, for each dataset.
Columns IA∗, IA∗

p and IG indicate the timings required for
computing the discrete Morse complex with our sequential
implementation, the multi-thread implementation, and the
Perseus tool, respectively.

an IG for encoding the input simplicial complex.
To the extent of our knowledge, there are no im-
plementations of the discrete Morse complex on a
Simplex Tree.

In our experiments, we consider both real and
synthetic datasets. The hardware configuration
used is an Intel i7 3930K CPU at 3.20Ghz with
64GB of RAM. The data sets used in our experi-
ments are described in Table 1. There are tetrahe-
dralized volume data sets, and data sets obtained
from networks and point clouds. Networks and
point clouds have no filtration provided as input.

In Table 2, we show first information about the
size of the obtained discrete Morse complex (i.e.,
the number of cells), with respect to the origi-
nal simplicial complex. The compression factor
depends on the homological changes in the filtra-
tion of a dataset and on the dataset. Volumet-
ric datasets benefit from a compression of about

19

two orders of magnitude, network datasets are com-
pressed by a factor of ten, while higher-dimensional
complexes are compressed by five to eight orders of
magnitude. This shows the advantage of using the
Morse complex instead of the original one for com-
puting homological information.

By comparing the timings, we see that our ap-
proach (based on the IA∗ data structure) always
outperforms Perseus (based on the IG). When the
number of simplices is low (dataset Sphere-1.0),
the two implementations require a similar amount
of time but, as soon as the number of simplices
increases, our approach is faster by two or three
orders of magnitude. With the increasing of the di-
mension of the complex, we see that the complexity
of computing the discrete Morse complex reaches
its limits taking also 173 hours to complete for
dataset Sphere-1.3. In our multi-threaded imple-
mentation, we have been able to use eight threads
on our machine configuration, processing 8 vertices
at a time. The speed up gained varies between a
2x and a 5x.

Figure 13 shows three evaluations. In the first
graph, we are evaluating the memory used for rep-
resenting the simplicial complex Σ (in blue) and
the Forman gradient V (in red). We can notice
that for the first three data sets, the complex is
the entity requiring the highest amount of mem-
ory. For the remaining data sets, we notice that
when the dimension increases, the storage cost de-
creases. For example, when comparing Ackeley4
and S1.0, the total number of simplices is almost
the same (see Table 2, column |Σ|), while memory
consumption is dramatically reduced, being dataset
S1.3 stored with less than 3.4MB compared to the
7.9GB required by Ackeley4. This is again due
to the use of the IA∗ data structure and to the en-
coding for the Forman gradient based on the top
simplices.

While extracting the lower star in Algorithm 1,
the k-simplices are recursively extracted from the
IA∗ data structure and explicitly represented. This
operation causes the main increase in the memory
consumption at runtime. This is documented in the
remaining graphs of Figure 13. We are indicating
in green the static overhead required for storing the
simplicial complex and the Forman gradient and in
purple the amount of memory used at runtime.

As we can notice (column IA∗), the difference
between the static overhead and the dynamic over-

head is larger when working on datasets in higher
dimensions, while it becomes negligible when work-
ing in two or three dimensions. This fact is intrinsi-
cally related to the dimension d of the original sim-
plicial complex. When d is small, the lower star of
each vertex is also small. When working on higher
dimensional complexes, the number of simplices in
the lower star grows exponentially, since the num-
ber of simplices on the boundary of any k-simplex
is exponential in k. In the worst-case scenario of
our experiments (S1.3), the encoding of the star
occupies 1.8GB at runtime, while storing the sim-
plicial complex and the gradient requires less than
100MB.

The implementation in Perseus, based on the IG,
does not present a difference between static and dy-
namic overhead, since all the simplices are already
represented at the beginning and progressively sim-
plified during the computation. Thus, the max-
imum peak is reached before starting the reduc-
tion algorithm. As a result, the IG presents seri-
ous limitations when the dimension of the complex
increases.

If we considering our parallel implementation
(column IA∗p), we see that the maximum peak of
memory is higher, since all threads run on the same
machine. Looking at the graphs in the first column
(DTI-scan, VisMale, Ackley4), we recognize
that the runtime overhead of this version is still
comparable to the one of the single-thread imple-
mentation. This is an expected result since these
are low dimensional data sets with a fairly small
lower star for each vertex. With the increasing in
the data set dimension (second column), the over-
head required by the parallel implementation starts
to be relevant. In the worst case, we have expe-
rienced a memory overhead up to 6 times larger
than the single thread implementation (third col-
umn data set S1.3). These results suggest that
the whole framework is promising for a distributed
environment, where each process has its dedicated
amount of memory.

10. Concluding remarks

We have studied different strategies to endow a
simplicial complex with a Forman gradient through
the use of homology-preserving operators and to
extract the corresponding discrete Morse complex.

20

Figure 13: Storage cost required by computing and storing the Forman gradient and the discrete Morse complex. The
first graph on the left indicates the amount of memory in GB required for storing the simplicial complex (blue bars) and
the Forman gradient (red bars). The remaining graphs indicate, for each dataset, the amount of memory in GB used
for storing the complex and the Forman gradient (green bars), and the overhead required at runtime for computing the
gradient (purple bars). Results are presented comparing the IA∗ data structure, the IG, and the parallel implementation
based on the IA∗ data structure (indicated as IA∗

p). Missing columns represent experiments that exceeded the maximum
amount of memory available.

We have formally proven the theoretical equiva-
lence of such methods which allow for reducing
the complexity of the computation through reduc-
tions and coreductions. We have developed and
implemented algorithms to efficiently build a dis-
crete Morse complex based on coreductions, on a
space-efficient representation of the simplicial com-
plex and on a compact encoding of the Forman gra-
dient, also implementing a parallel version of the
latter.

Based on the results obtained from the parallel
implementation, we are currently working on a dis-
tributed version of Algorithm 1. Since the process
is localized within the star of each vertex, by dis-
tributing the computation on different machines,
we expect to get a boost on timings without affect-
ing memory consumption.

We are also considering the application of this
work in single-parameter and multi-parameter per-
sistent homology computation, as the basis for tools
for shape understanding and retrieval, and in seg-
mentation of time-varying 3D scalar fields in the
context of scientific data visualization.

The best implementation currently available in
the literature for computing persistent homology

[28] on high-dimensional complexes is based on an-
notations and on the Simplex Tree and it represents
all the simplices of the simplicial complex explicitly
[62]. This is also the case for any persistent ho-
mology computation algorithms based on boundary
map reduction, because of the need to represent all
the simplices explicitly. This puts practical limita-
tions when working on large complexes. In these
cases, our approach is particularly useful since the
Morse complex is a simpler structure sharing the
same persistent homology as the original simplicial
complex.

Multi-parameter persistent homology (also called
multi-dimensional persistent homology) is an ex-
tension of persistent homology for data character-
ized by multiple parameters, like multi-field data
sets. In this case, not a single filtration but mul-
tiple filtrations are considered. To date, the ap-
proaches proposed in the literature for computing
multi-parameter persistent homology are at a pi-
oneering level and are not able to deal with the
complexity and the size of real datasets. Recently,
an interesting connection between multi-parameter
persistent homology and discrete Morse theory has
been pointed out in [14]. A formal proof is given

21

of the equivalence between the multi-parameter
persistent homology of the Morse complex defined
by a Forman gradient compatible with the multi-
filtration and that of the underlying simplicial com-
plex is provided. An algorithm has been proposed
by Allili et al. [15] for computing a Forman gradi-
ent on a vector-valued function, but its implemen-
tation is limited to triangle meshes of very small
size. Based on the dimension-independent encod-
ing for the Forman gradient described in this pa-
per, we are planning to develop a new algorithm
that works independently of the dimension of the
domain (the underlying simplicial complex) and of
the codomain (the number of filtrations provided).
A parallel implementation will be also at the center
of future studies for empowering the computation
of multi-parameter persistent homology.

In scientific visualization, extremum graphs have
been defined as topological tools to understand and
visualize the structure of 3D scalar fields, i.e., scalar
fields defined at points in the three-dimensional Eu-
clidean space [13]. The extremum graph is a sub-
graph of the graph representing the boundary maps
of the Morse complex. We recall that the boundary
maps encode all the incidence relations between a
critical k-simplex and a critical (k−1)-simplex, for
1 ≤ k ≤ d = dim(Σ). The extremum graph only
represents the boundary maps between critical d-
simplices and (d−1)-simplices and between critical
1-simplices and 0-simplices. For each pair of criti-
cal simplices, it also encodes the chain of simplices
that connects the two critical ones. In [13], a vi-
sualization technique, called topological spines, has
been developed specifically for extremum graphs
not only of static 3D scalar fields, but also of time-
varying fields, which can be regarded as 4D scalar
fields. The algorithms described in Section 8 can
be suitably adapted to efficiently compute the ex-
tremum graphs of a scalar field. Using the scalar
function as a filtering function, we can compute the
Forman gradient V using Algorithm 1. The gradi-
ent paths of V now describe the behavior of the in-
put scalar field. Using Algorithm 2, we can extract
the incidence relations between critical simplices
by starting the descending traversal from critical
d-simplices and from critical 1-simplices. Our ap-
proach will make the computation of extremum
graphs [68] (and topological spines) feasible for 4D
fields, but also for 3D fields defined on a tetrahe-
dral mesh (as needed for complex 3D domains),

while the current approach [13] works only works
on scalar fields defined on cubic grids.

Acknowledgments

This work has been partially supported by the
US National Science Foundation under grant num-
ber IIS-1116747. The authors wish to thank Davide
Bolognini, Emanuela De Negri and Maria Evelina
Rossi for their helpful comments and suggestions.

References

[1] V. De Silva, R. Ghrist, Homological sensor
networks, Notices of the American Mathemat-
ical Society 54.

[2] R. Fellegara, U. Fugacci, F. Iuricich, L. De Flo-
riani, Analysis of geolocalized social net-
works based on simplicial complexes, in: 9th
ACM SIGSPATIAL International Workshop
on Location-Based Social Networks (LSBN),
ACM, 2016.

[3] S. Martin, A. Thompson, E. A. Coutsias, J.-P.
Watson, Topology of cyclo-octane energy land-
scape, Journal of Chemical Physics 132 (23)
(2010) 234115.

[4] R. van de Weygaert, G. Vegter, H. Edelsbrun-
ner, B. J.-T. Jones, P. Pranav, C. Park, W. A.
Hellwing, B. Eldering, N. Kruithof, E. Bos,
et al., Alpha, Betti and the Megaparsec uni-
verse: on the topology of the cosmic web, in:
Transactions on Computational Science XIV,
Springer, 2011, pp. 60–101.

[5] M. K. Chung, P. Bubenik, P. T. Kim, Per-
sistence diagrams of cortical surface data, in:
Information Processing in Medical Imaging,
Springer, 2009, pp. 386–397.

[6] R. Forman, Morse theory for cell complexes,
Advances in Mathematics 134 (1) (1998) 90–
145.

[7] P. Frosini, M. Pittore, New methods for reduc-
ing size graphs, International Journal of Com-
puter Mathematics 70 (3) (1999) 505–517.

22

[8] A. J. Zomorodian, The tidy set: a minimal
simplicial set for computing homology of clique
complexes, in: Proceedings of the 2010 An-
nual Symposium on Computational Geometry,
ACM, 2010, pp. 257–266.

[9] L. De Floriani, U. Fugacci, F. Iuricich, P. Mag-
illo, Morse complexes for shape segmentation
and homological analysis: discrete models and
algorithms, Computer Graphics Forum 34 (2)
(2015) 761–785.

[10] V. Robins, P. J. Wood, A. P. Sheppard, The-
ory and algorithms for constructing discrete
Morse complexes from grayscale digital im-
ages, IEEE Transactions on Pattern Analysis
and Machine Intelligence 33 (8) (2011) 1646–
1658.

[11] S. Harker, K. Mischaikow, M. Mrozek,
V. Nanda, Discrete Morse theoretic algorithms
for computing homology of complexes and
maps, Foundations of Computational Mathe-
matics 14 (1) (2014) 151–184.

[12] S. Harker, K. Mischaikow, M. Mrozek,
V. Nanda, H. Wagner, M. Juda, P. D lotko,
The efficiency of a homology algorithm based
on discrete Morse theory and coreductions,
in: Proceedings 3rd International Workshop
on Computational Topology in Image Context
(CTIC 2010). Image A, Vol. 1, 2010, pp. 41–
47.

[13] C. Correa, P. Lindstrom, P.-T. Bremer, Topo-
logical spines: a structure-preserving visual
representation of scalar fields, IEEE Transac-
tions on Visualization and Computer Graphics
17 (12) (2011) 1842–1851.

[14] M. Allili, T. Kaczynski, C. Landi, Reducing
complexes in multidimensional persistent ho-
mology theory, Journal of Symbolic Computa-
tion 78 (2017) 61 – 75.

[15] M. Allili, T. Kaczynski, C. Landi, F. Ma-
soni, Algorithmic construction of acyclic par-
tial matchings for multidimensional persis-
tence, Springer, 2017, pp. 375–387.

[16] U. Fugacci, F. Iuricich, L. De Floriani, Ef-
ficient computation of simplicial homology
through acyclic matching, in: Symbolic and

Numeric Algorithms for Scientific Computing
(SYNASC), 2014 16th International Sympo-
sium on, 2014, pp. 587–593.

[17] D. Canino, L. De Floriani, K. Weiss, IA∗:
an adjacency-based representation for non-
manifold simplicial shapes in arbitrary dimen-
sions, Computers & Graphics 35 (3) (2011)
747–753.

[18] V. Nanda, The Perseus software project for
rapid computation of persistent homology.
URL http://www.math.rutgers.edu/

~vidit/perseus/index.html

[19] A. T. Lundell, S. Weingram, The topology of
CW complexes, Van Nostrand Reinhold Com-
pany, 1969.

[20] H. Edelsbrunner, D. G. Kirkpatrick, R. Sei-
del, On the shape of a set of points in the
plane, IEEE Transactions on Information The-
ory 29 (4) (1983) 551–559.

[21] E. W. Chambers, V. De Silva, J. Erickson,
R. Ghrist, Vietoris-Rips complexes of planar
point sets, Discrete & Computational Geome-
try 44 (1) (2010) 75–90.

[22] A. Hatcher, Algebraic topology, Cambridge
University Press, 2002.

[23] A. J. Zomorodian, Fast construction of the
Vietoris-Rips complex, Computer and Graph-
ics (2010) 263–271.

[24] V. De Silva, G. Carlsson, Topological estima-
tion using witness complexes, in: Proceedings
of the First Eurographics Conference on Point-
Based Graphics, 2004, pp. 157–166.

[25] V. De Silva, A weak definition of Delaunay
triangulation, arXiv preprint cs/0310031.

[26] L. J. Guibas, S. Y. Oudot, Reconstruction us-
ing witness complexes, Discrete & Computa-
tional geometry 40 (3) (2008) 325–356.

[27] T. K. Dey, F. Fan, Y. Wang, Graph induced
complex on point data, in: Proceedings of the
Twenty-ninth Annual Symposium on Compu-
tational Geometry, SoCG ’13, 2013, pp. 107–
116.

23

http://www.math.rutgers.edu/~vidit/perseus/index.html
http://www.math.rutgers.edu/~vidit/perseus/index.html
http://www.math.rutgers.edu/~vidit/perseus/index.html
http://www.math.rutgers.edu/~vidit/perseus/index.html

[28] H. Edelsbrunner, J. Harer, Persistent homol-
ogy - a survey, Contemporary Mathematics
453 (2008) 257–282.

[29] A. J. Zomorodian, Topology for computing,
Cambridge University Press, 2005.

[30] R. Ghrist, Barcodes: the persistent topology
of data, Bulletin of the American Mathemati-
cal Society 45 (1) (2008) 61–75.

[31] R. Forman, A user’s guide to discrete Morse
theory, Séminaire Lotharingien de Combina-
toire 48 (2002) 35.

[32] K. Mischaikow, V. Nanda, Morse theory for
filtrations and efficient computation of persis-
tent homology, Discrete & Computational Ge-
ometry 50 (2) (2013) 330–353.

[33] L. De Floriani, A. Hui, Data structures for
simplicial complexes: an analysis and a com-
parison, in: M. Desbrun, H. Pottmann (Eds.),
Proc. 3rd Eurographics Symposium on Geom-
etry Processing, 2005, pp. 119–128.

[34] H. Edelsbrunner, Algorithms in combinatorial
geometry, Springer, 1987.

[35] L. De Floriani, D. Greenfieldboyce, A. Hui, A
data structure for non-manifold simplicial d-
complexes, in: Proceedings of the 2004 Eu-
rographics/ACM SIGGRAPH Symposium on
Geometry processing, ACM, 2004, pp. 83–92.

[36] L. De Floriani, A. Hui, D. Panozzo, D. Canino,
A dimension-independent data structure for
simplicial complexes, Proceedings of the
19th International Meshing Roundtable (2010)
403–420.

[37] D. Canino, L. De Floriani, Representing
simplicial complexes with Mangrove, Pro-
ceedings of the 22nd Iinternational Meshing
Roundtable (2013) 465–483.

[38] D. Canino, The Mangrove TDS Library: a
C++ tool for fast prototyping of topological
data structures (2012).
URL http://mangrovetds.sourceforge.

net

[39] R. Fellegara, K. Weiss, L. De Floriani, The
Stellar tree: a compact representation for sim-
plicial complexes and beyond, arXiv preprint
arXiv:1707.02211.

[40] J.-D. Boissonnat, C. Maria, The Simplex Tree:
an efficient data structure for general sim-
plicial complexes, Algorithmica 70 (3) (2014)
406–427.

[41] C. Maria, J.-D. Boissonnat, M. Glisse,
M. Yvinec, The GUDHI library: simpli-
cial complexes and persistent homology, in:
H. Hong, C. Yap (Eds.), Mathematical Soft-
ware ICMS 2014, Springer, 2014, pp. 167–174.

[42] J.-D. Boissonnat, K. C. S., S. Tavenas,
Building efficient and compact data struc-
tures for simplicial complexes, in: L. Arge,
J. Pach (Eds.), 31st International Symposium
on Computational Geometry, 2015, pp. 642–
656.

[43] D. Attali, A. Lieutier, D. Salinas, Efficient
data structure for representing and simplify-
ing simplicial complexes in high dimensions,
in: Proceedings of the 27th ACM Symposium
on Computational Geometry, 2011, pp. 501–
509.

[44] T. Lewiner, H. Lopes, G. Tavares, Optimal dis-
crete Morse functions for 2-manifolds, Compu-
tational Geometry 26 (3) (2003) 221 – 233.

[45] M. Mrozek, B. Batko, Coreduction homology
algorithm, Discrete & Computational Geome-
try 41 (1) (2009) 96–118.

[46] M. Mrozek, T. Wanner, Coreduction homol-
ogy algorithm for inclusions and persistent ho-
mology, Comput. Math. Appl. 60 (10) (2010)
2812–2833.

[47] P. D lotko, T. Kaczynski, M. Mrozek, T. Wan-
ner, Coreduction homology algorithm for regu-
lar CW-complexes, Discrete & Computational
Geometry 46 (2) (2011) 361–388.

[48] B. Benedetti, F. H. Lutz, Random discrete
Morse theory and a new library of trian-
gulations, Experimental Mathematics 23 (1)
(2014) 66–94.

24

http://mangrovetds.sourceforge.net
http://mangrovetds.sourceforge.net
http://mangrovetds.sourceforge.net
http://mangrovetds.sourceforge.net
http://mangrovetds.sourceforge.net

[49] F. Cazals, F. Chazal, T. Lewiner, Molecular
shape analysis based upon the Morse-Smale
complex and the Connolly function, in: Proc.
9th Annual Symposium on Computational Ge-
ometry, 2003, pp. 351–360.

[50] H. King, K. Knudson, N. Mramor, Generat-
ing discrete Morse functions from point data,
Experimental Mathematics 14 (4) (2005) 435–
444.

[51] A. Gyulassy, P.-T. Bremer, B. Hamann,
V. Pascucci, Practical considerations in
Morse-Smale complex computation, in:
V. Pascucci, X. Tricoche, H. Hagen, J. Tierny
(Eds.), Topological Methods in Data Analysis
and Visualization: Theory, Algorithms, and
Applications, Mathematics and Visualization,
Springer, 2011, pp. 67–78.

[52] A. Gyulassy, P.-T. Bremer, V. Pascucci, Com-
puting Morse-Smale complexes with accurate
geometry, IEEE Transactions on Visualization
and Computer Graphics 18 (12) (2012) 2014–
2022.

[53] D. Günther, J. Reininghaus, H. Wagner,
I. Hotz, Efficient computation of 3D Morse-
Smale complexes and persistent homology us-
ing discrete Morse theory, The Visual Com-
puter 28 (10) (2012) 959–969.

[54] N. Shivashankar, S. Maadasamy, V. Natara-
jan, Parallel computation of 2D Morse-Smale
complexes, IEEE Transactions on Visualiza-
tion and Computer Graphics 18 (10) (2012)
1757–1770.

[55] N. Shivashankar, V. Natarajan, Parallel com-
putation of 3D Morse-Smale complexes, Com-
puter Graphics Forum 31 (3) (2012) 965–974.

[56] R. Fellegara, F. luricich, L. De Floriani,
K. Weiss, Efficient computation and simpli-
fication of discrete Morse decompositions on
triangulated terrains, in: Proceedings of the
22Nd ACM SIGSPATIAL International Con-
ference on Advances in Geographic Informa-
tion Systems, SIGSPATIAL ’14, 2014, pp.
223–232.

[57] K. Weiss, F. Iuricich, R. Fellegara, L. De Flori-
ani, A primal/dual representation for discrete

Morse complexes on tetrahedral meshes, Com-
puter Graphics Forum 32 (3) (2013) 361–370.

[58] A. J. Zomorodian, G. Carlsson, Computing
persistent homology, Discrete & Computa-
tional Geometry 33 (2) (2005) 249–274.

[59] U. Bauer, M. Kerber, J. Reininghaus, H. Wag-
ner, PHAT - Persistent Homology Algorithms
Toolbox, in: H. Hong, C. Yap (Eds.), Math-
ematical Software ICMS 2014, Vol. 8592 of
Lecture Notes in Computer Science, Springer,
2014, pp. 137–143.

[60] U. Bauer, M. Kerber, J. Reininghaus, Dis-
tributed computation of persistent homology,
in: Proceedings of the Meeting on Algorithm
Engineering & Expermiments, 2014, pp. 31–
38.

[61] P. D lotko, H. Wagner, et al., Simplification
of complexes of persistent homology computa-
tions, Homology, Homotopy and Applications
16 (1) (2014) 49–63.

[62] J.-D. Boissonnat, T. K. Dey, C. Maria, The
compressed annotation matrix: an efficient
data structure for computing persistent coho-
mology, Algorithmica 73 (3) (2015) 607–619.

[63] S. Pemmaraju, S. Skiena, Computational Dis-
crete Mathematics: combinatorics and graph
theory with Mathematica, Cambridge Univer-
sity Press, 2003.

[64] D. H. Ackley, A connectionist machine for ge-
netic hillclimbing, Kluwer Academic Publish-
ers, 1987.

[65] F. Iuricich, The IA∗, an indexed-based data
structure with adjacencies for encoding sim-
plicial complexes.
URL https://github.com/IuricichF/

IAstar

[66] M. Joswig, M. E. Pfetsch, Computing opti-
mal Morse matchings, SIAM J. Discret. Math.
20 (1) (2006) 11–25.

[67] D. Günther, J. Reininghaus, I. Hotz, H. Wag-
ner, Memory-efficient computation of persis-
tent homology for 3D images using discrete
Morse theory, in: 24th SIBGRAPI Conference

25

https://github.com/IuricichF/IAstar
https://github.com/IuricichF/IAstar
https://github.com/IuricichF/IAstar
https://github.com/IuricichF/IAstar
https://github.com/IuricichF/IAstar

on Graphics, Patterns and Images, 2011, pp.
25–32.

[68] V. Narayanan, D. M. Thomas, V. Natarajan,
Distance between extremum graphs, in: 2015
IEEE Pacific Visualization Symposium (Paci-
ficVis), 2015, pp. 263–270.

26

	1 Introduction
	2 Background
	2.1 Simplicial complexes
	2.2 Simplicial and persistent homology
	2.3 Discrete Morse theory

	3 Related work
	3.1 Topological data structures for simplicial complexes
	3.2 Computing a discrete Morse complex

	4 Encoding a simplicial complex endowed with a Forman gradient
	4.1 Encoding a simplicial complex
	4.2 Experimental evaluation
	4.3 Encoding a Forman gradient

	5 Reductions and coreductions for discrete Morse complexes
	6 Equivalence of reduction and coreduction sequences
	7 Interleaving reductions and coreductions
	8 A coreduction-based algorithm for computing a discrete Morse complex
	8.1 Construction of a (filtered) Forman gradient
	8.2 Extracting the discrete Morse complex

	9 Experimental results
	10 Concluding remarks

