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Abstract. In industry CAD-models are readily avail-
able while it is expensive to obtain 3D scans of ac-
tual objects. Consequently, training object detectors
exclusively from CAD-models leads to a consider-
able decrease of the data creation effort. While this
works well for recognition, detection requires better
models to distinguish the object of interest from the
background and to take the expected sensor proper-
ties into account. To tackle this problem we synthet-
ically create depth data with domain-relevant back-
ground and apply randomized augmentation to cre-
ate a superset of the variations of real-world depth
images. Results with a state-of-the-art object de-
tector, trained using our synthetic data, show that
our approach yields better results than learning from
real-world, hand-annotated data with the LineMOD
dataset.

1. Introduction

Assembly systems in manufacturing are subject to
increasing number of variants, smaller lot sizes and
shorter life cycles. The application of assistance sys-
tems will lead to a reduced error rate and increased
capacity [4]. The task of visual assistance systems is
accurate and robust object detection.

Recently deep learning advanced the state of the
art for computer vision tasks such as object detec-
tion. While deep networks achieve superior per-
formance, they require a huge amount of training
data [8]. Capturing and annotating these data is time
and labour consuming and often requires physical in-
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Figure 1. By rendering scenes with domain relevant ob-
jects and augmenting the noise model, we create better
synthetic training data for object detection.

stances, which is problematic in fast paced manufac-
turing environments. Industrial applications, how-
ever, typically have CAD-data readily available. We
propose to take advantage of this by creating syn-
thetic training data directly from CAD-models by
rendering depth images from a virtual scene repre-
senting the domain of deployment.

Synthetic depth images are rendered using CAD
models to create a scene then we apply a random-
ized noise model. A standard tool to create syn-
thetic data is the freely available, open-source soft-
ware Blender! [1, 2, 11]. When training an object de-
tector it is important to create data of sufficient vari-
ability to discriminate the objects of interest from the
background. For object recognition, where one ob-
ject is identified in a cropped image, it is known that
arandomized background is sufficient to improve re-
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sults [16, 18]. For object detection (i.e. classifica-
tion and bounding box regression), where multiple
objects are identified in a scene, randomized back-
grounds are still insufficient to overcome all the am-
biguities. Inspired by Handa er al. [2], who cre-
ate full synthetic scenes for a semantic segmentation
task, we propose to create scenes that include the ex-
pected object placements for better training with re-
alistic depth images.

Another issue to consider is that training deep net-
works using synthetic data and deploying these on
real-world data leads to reduced performance due to
the different domains, the so called reality gap. A
common method to close the reality gap is to create
data of sufficient variability using domain random-
ization [17] or using the Perlin noise technique [18].
A major challenge is to capture the expected varia-
tions in the actual test images. Hence, we propose to
combine Perlin noise [10] with a randomized sensor
model in order to improve object detection in real-
world depth images.

In summary, we propose a domain-related render-
ing step with an improved noise modelling step re-
ferred to as augmentation. Figure 1 outlines the ap-
proach. The contributions are the following:

e Rendering synthetic scenes with domain rele-
vant objects to create a realistic background for
object detection in depth images.

e Introducing randomized augmentation of syn-
thetic depth images to better capture the ex-
pected variations in real-world data.

e Showing advance by evaluating object detection
on a standard dataset, the LineMOD dataset [5],
since bounding-box targets and class labels are
available.

The remaining paper is structured as follows. Sec-
tion 2 summarizes related work. The rendering and
augmentation method is described in Section 3. Sec-
tion 4 presents the results and evaluation. Section 5
concludes with a short discussion.

2. Related Work

This section discusses synthetic data creation and
domain randomization for object detection.

2.1. Synthetic Data Creation

Carlucci et al. [1] use Blender to create a syn-
thetic depth image dataset for object recognition.
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They use 3D CAD models downloaded from differ-
ent databases to create object categories. Views are
rendered from a configuration space consisting of ob-
ject distance, camera position, focal length and ran-
dom object warping minimizing the amount of iden-
tical rendered images. Planche et al. [11] present a
pipeline to render realistic depth images for object
recognition. They simulate the image appearance for
a wide range of sensors. Their pipeline consists of
a pattern projection mechanism, an intermediate step
impinging sensor noise followed by stereo matching
and post-processing to reproduce the spatial sensitiv-
ity of the sensors and to simulate the impact of sur-
face materials. Backgrounds such as primitive shapes
and captured real-world scans can be added. Rozant-
sev et al. [13] project the object geometry, taken
from CAD models, into RGB images. A texture fill-
ing algorithm varies the object appearance with re-
spect to blur, noise and material properties. Su et
al. [16] render multiple views of 3D objects to gen-
erate a single compact descriptor of that object using
a CNN. Handa et al. [2] create annotated synthetic
indoor scenes using an automatic furniture arrange-
ment mechanism. They use a simulated Kinect noise
model to include noise in the synthetic depth scans.

In order to enable object detection in synthetic im-
ages it is important to create background information
with sufficient variability to separate the objects of
interest from the insignificant scene parts. Previous
work has only addressed the randomization and aug-
mentation of the generated data for the object of in-
terest, which is mainly due to the focus on the task
of object recognition. We instead consider object de-
tection, and thus augment full scenes, including the
background, to generate high quality training data.

2.2. Domain Randomization

Since we use an off-the-shelf architecture as de-
tector, trained on synthetic data, it is necessary to
transfer the domain to match the real-world image
statistics. Domain randomization is a common strat-
egy to create data of sufficient variability to include
the variations of a desired domain [15, 17, 18].

Sadeghi et al. [15] learn collision avoidance for
autonomous flight from simulation. They render
RGB-images from synthetic 3D hallways. Param-
eters such as wall textures, furniture position, illu-
mination and camera pose are randomized. Tobin et
al. [17] use domain randomization to produce suf-
ficient variability at training time to enable robot



Table 1. Background objects in the virtual scenes.

simple | no additional background information

limited | Apple IMac, bin, keyboard, lamp, lap-
top, two types of screens, mouse, pot
plant, speakers

realistic | All from the limited objects, Apple

Iphone, ball, BeatsAudio, two types of
cans, bottle, Buick model, bulb, Dual-
Shock 4 controller, pc fan, knife, Nin-
tendo Gameboy, Nvidia GeForce GTX
1080, plier, spacer, stapler, tablet

grasping. Their approach randomizes shape, posi-
tion, orientation and texture of the objects involved.
The characteristics of lights and the camera extrinsics
are also randomized. Zakharov et al. [18] use domain
randomization to augment depth images. Fractal Per-
lin noise, Voronoi texturing and white noise is used
as background for rendered 3D object models. Perlin
noise is an inexpensive way to simulate sensor noise.
Randomized patterns are used to simulate occlusion.

A remaining challenge for domain randomization
is to randomize the data in the source domain in such
a way that the variations of the target domain are cap-
tured. We address this by augmenting synthetic depth
scans using a combination of Perlin noise and a ran-
domized sensor noise model. Variations of the back-
ground information and the occlusion patterns are
achieved by randomizing the placement of domain-
relevant objects.

3. SyDD: Closing the Reality Gap

We present a method to create and subsequently
augment synthetic depth images. The pipeline,
named SyDD, is presented in Figure 2.

The first step is the creation of synthetic depth im-
ages from a virtual scene. The second step is aug-
menting the synthetic depth images by adding ran-
domly sampled variation to the pixel’s depth values.
This variation of the augmented domain X? (depth
noise, lateral noise, occluded image regions, errors
due to the limited depth resolution) creates a superset
X? D X' of the variations in real-world scans, i.e.,
the target domain X*. However, we take care that
X? does not diverge too much from X" by choosing
variations in a way not to violate the sampling theory.

3.1. Rendering: Synthetic Data Creation

We create synthetic data with diverse scene setups
and background information in order to produce data
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with high variation to train object detectors. Three
different approaches to create synthetic scenes are
chosen in order to evaluate the importance of the
background information:

e simple: Objects are arranged on a table, without
further background information.

e [imited: Objects are arranged on a table with
static domain-relevant background objects.

e realistic: Objects are arranged on a table with
static domain-relevant background objects and
randomly placed domain-relevant objects.

Table 1 presents a list of background objects used
for rendering. The additional objects are downloaded
from GrabCAD?.

For every scene five to eight objects of interest are
randomly placed with repetition. These objects are
annotated with a bounding box and with pixel class
correspondences if fully visible. If not fully visi-
ble the bounding box is reduced accordingly and oc-
cluded pixels are not annotated. The camera pose is
randomly chosen from valid views described in the
dataset used for validation. The output of the syn-
thetic data creation step is a depth image, a binary
mask indicating visible image regions and a mask in-
dicating pixel level class correspondences. The bi-
nary mask provides information about image regions
with valid depth values due to the baseline distance of
the infrared projector and the sensor. Figure 3 shows
an example of the synthetically rendered depth im-
ages and visibility masks.

3.2. Augmentation: Randomized Depth Image
Variations

We apply an augmentation loosely based on a sen-
sor model and Perlin noise-based pixel warping to
the rendered depth images. In order to create a super-
set of the variations of real-world depth images the
parameters of our augmentation are randomly cho-
sen for each image.

Various works evaluate and quantify the errors of
the depth scans from infra-red based structured light
cameras such as the Microsoft Kinect V1. The most
common sources of error are the depth sensor itself,
the measurement setup and properties of the object
surface. Missing depth values are typically caused
by infrared occlusion, specular surface reflection and

*https://grabcad.com
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Figure 2. Synthetic depth image creation and augmentation pipeline.

gaps in the depth images due to strong light [7]. Our
approach is designed for objects of interest with sur-
face materials that diffusely scatter incoming light,
hence omitting the simulation of specular reflections.
We propose to randomize the parameters of our aug-
mentation to account for the intractable number of
variations and combinations of the influences in the
depth image capturing process.

Based on the imaging geometry, parts of the scene
are occluded, these occlusions are affected by strong
light illuminating the scene. In order to simu-
late that influence morphological opening and subse-
quent median filtering is applied to the mask image
that is created by the rendering script. The binary
mask is applied to the synthetic depth images to re-
move the occluded image regions. The kernel sizes
are sampled from {3,5,7}. These kernel sizes are
also used for blurring.

For further augmentation depth images are resized
to 320 by 240 pixels, since that is the resolution of the
infra-red based structured light camera, the Microsoft
Kinect V1. The images are down sampled using area
interpolation to avoid aliasing. Blur is added to min-
imize the discrepancy between depth gradients in the
real-world and synthetic images. The standard devi-
ation of the blurring operation is chosen uniformly in
a range from 0.25 to 3.5. The synthetic depth values
are rounded to the nearest quantization value, based
on the hypothesized sensor’s depth resolution [7] to
obtain synthetic depth values in an eleven bit range.

Additional noise is added to the quantized depth
values using an offset chosen randomly from a Gaus-
sian distribution. The depth noise of the sensor in-
creases non-linearly with depth, though since the ex-
pected object placement is in a range of 65 centime-
ters to 115 centimeters we approximate it linearly,
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similar to [6]. The offset is calculated per pixel using
its nearest quantized value, scaled by the parameter
nsq. The randomized parameter ngq is drawn uni-
formly between 0.002 and 0.004. This range is based
on the actual depth noise of the Microsoft Kinect V1.

Further randomness of the appearance of occluded
scene parts, depth and lateral noise is added by warp-
ing the depth images through the application of pixel
offsets, using the Perlin noise technique. This ap-
proach is similar to Zakharov et al. [18]. The basic
concept is that a 3D vector field is generated to ran-
domly distort synthetic depth images. Pixel locations
are warped by applying the sampled vector field to
the already augmented depth images. We use their
proposed parameter ranges.

An example of the synthetic depth scans is pre-
sented in Figure 4.

4. Experiments

Three experiments are conducted to evaluate our
approach. First, we compare object detection trained
on the same number of real-world and on synthetic
depth images. Second, results are presented provid-
ing quantitative information about the influence of
the background in the synthetic scene. Third, the
influence of the different steps of the augmentation
method is shown. Finally, we discuss open problems.

All the experiments are conducted on the
LineMOD dataset [5], which is taken from the SIXD
Challenge 2017°. This is a standard and well-known
baseline for object recognition and pose estimation
in RGB-D. The test set of the LineMOD dataset con-
sists of 15 test sets, one for each dataset object, with
approximately 1200 captured images per scene. Ev-
ery set has different object instances visible, although

*http://cmp.felk.cvut.cz/sixd/challenge 2017



Figure 3. Synthetic depth image (top), visibility mask
(middle) and pixel level class correspondence (bottom).

only the object in the center of the image is annotated
with a bounding box, class and pose. An exception
is the benchvise test set that has all dataset objects
annotated. Since different object instances without
annotation are visible in the test images, only the an-
notated object is considered for calculating the detec-
tion recall. In all experiments we report the percent-
age of correctly detecting and classifying annotated
objects with an Intersection-over-Union (IoU) of 0.5.
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Figure 4. Comparison of a real-world (top) and a synthetic
(bottom) depth image, converted to RGB images.

4.1. Experimental Setup

All tests are conducted with the following prepro-
cessing and network configuration. All real-world
and synthetic images are converted to three chan-
nel RGB images. These are coloured based on the
normal direction using the approach of Nakagawa et
al. [9]. Image regions with missing depth values are
inpainted and depth cuts are applied up to 20 cen-
timeters and regions further than 1.8 meters.

We use Faster-RCNN [12] with ResNet-101 [3]
backbone, pretrained on ImageNet [14], with the
standard optimizer and loss functions. The learning
rate starts at 0.01 and decays to 0.0001. We train
for 180000 iterations using a batch size of one and a
weight decay of 0.0001.

4.2. Performance on real-world data

We compare an object detector trained on real-
world images that are taken from the benchvise test



Table 2. Detection recall of Faster-RCNN trained on real-
world and on synthetic data. Numbers in percent.

Classes \ real \ SyDD ‘
ape 53.56 | 76.86
can 97.24 | 94.15
cat 41.31 | 82.70
driller 96.21 | 92.76
duck 89.39 | 93.70
eggbox 64.8 | 81.01
glue 81.72 | 70.08
holepuncher | 89.89 | 77.69
overall 76.77 | 83.62
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Figure 5. Recall and precision curve comparison of real-
world and synthetic data using different IoU scores.

set of the LineMOD dataset against an object detec-
tor trained on images created by SyDD. Table 2 com-
pares per category detection recall.

The average recall of the detector trained on our
synthetic dataset outperforms the recognizer trained
on real-world data. The performance margin results
from the higher variability in the synthetic dataset.
The biggest differences in detection recall are visible
for the objects ape, cat and eggbox. This is caused
by the scene setup used for capturing the real-world
depth scans. The ape is placed in different poses in
the scene and is either not occluded or completely
occluded in most of the images. The benchvise test
set only includes these extreme cases and does not
have many examples for partial occlusion. The cat is
placed with the same pose in all scans, which again
results in very low visibility or full visibility with the
addition of low variability of pose in the benchvise
test images. The eggbox is placed in different poses
but with a strong similarity of viewpoints. Further-
more, occlusion is caused mostly by the same object.
The randomized augmentation covers a wider range
of variations influencing the image creation process

19

Table 3. Detection recall of Faster-RCNN trained on
SyDD, with different backgrounds in the virtual scenes.
Numbers in percent.

Classes ‘ simple ‘ limited | realistic
ape 57.79 | 59.79 79.69
benchvise 65.16 | 64.09 96.05
bowl 91.24 | 93.03 85.81
camera 66.61 | 74.94 94.17
can 57.02 | 79.10 91.97
cat 58.95 | 80.75 97.71
cup 76.13 | 83.06 88.06
driller 65.99 | 84.76 96.72
duck 82.30 | 81.58 95.37
eggbox 83.32 | 92.42 93.77
glue 65.16 | 79.98 82.79
holepuncher | 74.54 | 85.53 92.97
iron 42.19 | 64.58 89.84
lamp 50.77 | 65.69 96.09
phone 71.36 | 68.22 93.00
overall 63.03 | 72.29 85.88

as well as the placement of objects in the virtual
scene. This increases the variation of occlusions and
views in comparison to the real-world images in the
benchvise test set. Figure 5 indicates that the per-
formance of the Region Proposal Network is not af-
fected by the usage of our synthetic training data.

4.3. Influence of the Background Information

The importance of the background information in
the training data is evaluated by comparing three ob-
ject detectors trained on different background ob-
jects, each consisting of 10000 images. Table 3
shows the performance recall.

The results indicate that the usage of additional
background information during synthetic data gener-
ation improves the detection recall. Results also indi-
cate that is unnecessary to use the same background
objects during training as during deployment. Our
findings show that domain specific background ob-
jects are sufficient for detectors to yield similar per-
formance to detectors trained on real-world, hand-
annotated images. The reader is directed to the de-
tection results of the bowl. The recall for this ob-
ject decreases with the usage of more comprehensive
background information.

4.4. Evaluation of the Augmentation Method

The influence of the augmentation used for creat-
ing training data is evaluated by comparing four ob-
ject detectors trained on 10000 images. The augmen-



Figure 6. Exemplary images, displaying the synthetic
training dataset, with simple background information
(top) and limited background information (bottom).

tation methods are:

e synth: non augmented synthetic depth data.

e perlin: augmenting the synthetic images only
using Perlin noise with the parameters from
[18], after removing occluded image regions us-
ing the randomized visibility mask.

e auth: randomized realistic sensor model, where
the difference to our proposed method SyDD is
that the depth noise ngy is added before quan-
tizing these to eleven bit range.

e SyDD: our proposed augmentation.

The results presented in Table 4 indicate that
strong average detection performance is achieved
when adding Perlin noise. However, even better per-
formance is achieved using our augmentation. We
conclude that augmenting images with Perlin noise
can effectively close the domain gap, but combining
with a randomized sensor model leads to even more
powerful detectors. Re-sampling the augmented im-
ages to the Kinect’s depth resolution decreases detec-
tion and classification results.
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Table 4. Detection recall of Faster-RCNN trained using

different augmentation methods. Numbers in percent.
\ Classes \ synth. \ perlin \ auth. | SyDD \

ape 59.06 | 71.76 | 67.96 | 79.69
benchvise 71.99 | 93.90 | 91.85 | 96.05
bowl 91.64 | 91.48 | 91.08 | 85.81
camera 56.54 | 84.60 | 89.84 | 94.17
can 53.51 | 94.15 | 95.32 | 91.97
cat 89.91 | 97.20 | 91.18 | 97.71
cup 73.23 | 84.19 | 81.21 | 88.06
driller 89.31 | 95.62 | 95.71 | 96.72
duck 62.04 | 93.78 | 89.63 | 95.37
eggbox 45.49 | 81.80 | 90.90 | 93.77
glue 44.02 | 85.08 | 83.44 | 82.79
holepuncher | 59.18 | 93.37 | 81.33 | 92.97
iron 39.15 | 89.41 | 78.83 | 89.84
lamp 75.31 | 93.48 | 97.96 | 96.09
phone 45.78 | 91.31 | 90.27 | 93.00
overall 59.76 | 83.82 | 82.28 | 85.88

4.5. Open Problems
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Figure 7. Detection result with incorrect detections of
stacked objects.

Qualitative results of object detection using train-
ing images from SyDD and test images from
LineMOD are presented in Figure 7 and Figure 8.
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Figure 8. Detection result with incorrect detections on
boundary regions of the image or fabric.

The RGB-images are only used for visualization.
The top of Figure 7 shows an ape placed on top of
a camera, which is incorrectly classified as driller.
A similar error is visible in the bottom of Figure 7.
The benchvise is correctly classified but the duck is
not detected. This error arises because objects in the
virtual scene are enclosed by a convex hull. Conse-
quently, perfectly stacked objects can not be found in
the synthetic images. A convex hull is used to repre-
sent the collision shape of objects to minimize errors
when performing the physics simulation.

Figure 8 shows detection results with objects in-
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correctly detected on fabric, near the image bound-
ary. The top image shows an incorrect detection of
benchvise in the upper left corner of the image. An-
other incorrectly detected instance of iron is visible
in the middle image on the right edge. These detec-
tions result from annotating only partly visible ob-
jects that are cropped by the image boundary during
training. Another common error is the detection of
objects on smoothly curved fabric surfaces as can be
seen in the bottom parts of the middle and the bot-
tom image in Figure 8. This error is a combination
of annotating boundary regions in the synthetic im-
ages and missing background information during the
rendering process.

5. Conclusion

We present a pipeline to create and augment syn-
thetic depth data to close the reality gap for object
detection. Our experiments demonstrate that deep
networks trained using our data outperform detec-
tors trained on available real-world, hand-annotated
data. This is promising because we can significantly
reduce the time and effort to generate training data
for real-world deployment of modern computer vi-
sion algorithms.

Our method efficiently closes the domain gap on
the LineMOD dataset and hence completely allevi-
ates the need to use real-world training data. The
main drawbacks of our method can be easily over-
come by fine tuning the rendering script to the de-
sired task, but would compromise the generalization
of the approach. We show that the usage of domain-
specific objects creates discriminating background
information for object detectors trained using syn-
thetic data. Additionally we show that it is prefer-
able to use an augmentation loosely based on a sen-
sor rather than using an authentic sensor model.

Our domain randomization approach omits certain
aspects of depth image variations since they are not
relevant for the challenges at hand. Future work will
address the task of generalizing our domain random-
ization to other sensors.
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