PL ISSN 0459-6854

BULLETIN

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE LÓDŹ 2018 Vol. LXVIII

Recherches sur les déformations	no. 2
---------------------------------	-------

pp. 45–52

Dedicated to the memory of Professor Yurii B. Zelinskii

Anatoly S. Serdyuk and Tetiana A. Stepanyuk

LEBESGUE-TYPE INEQUALITIES FOR THE FOURIER SUMS ON CLASSES OF GENERALIZED POISSON INTEGRALS

Summary

For functions from the set of generalized Poisson integrals $C_{\beta}^{\alpha,r}L_p$, $1 \leq p < \infty$, we obtain upper estimates for the deviations of Fourier sums in the uniform metric in terms of the best approximations of the generalized derivatives $f_{\beta}^{\alpha,r}$ of functions of this kind by trigonometric polynomials in the metric of the spaces L_p . Obtained estimates are asymptotically best possible.

Keywords and phrases: Lebesgue-type inequalities, Fourier sums, generalized Poisson integrals, best approximations

Let L_p , $1 \le p < \infty$, be the space of 2π -periodic functions f summable to the power p on $[0, 2\pi)$, in which the norm is given by the formula $||f||_p = \left(\int_{0}^{2\pi} |f(t)|^p dt\right)^{\frac{1}{p}}$; L_{∞} be the space of measurable and essentially bounded 2π -periodic functions f with the norm $||f||_{\infty} = \operatorname{ess\,sup} |f(t)|$; C be the space of continuous 2π -periodic functions f, in which the norm is specified by the equality $||f||_C = \max_t |f(t)|$.

Denote by $C^{\alpha,r}_{\beta}L_p, \ \alpha > 0, \ r > 0, \ \beta \in \mathbb{R}, \ 1 \le p \le \infty$, the set of all 2π -periodic

functions, representable for all $x \in \mathbb{R}$ as convolutions of the form (see, e.g., [1, p. 133])

$$f(x) = \frac{a_0}{2} + \frac{1}{\pi} \int_{-\pi}^{\pi} P_{\alpha,r,\beta}(x-t)\varphi(t)dt, \ a_0 \in \mathbb{R}, \ \varphi \perp 1,$$
(1)

where $\varphi \in L_p$ and $P_{\alpha,r,\beta}(t)$ are fixed generated kernels

$$P_{\alpha,r,\beta}(t) = \sum_{k=1}^{\infty} e^{-\alpha k^r} \cos\left(kt - \frac{\beta\pi}{2}\right), \quad \alpha, r > 0, \quad \beta \in \mathbb{R}.$$
 (2)

The kernels $P_{\alpha,r,\beta}$ of the form (2) are called generalized Poisson kernels. For r = 1 and $\beta = 0$ the kernels $P_{\alpha,r,\beta}$ are usual Poisson kernels of harmonic functions.

If the functions f and φ are related by the equality (1), then function f in this equality is called generalized Poisson integral of the function φ . The function φ in equality (1) is called as generalized derivative of the function f and is denoted by $f_{\beta}^{\alpha,r}$.

The set of functions f from $C^{\alpha,t}_{\beta}L_p$, $1 \leq p \leq \infty$, such that $f^{\alpha,r}_{\beta} \in B^0_p$, where

$$B_p^0 = \{\varphi : ||\varphi||_p \le 1, \ \varphi \perp 1\}, \ 1 \le p \le \infty,$$

we will denote by $C^{\alpha,r}_{\beta,p}$.

Let $E_n(f)_{L_p}$ be the best approximation of the function $f \in L_p$ in the metric of space L_p , $1 \le p \le \infty$, by the trigonometric polynomials t_{n-1} of degree n-1, i.e.,

$$E_n(f)_{L_p} = \inf_{t_{n-1}} \|f - t_{n-1}\|_{L_p}.$$

Let $\rho_n(f;x)$ be the following quantity

$$\rho_n(f;x) := f(x) - S_{n-1}(f;x), \tag{3}$$

where $S_{n-1}(f; \cdot)$ are the partial Fourier sums of order n-1 for a function f.

Least upper bounds of the quantity $\|\rho_n(f;\cdot)\|_C$ over the classes $C^{\alpha,r}_{\beta,p}$, we denote by $\mathcal{E}_n(C^{\alpha,r}_{\beta,p})_C$, i.e.,

$$\mathcal{E}_{n}(C^{\alpha,r}_{\beta,p})_{C} = \sup_{f \in C^{\alpha,r}_{\beta,p}} \|f(\cdot) - S_{n-1}(f;\cdot)\|_{C}, \ r > 0, \ \alpha > 0, \ 1 \le p \le \infty.$$
(4)

Asymptotic behaviour of the quantities $\mathcal{E}_n(C^{\alpha,r}_{\beta,p})_C$ of the form (4) was studied in [2]–[10].

In [11]–[13] it was found the analogs of the Lebesgue inequalities for functions $f \in C^{\alpha,r}_{\beta}L_p$ in the case $r \in (0,1)$ and $p = \infty$, and also in the case $r \geq 1$ and $1 \leq p \leq \infty$, where the estimates for the deviations $||f(\cdot) - S_{n-1}(f; \cdot)||_C$ are expressed in terms of the best approximations $E_n(f^{\alpha,r}_{\beta})_{L_p}$. Namely, in [11] it is proved that the following best possible inequality holds

$$\|f(\cdot) - S_{n-1}(f; \cdot)\|_C \le \left(\frac{4}{\pi^2} \ln n^{1-r} + O(1)\right) e^{-\alpha n^r} E_n(f_\beta^{\alpha, r})_{L_\infty},\tag{5}$$

where O(1) is a quantity uniformly bounded with respect to n, β and $f \in C^{\alpha, r}_{\beta} L_{\infty}$.

The present paper is a continuation of [11], [12], and is devoted to getting asymptotically best possible analogs of Lebesgue-type inequalities on the sets $C_{\beta}^{\alpha,r}L_p$, $r \in (0,1)$ and $p \in [1,\infty)$. This case was not considered yet. Let formulate the results of the paper.

By F(a, b; c; d) we denote Gauss hypergeometric function

$$F(a,b;c;z) = 1 + \sum_{k=1}^{\infty} \frac{(a)_k(b)_k}{(c)_k} \frac{z^k}{k!},$$
$$(x)_k := \frac{x}{2} \left(\frac{x}{2} + 1\right) \left(\frac{x}{2} + 2\right) \dots \left(\frac{x}{2} + k - 1\right).$$

For arbitrary $\alpha > 0$, $r \in (0, 1)$ and $1 \le p \le \infty$ we denote by $n_0 = n_0(\alpha, r, p)$ the smallest integer n such that

$$\frac{1}{\alpha r}\frac{1}{n^r} + \frac{\alpha r\chi(p)}{n^{1-r}} \le \begin{cases} \frac{1}{14}, & p = 1, \\ \frac{1}{(3\pi)^3} \cdot \frac{p-1}{p}, & 1 (6)$$

where $\chi(p) = p$ for $1 \le p < \infty$ and $\chi(p) = 1$ for $p = \infty$.

The following statement holds.

Theorem 1. Let 0 < r < 1, $\alpha > 0$, $\beta \in \mathbb{R}$ and $n \in \mathbb{N}$. Then in the case $1 for any function <math>f \in C^{\alpha,r}_{\beta}L_p$ and $n \ge n_0(\alpha, r, p)$, fine following inequality is true:

$$\|f(\cdot) - S_{n-1}(f; \cdot)\|_{C} \leq e^{-\alpha n^{r}} n^{\frac{1-r}{p}} \left(\frac{\|\cos t\|_{p'}}{\pi^{1+\frac{1}{p'}} (\alpha r)^{\frac{1}{p}}} F^{\frac{1}{p'}} \left(\frac{1}{2}, \frac{3-p'}{2}; \frac{3}{2}; 1\right) + \gamma_{n,p} \left(\left(1 + \frac{(\alpha r)^{\frac{p'-1}{p}}}{p'-1}\right) \frac{1}{n^{\frac{1-r}{p}}} + \frac{(p)^{\frac{1}{p'}}}{(\alpha r)^{1+\frac{1}{p}}} \frac{1}{n^{r}} \right) \right) E_{n}(f_{\beta}^{\alpha,r})_{L_{p}}, \quad \frac{1}{p} + \frac{1}{p'} = 1, \quad (7)$$

where F(a, b; c; d) is Gauss hypergeometric function, and in the case p = 1 for any function $f \in C^{\alpha, r}_{\beta} L_1$ and $n \ge n_0(\alpha, r, 1)$, the following inequality is true:

$$\|f(\cdot) - S_{n-1}(f; \cdot)\|_{C} \le e^{-\alpha n^{r}} n^{1-r} \left(\frac{1}{\pi \alpha r} + \gamma_{n,1} \left(\frac{1}{(\alpha r)^{2}} \frac{1}{n^{r}} + \frac{1}{n^{1-r}}\right)\right) E_{n}(f_{\beta}^{\alpha,r})_{L_{1}}.$$
 (8)

In (7) and (8), the quantity $\gamma_{n,p} = \gamma_{n,p}(\alpha, r, \beta)$ is such that $|\gamma_{n,p}| \le (14\pi)^2$.

Proof of Theorem 1. Let $f \in C^{\alpha,r}_{\beta}L_p$, $1 \leq p \leq \infty$. Then, at every point $x \in \mathbb{R}$ the following integral representation is true:

$$\rho_n(f;x) = f(x) - S_{n-1}(f;x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f_{\beta}^{\alpha,r}(t) P_{\alpha,r,\beta}^{(n)}(x-t) dt,$$
(9)

where

$$P_{\alpha,r,\beta}^{(n)}(t) := \sum_{k=n}^{\infty} e^{-\alpha k^r} \cos\left(kt - \frac{\beta\pi}{2}\right), \ 0 < r < 1, \ \alpha > 0, \ \beta \in \mathbb{R}.$$
 (10)

The function $P_{\alpha,r,\beta}^{(n)}(t)$ is orthogonal to any trigonometric polynomial t_{n-1} of degree not greater than n-1. Hence, for any polynomial t_{n-1} from we obtain

$$\rho_n(f;x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \delta_n(t) P_{\alpha,r,\beta}^{(n)}(x-t) dt,$$
(11)

where

$$\delta_n(x) = \delta_n(\alpha, r, \beta, n; x) := f_\beta^{\alpha, r}(x) - t_{n-1}(x).$$
(12)

Further we choose the polynomial t_{n-1}^* of the best approximation of the function $f_{\beta}^{\alpha,r}$ in the space L_p , i.e., such that

$$\|f_{\beta}^{\alpha,r} - t_{n-1}^{*}\|_{p} = E_{n}(f_{\beta}^{\alpha,r})_{L_{p}}, \quad 1 \le p \le \infty,$$

to play role of t_{n-1} in (11). Thus, by using the inequality

$$\left\| \int_{-\pi}^{\pi} K(t-u)\varphi(u)du \right\|_{C} \leq \|K\|_{p'}\|\varphi\|_{p},$$

$$\varphi \in L_{p}, \quad K \in L_{p'}, \quad 1 \leq p \leq \infty, \quad \frac{1}{p} + \frac{1}{p'} = 1$$

$$(13)$$

(see, e.g., [14, p. 43]), we get

$$\|f(\cdot) - S_{n-1}(f; \cdot)\|_C \le \frac{1}{\pi} \|P_{\alpha, r, \beta}^{(n)}\|_{p'} E_n(f_{\beta}^{\alpha, r})_{L_p}.$$
(14)

For arbitrary $\upsilon > 0$ and $1 \le s \le \infty$ assume

$$\mathcal{I}_{s}(v) := \left\| \frac{1}{\sqrt{t^{2} + 1}} \right\|_{L_{s}[0,v]},\tag{15}$$

where

$$||f||_{L_s[a,b]} = \begin{cases} \left(\int_a^b |f(t)|^s dt \right)^{\frac{1}{s}}, & 1 \le s < \infty, \\ \underset{t \in [a,b]}{\operatorname{ess \, sup }} |f(t)|, & s = \infty. \end{cases}$$

It follows from the paper [9] for arbitrary $r \in (0,1)$, $\alpha > 0$, $\beta \in \mathbb{R}$, $1 \le s \le \infty$, $\frac{1}{s} + \frac{1}{s'} = 1$, $n \in \mathbb{N}$ and $n \ge n_0(\alpha, r, s')$ the following estimate holds

$$\frac{1}{\pi} \|P_{\alpha,r,\beta}^{(n)}\|_{s} = e^{-\alpha n^{r}} n^{\frac{1-r}{s'}} \left(\frac{\|\cos t\|_{s}}{\pi^{1+\frac{1}{s}} (\alpha r)^{\frac{1}{s'}}} \mathcal{I}_{s} \left(\frac{\pi n^{1-r}}{\alpha r} \right) + \delta_{n,s}^{(1)} \left(\frac{1}{(\alpha r)^{1+\frac{1}{s'}}} \mathcal{I}_{s} \left(\frac{\pi n^{1-r}}{\alpha r} \right) \frac{1}{n^{r}} + \frac{1}{n^{\frac{1-r}{s'}}} \right) \right),$$
(16)

where the quantity $\delta_{n,s}^{(1)} = \delta_{n,s}^{(1)}(\alpha, r, \beta)$, satisfies the inequality $|\delta_{n,s}^{(1)}| \le (14\pi)^2$. Substituting $s = p' = \infty$, from 14 and (16) we get (8).

48

Further, according to [9] for $n \ge n_0(\alpha, r, s')$, $1 < s < \infty$, $\frac{1}{s} + \frac{1}{s'} = 1$, the following equality takes place

$$\mathcal{I}_{s}\left(\frac{\pi n^{1-r}}{\alpha r}\right) = F^{\frac{1}{s}}\left(\frac{1}{2}, \frac{3-s}{2}; \frac{3}{2}; 1\right) + \frac{\Theta_{\alpha, r, s', n}^{(1)}}{s-1} \left(\frac{\alpha r}{\pi n^{1-r}}\right)^{s-1},\tag{17}$$

where $|\Theta_{\alpha,r,s',n}^{(1)}| < 2.$

Let now consider the case 1 .

Formulas (16) and (17) for s = p' and $n \ge n_0(\alpha, r, p)$ imply

$$\frac{1}{\pi} \left\| \mathcal{P}_{\alpha,r,n} \right\|_{p'} = e^{-\alpha n^{r}} n^{\frac{1-r}{p}} \left(\frac{\|\cos t\|_{p'}}{\pi^{1+\frac{1}{p'}} (\alpha r)^{\frac{1}{p}}} F^{\frac{1}{p'}} \left(\frac{1}{2}, \frac{3-p'}{2}; \frac{3}{2}; 1 \right) + \right. \\
\left. + \gamma_{n,p}^{(1)} \left(\frac{1}{p'-1} \frac{(\alpha r)^{\frac{p'-1}{p}}}{n^{(1-r)(p'-1)}} + \frac{p^{\frac{1}{p'}}}{(\alpha r)^{1+\frac{1}{p}}} \frac{1}{n^{r}} + \frac{1}{n^{\frac{1-r}{p}}} \right) \right) = \\
\left. = e^{-\alpha n^{r}} n^{\frac{1-r}{p}} \left(\frac{\|\cos t\|_{p'}}{\pi^{1+\frac{1}{p'}} (\alpha r)^{\frac{1}{p}}} F^{\frac{1}{p'}} \left(\frac{1}{2}, \frac{3-p'}{2}; \frac{3}{2}; 1 \right) + \right. \\
\left. + \gamma_{n,p}^{(2)} \left(\left(1 + \frac{(\alpha r)^{\frac{p'-1}{p}}}{p'-1} \right) \frac{1}{n^{(1-r)(p'-1)}} + \frac{p^{\frac{1}{p'}}}{(\alpha r)^{1+\frac{1}{p}}} \frac{1}{n^{r}} \right) \right), \tag{18}$$

where the quantities $\delta_{n,p}^{(i)} = \delta_{n,p}^{(i)}(\alpha, r, \beta)$, satisfy the inequality $|\delta_{n,p}^{(i)}| \le (14\pi)^2$, i = 1, 2. Estimate (7) follows from (14) and (18). Theorem 1 is proved.

It should be noticed, that estimates (7) and (8) are asymptotically best possible on the classes $C^{\alpha,r}_{\beta,p}$, $1 \leq p < \infty$.

If $f \in C^{\alpha,r}_{\beta,p}$, then $||f^{\alpha,r}_{\beta}||_p \leq 1$, and $E_n(f^{\alpha,r}_{\beta})_{L_p} \leq 1$, $1 \leq p < \infty$. Considering the least upper bounds of both sides of inequality (7) over the classes $C^{\alpha,r}_{\beta,p}$, 1 , we arrive at the inequality

$$\mathcal{E}_{n}(C_{\beta,p}^{\alpha,r})_{C} \leq e^{-\alpha n^{r}} n^{\frac{1-r}{p}} \left(\frac{\|\cos t\|_{p'}}{\pi^{1+\frac{1}{p'}} (\alpha r)^{\frac{1}{p}}} F^{\frac{1}{p'}} \left(\frac{1}{2}, \frac{3-p'}{2}; \frac{3}{2}; 1 \right) + \gamma_{n,p} \left(\left(1 + \frac{(\alpha r)^{\frac{p'-1}{p}}}{p'-1} \right) \frac{1}{n^{\frac{1-r}{p}}} + \frac{(p)^{\frac{1}{p'}}}{(\alpha r)^{1+\frac{1}{p}}} \frac{1}{n^{r}} \right) \right) E_{n}(f_{\beta}^{\alpha,r})_{L_{p}}, \quad \frac{1}{p} + \frac{1}{p'} = 1.$$
(19)

Comparing this relation with the estimate of Theorem 4 from [9] (see also [10]), we conclude that inequality (7) on the classes $C^{\alpha,r}_{\beta,p}$, 1 , is asymptoticallybest possible.

In the same way, the asymptotical sharpness of the estimate (8) on the class $C_{\beta,1}^{\alpha,r}$ follows from comparing inequality

$$\mathcal{E}_{n}(C^{\alpha,r}_{\beta,p})_{C} \leq e^{-\alpha n^{r}} n^{1-r} \Big(\frac{1}{\pi \alpha r} + \gamma_{n,1} \Big(\frac{1}{(\alpha r)^{2}} \frac{1}{n^{r}} + \frac{1}{n^{1-r}} \Big) \Big) E_{n}(f^{\alpha,r}_{\beta})_{L_{1}}$$
(20)

and formula (9) from [8].

Acknowledgements

Second author is supported by the Austrian Science Fund FWF project F5503 (part of the Special Research Program (SFB) Quasi-Monte Carlo Methods: Theory and Applications)

References

- [1] A. I. Stepanets, Methods of Approximation Theory. VSP: Leiden, Boston, 2005.
- [2] A. I. Stepanets, Deviation of Fourier sums on classes of infinitely differentiable functions, Ukr. Mat. J. 36:6 (1984), 567–573.
- [3] S. M. Nikolskii, Approximation of functions in the mean by trigonometrical polynomials, (in Russian) Izv. Akad. Nauk SSSR, Ser. Mat. **10** (1946), 207–256.
- [4] S. B. Stechkin, An estimate of the remainder term of Fourier series for differentiable functions, (in Russian) Tr. Mat. Inst. Steklova **145** (1980) 126–151.
- S. A. Telyakovskii, Approximation of functions of high smoothness by Fourier sums, Ukr. Math. J. 41:4 (1989), 444–451.
- [6] A. I. Stepanets, Deviations of Fourier sums on classes of entire functions, Ukr. Math. J. 41:6 (1989), 672–677.
- [7] A. S. Serdyuk, Approximation of classes of analytic functions by Fourier sums in the uniform metric, Ukr. Math. J. 57:8 (2005), 1079–1096.
- [8] A. S. Serdyuk and T. A. Stepanyuk, Uniform approximations by Fourier sums on the classes of convolutions with generalized Poisson kernels, Dop. Nats. Akad. Nauk. Ukr. No. 11 (2016), 10–16.
- [9] A. S. Serdyuk, T. A. Stepanyuk, Approximations by Fourier sums of classes of generalized Poisson integrals in metrics of spaces L_s , Ukr. Mat. J. **69**:5 (2017), 811–822.
- [10] A. S. Serdyuk, T. A. Stepanyuk, Uniform approximations by Fourier sums on classes of generalized Poisson integrals, Analysis Mathematica, 2018 (accepted for publication)
- [11] A. I. Stepanets, On the Lebesgue inequality on classes of (ψ, β) -differentiable functions, Ukr. Math. J. **41**:4 (1989), 435–443.
- [12] A. I. Stepanets, A. S. Serdyuk, Lebesgue inequalities for Poisson integrals, Ukr. Math. J. 52:6 (2000), 798–808.
- [13] A. S. Serdyuk, A. P. Musienko, The Lebesgue type inequalities for the de la Vall?e Poussin sums in approximation of Poisson integrals, Zb. Pr. Inst. Mat. NAN Ukr. 7:1 (2010), 298–316.
- [14] N. P. Korneichuk, Exact Constants in Approximation Theory, Vol. 38, Cambridge Univ. Press, Cambridge, New York 1990.

Graz University of Technology Kopernikusgasse 24/II 8010, Graz Austria E-mail: tania_stepaniuk@ukr.net Institute of Mathematics National Academy of Sciences of Ukraine Tereshchenkivska str. 3, UA-01004, Kyiv Ukraine E-mail: serdyuk@imath.kiev.ua

Presented by Adam Paszkiewicz at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on May 14, 2018.

NIERÓWNOŚĆ TYPU LEBESGUE'A DLA SUM FOURIERA NA KLASACH UOGÓLNIONYCH CAŁEK POISSONA

Streszczenie

Dla funkcji ze zbioru uogólnionych całek Poissona $C^{\alpha,r}_{\beta}L_p$, $1 \leq p < \infty$, otrzymujemy górne oszacownie dla odchyleń sum Fouriera w jednostajnej metryce w terminach najlepszej aproksymacji uogólnionych pochodnych $f^{\alpha,r}_{\beta}$ funkcji tego typu w metryce przestrzeni L_p . Uzyskane oszacowania są asymptotycznie najlepsze z możliwych.

Słowa kluczowe: nierówności typu Lebesgue'a, sumy Fouriera, uogólnione całki Poissona, najlepsze przybliżenia