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Abstract It is well-known that the growth of a slit in the upper half-plane can be
encoded via the chordal Loewner equation, which is a differential equation for schlicht
functions with a certain normalisation. We prove that a multiple slit Loewner equation
can be used to encode the growth of the union� ofmultiple slits in the upper half-plane
if the slits have pairwise disjoint closures. Under certain assumptions on the geometry
of �, our approach allows us to derive a Loewner equation for infinitely many slits as
well.
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1 Introduction and Main Result

In his celebrated paper [11], Loewner developed a fruitful approach to tackle extremal
problems involving schlicht functions f , defined in the unit disk D, with the normal-
isation f (0) = 0 and f ′(0) = 1. This led to the so-called (radial) Loewner equation.
A similar theory has been established by Kufarev et al. (cf. [9]) for schlicht functions
f , defined on the upper half-planeH, and satisfying the hydrodynamic normalisation:

lim
z→∞( f (z) − z) = 0. (1.1)

This led to the so-called chordal Loewner equation. However, the chordal Loewner
equation has received much more attention since O. Schrammwrote his seminal paper
[17]. Before going any further and stating our results, we will need some notation.

Definition 1.1 A bounded set A ⊆ H is called a (compact) H hull (or for short: hull)
if clos(A) ∩H = A andH\A are simply connected. A hull A is called a slit if there is
a homoemorphism γ : [0, 1] → clos(A), such that γ (0) ∈ R and γ (0, 1] ⊆ A, where
γ (0, t] denotes the image of the half-open interval (0, t] under γ . In this case, we say
γ parametrises A. A multislit is a possibly finite sequence of slits � j , such that

⋃
j � j

is a hull. Given (� j ) j , we let � := ⋃
j � j , and also call � a multislit. Moreover, if for

a multislit �, the set clos� j can be separated from clos(�\� j ) by open sets for each
j , then � is called admissible (see Fig. 1). If we wish to emphasise that a multislit
consists of only finitely many slits, then we speak of an n slit. In what follows, every
multislit � is assumed to be admissible.

Recently, several authors, in particular mathematical physicists gazing towards
conformal field theory, have studied a Loewner equation for multiple slits, to generate
growing hulls or n slits; see, for example, [5,8,15,16]. However, the following geomet-
ric question has apparently received little attention: for what kind of parametrisations
can any given multislit be encoded in a Loewner equation? In the radial case, there are
some results for finitely many slits, see [2,3]. In the chordal case, it is, to the best of the
authors’ knowledge, only known that for n slits, there exists a certain (not effectively
computable) parametrisation, such that a generalised Loewner equation is satisfied,
see [14, Theorem 1.1]. To state our results, we recall the following well-known fact
(cf. [10, p. 69]).

Fig. 1 Illustration of an infinite
admissible multislit �,
consisting of infinitely many
(green) 1 slits accumulating
towards a point on the boundary
from the left (colour figure
online)
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A Loewner Equation for Infinitely Many Slits 257

Proposition 1.2 For each hull A, there is a unique biholomorphism gA : H\A → H

satisfying (1.1). Moreover, limz→∞ z(gA(z) − z) exists, and is called the half-plane
capacity hcap(A) of A.

Furthermore, we need the following notation.

Definition 1.3 Let � be a multislit. We call γ = (γ j ) j a parametrisation of � if γ j

is a parametrisation of � j for every j . By a slight abuse of notation, we let �t :=⋃
j γ j (0, t].1 We call a parametrisation γ of � a Loewner parametrisation of � if

t �→ hcap(�t ) is Lipschitz continuous for t ∈ [0, 1].

Corollary 3.3 will show that these “normalised” parametrisations can be achieved
to encode a given multislit � in a Loewner equation. Given a multislit �, we write
gt := g�t , and denote by ht the inverse of gt . Consequently, we also denote by h� the
inverse of g� . Our main result is the following:

Theorem 1.4 Let � be an admissible multislit, and (γ j ) j a Loewner parametrisation.
Then, there exist so-called driving functions U j : [0, 1] → R, a constant L > 0, and
so-called weight functions λ j : [0, 1] → R+ ∪ {0}, where each U j is continuous, and
λ j has the properties:

(1) 0 ≤ λ j (t) ≤ L almost everywhere,
(2) Each λ j is measurable,
(3)

∑
j λ j (t) = ∂

∂t hcap�t almost everywhere,

such that for almost every t ∈ [0, 1], and all z ∈ H\� it holds that

∂

∂t
gt (z) =

∑

j

λ j (t)

gt (z) −Uj (t)
, g0(z) = z. (1.2)

Informally speaking, the weight function λ j (t) corresponds to the “speed” in which
γ j (t) grows at the time t ∈ [0, 1], and the driving function Uj = gt ◦ γ j keeps track
of the position of the tip γ j (t) of the slit γ j (0, t].

Moreover, wewould like tomention that the a.e. differentiability part of the theorem
above is a consequence of a more general phenomenon occurring in Loewner theory,
cf. [7, Theorem 3], [4, Theorem 1.1]. Furthermore, in the 1-slit case, one recovers
from Theorem 1.4 the ordinary Loewner equation, which relates the existence of the
derivative ġt to the existence of the weight functions λ j .

Remark 1.5 Let usmention that then-slit case inTheorems1.4 and5.2 has beenproved
in [1, Theorem 2.36, 2.54] (see also [2,3] for results in the radial case). Moreover,
Theorem 1.4 is best possible in the sense that t �→ gt (z) (z ∈ H\�) is in general not
(everywhere) differentiable, see Remark 5.3.

The paper is structured as follows. First, we collect some basic tools in Sect. 2.
These are needed to study the difference quotient of t �→ gt (z), where gt is the map

1 We do not specify the range of j , since it is irrelevant for our approach whether the multislit is an n slit
or not.
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from Theorem 1.4. To this end, we use classical results from (geometric) function
theory, e.g., the theory of prime ends, kernel convergence, normal families, and the
Nevanlinna representation. In Sect. 3, we construct the driving functions. In Sect. 4, we
construct functions that will later on turn out to be the weight functions. These are the
main problems when passing from the 1-slit Loewner equation to the multislit version.
For overcoming this obstacle, we use tools from Lipschitz analysis. Eventually, we
put the pieces together in Sect. 5 to derive the results stated above.

2 Preliminaries and basic tools

Let us mention, for the sake of clarity, that we equip Ĉ with its natural topology; in
particular, the boundary of H is understood to contain the point ∞. Moreover, we
fix an arbitrary admissible multislit � with Loewner parametrisation γ throughout
Sects. 2–5.

The next theorem deals with biholomorphic extensions of the maps g� and h� , and
is a direct consequence of the well-known Schwarz reflection principle combined with
the classical theory of prime ends (cf. [12]).

Theorem 2.1 Let � be an admissible multislit. Then, any given map g� extends to a
biholomorphism from Ĉ\(clos(�)∪�∗) onto Ĉ\C for some C ⊆ R, where �∗ denotes
the complex conjugate of the set �.

Moreover, we need the following fact about the relationship between the size of the
preimage of a boundary point and the topology of the boundary of the image domain
of a biholomorphism (see [12, Chapter 2, Proposition 2.5]).

Theorem 2.2 Let h : H → D be a biholomorphism, where D has locally connected
boundary ∂D. Fix w0 ∈ ∂D, and consider the preimage W := h−1({w0}) ⊆ R̂ :=
R∪{∞} ofw0. Then, there is a bijectionC �→ h (C) between the connected components
C of R̂\W and the connected components of ∂D\{w0}. In particular, W consists of
precisely n (pairwise distinct) points if ∂D\{w0} has n connected components.

Let us mention that Loewner remarked that a certain group property was essential
for his approach to derive his equation.2 Therefore, similar to Loewner, we shall study
ϕt,T := gt ◦ hT , where t, T ∈ [0, 1]. The function ϕt,T is often easier to handle than
gt , inter alia, since, as we shall see, it admits a continuous extension to R for t ≤ T .
To this end, it is convenient to introduce some notation which we shall use in what
follows without further mention.

Definition 2.3 Let � be an admissible multislit with parametrisation γ . Take 0 ≤ t ≤
T ≤ 1, and let j ∈ N be given. We define (see Fig. 2)

2 In [11, p. 1], Loewner’s exact words were: “Das charakteristische Merkmal der angewandten Unter-
suchungsmethode besteht in der Ausnützung des Umstandes, daß bei Zusammensetzung von schlichten
konformen Abbildungen wieder eine schlichte Abbildung entsteht, daß also die schlichten Abbildungen
eine Gruppe bilden.” In English (translated by the authors): the characteristic property of themethod applied
here is the exploitation of the fact that the composition of two schlicht functions is, again, a schlicht function,
that is, the schlicht mappings form a group.
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A Loewner Equation for Infinitely Many Slits 259

Fig. 2 Similarly coloured symbols are mapped onto each other. For instance, the green-coloured sets
Ct,T,k are first formed to a slit by hT , and then, the map gt “bites” a piece away from the slit γ j (0, T ] and
manipulates the remainder slit γ j (t, T ] to form a silt Jt,T,k (see also [6, Fig. 1] (colour figure online)

• Jt,T, j := gt (γ j (t, T ]) ⊆ H,
• J t,T, j := gt (γ j [t, T ]) (gt (γ j (t)) =: Uj (t) is well-defined by Theorem 2.2),
• Jt,T := ⋃

j Jt,T, j ,

• J t,T := ⋃
j J t,T, j ,

• Ct,T := ⋃
j Ct,T, j ⊆ R where Ct,T, j is the preimage of γ j [t, T ] under hT (in

the sense of Theorem 2.2, and observe that the normalisation in Proposition 1.2
implies that the point ∞ is not contained in Ct,T, j ).

We can deduce the following properties for these quantities.

Lemma 2.4 Let t, T ∈ [0, 1], and t ≤ T . Then,

(1) the function ϕt,T : H → H\Jt,T admits a continuous extension to the boundary,
(2) the sets Ct,T,k are pairwise disjoint intervals.

Proof Wefirst prove (1).Recall that a biholomorphism fromHonto a domain D admits
a continuous extension if and only if ∂D is locally connected (see [12, Theorem 2.1]).
To prove (1), it suffices to show that Jt,T is locally path-connected as ∂

(
H\Jt,T

) =
R̂∪Jt,T . Therefore, we only need to show that any givenJt,T,k can be separated from
clos(Jt,T \Jt,T,k) by some neighbourhood U . However, this is evident, since � was
assumed to be an admissible multislit.
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260 M. Technau, N. Technau

We now show (2). By (1), the map ϕt,T extends continuously to R̂. Note that by the
path-connectedness of H\Jt,T , we can consider a simple curve J−

k which connects
the tip of a given Jt,T,k , i.e., the point gt (γk(T )), with its starting point, i.e., the point
gt (γk(t)), from the left.3 The preimage J̃−

k := ϕ−1
t,T (J−

k ) is a simple curve in H that

connects two distinct boundary points α, β ∈ R. Denote by ω−
k ,
−

k the interior of
[α, β] ∪ J̃−

k , and of Jt,T,k ∪ J−
k , respectively. We can extend the homoemorphism

ϕt,T |ω−
k

: ω−
k → 
−

k to a homoemorphism from closω−
k onto clos
−

k . Then, the
preimage of Jt,T,k under ϕt,T |closω−

k
has to be the interval [α, β]. By applying the

same reasoning to a curve J+
k that connects the tip of Jt,T,k with its starting point

from the right, we get that the preimage of Jt,T,k under ϕt,T |closω+
k
is an interval of

the form
[
β, α′]. In view of Theorem 2.2, we find that Ct,T, j = [α, β] ∪ [

β, α′], so
Ct,T, j is an interval. Theorem 2.2 yields that these intervals are disjoint. 
�

Furthermore, there is a simple but crucial integral representation for ϕt,T :

Lemma 2.5 Let s ∈ [0, 1], and choose t, T ∈ [0, s], such that t ≤ T . Then,

(1) it holds that ϕt,T ◦ ϕT,s = ϕt,s ,
(2) for all z ∈ H:

ϕt,T (z) = z + 1

π

∫

Ct,T
Im(ϕt,T (ξ))

ξ − z
dξ = z + 1

π

∑

k

∫

Ct,T,k

Im(ϕt,T (ξ))

ξ − z
dξ,

(3) we have that

hcap(�T ) − hcap(�t ) = 1

π

∫

Ct,T
Im(ϕt,T (ξ)) dξ.

Proof (1) is a simple calculation.
The first equality in (2) follows from the well-known Nevanlinna representation,

cf. [13, Theorem 5.3] or [7], via the Stieltjes inversion formula. The second equality
is due to the decomposition

Ct,T =
⋃

j

Ct,T, j ,

and the fact that Ct,T, j are pairwise disjoint, by Lemma 2.4 (2).
To show (3), we exploit [10, Eq. (3.8)] to get hcap(�T ) − hcap(�t ) =

hcap(gt (�T \�t )). Furthermore, since

gt (�T \�t ) =
⋃

j

gt (γ j (t, T ]) =
⋃

j

Jt,T, j = Jt,T ,

3 The distinction between “left” and “right” is obtained in the following manner: Extend the simple curve
Jt,T,k to ∞, thereby cutting Ĥ\Jt,T into two disjoint path-connected components, the “left” component
being the one, whose boundary contains an interval (−∞, b], where b > 0 is some real number.
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A Loewner Equation for Infinitely Many Slits 261

expanding the left-hand side and the right-hand side of Lemma 2.5 (2) into Laurent
series, and comparing coefficients yields the claim. 
�

Now, we are in the position to conclude a simple, but very useful lemma.

Lemma 2.6 Let z ∈ H, and 0 ≤ t ≤ T ≤ s ≤ 1 be fixed. Then, the increment
ϕT,s(z) − ϕt,s(z) equals

∑

j

(

Re
1

ϕT,s(z) − ξ j
+ i Im

1

ϕT,s(z) − ξ ′
j

)
1

π

∫

Ct,T, j

Im ϕt,T (ξ) dξ

for some suitably chosen ξ j , ξ
′
j ∈ Ct,T, j .4

Proof Using Lemma 2.5 (1) and (2), we can write

ϕT,s(z) − ϕt,s(z) = 1

π

∫

Ct,T
Im(ϕt,T (ξ))

ϕT,s(z) − ξ
dξ = 1

π

∑

j

∫

Ct,T, j

Im(ϕt,T (ξ))

ϕT,s(z) − ξ
dξ.

Considering the integral
∫

Ct,T, j

Im(ϕt,T (ξ))

ϕT,s(z) − ξ
dξ,

the claim follows after splitting the integrand into real and imaginary parts, and apply-
ing the mean value theorem. 
�

Using the previous lemma, we can derive a crucial fact about the differentiability
of τ �→ gτ (z). Namely, we have:

Corollary 2.7 Let 0 ≤ t ≤ T ≤ s ≤ 1, and γ be a parametrisation of an admissible
multislit �. Then

|ϕT,s(z) − ϕt,s(z)| ≤ 2
hcap(�T ) − hcap(�t )

Im z
.

In particular, if t �→ hcap(�t ) is Lipschitz continuous, then, for any fixed z ∈ H,
[0, s] � τ �→ ϕτ,s(z) has the same property. In this case, τ �→ ϕτ,s(z) (τ ∈ [0, s]) is
differentiable almost everywhere.

Proof Lemma 2.6 yields

ϕT,s(z) − ϕt,s(z) =
∑

j

(

Re
1

ϕT,s(z) − ξ j
+ i Im

1

ϕT,s(z) − ξ ′
j

)

1

π

∫

Ct,T, j

Im ϕt,T (ξ) dξ.

4 Of course, ξ j , ξ
′
j depend on z, t, T . However, for the ease of notation, we drop these dependencies from

the notation. The only exception to this will be the proof of Theorem 1.4.
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Combining the formula above with the estimate

∣
∣ϕT,s(z) − ξ

∣
∣ ≥ ∣

∣Im
(
ϕT,s(z) − ξ

)∣
∣ = Im ϕT,s(z), ξ ∈ Ct,T ,

gives

∣
∣ϕT,s(z) − ϕt,s(z)

∣
∣ ≤ 2

π

1

Im ϕT,s(z)

∫

Ct,T
Im ϕt,T (ξ) dξ.

Lemma 2.5 yields Im ϕT,s(z) ≥ Im z, and hence

∣
∣ϕT,s(z) − ϕt,s(z)

∣
∣ ≤ 2

Im z

1

π

∫

Ct,T
Im ϕt,T (ξ) dξ = 2

hcap(�T ) − hcap(�t )

Im z
.

The additional assertion follows from Rademacher’s theorem. 
�

3 Driving Functions

By the previous lemma, there exists

� j := � j (z, t, T ) = Re
1

ϕT,s(z) − ξ j
+ i Im

1

ϕT,s(z) − ξ ′
j
, ξ j , ξ

′
j ∈ Ct,T, j , (3.1)

such that we can write

ϕT,s(z) − ϕt,s(z)

T − t
=

∑

j

� j
1

T − t

1

π

∫

Ct,T, j

Im ϕt,T (ξ) dξ.

Now, it is natural to proceed by showing that both factors in the product

� j × 1

π(T − t)

∫

Ct,T, j

Im ϕt,T (ξ) dξ

converge as |t − T | tends to 0. In light of this thought, we prove, in the first part of the
next section, that Ct,T, j tends5 to some pointUj (T ) as t ↗ T , or toUj (t) for T ↘ t .
After that, we turn our attention to the more delicate problem of deciding whether

1

T − t

1

π

∫

Ct,T, j

Im ϕt,T (ξ) dξ

exists for t ↗ T , or T ↘ t . Moreover, we need the following simple estimate which
controls how much gA, for a given hull A, can differ from the identity map z �→ z.

5 We say that a sequence (Mk ) of sets tends to the point p if supm∈Mk
|m − p| converges to 0.
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A Loewner Equation for Infinitely Many Slits 263

Lemma 3.1 Let A be a hull. Then, it holds that

sup
z∈H\A

|gA(z) − z| = sup
w∈H

|w − hA (w)| ≤ 3 diam (A) .

In particular, for every 1-slit � and every fixed t0 ∈ [0, 1], the maps g�t converge
locally uniformly to the identity mapping on H as t → 0.

Proof If 0 ∈ clos(A), then the claim follows from [10, Corollary 3.44]. By taking
c ∈ R, such that B := A − c satisfies 0 ∈ clos(B), we can deduce the general case
from gB(z) = gA(z + c) − c and gA(z + c) − (z + c) = gB(z) − z. 
�
Theorem 3.2 If T respectively t is fixed, then, for fixed k, there is a δ > 0, such
that for all t ∈ [T − δ, T ], respectively, T ∈ [t, t + δ], we can separate Ct,T,k from
Ct,T \Ct,T,k by a (fixed) open set for any k.

Proof We consider the case t ↗ T . Since Ct,T,k = h−1
T (γk[t, T ]) is becoming smaller

as t ↗ T , it suffices to separate Ct,T,k from Ct,T \Ct,T,k for some t . Note that we can
separate Jt,T,k from Jt,T \Jt,T,k . Hence, by continuity of ϕt,T , the assertion is clear
in the case of t ↗ T . In the remaining case, we can separate Jt,T,k = gt (γk(t, T ]),
which are getting smaller fromJt,T \Jt,T,k by a simple curve J . Using Carathéodory’s
Kernel theorem,6 we get that the simple curves J̃t,T,k := ϕ−1

t,T ◦ J converge to J , which
separates Ct,T,k from Ct,T \Ct,T,k . 
�

The next corollary demonstrates how one can normalise a given parametrisation of
a multislit.

Corollary 3.3 Let � be an admissible multislit with parametrisation γ = (γ j ), such
that t �→ hcap�t is strictly increasing. Then, there exists a Loewner parametrisation
of �.

Proof Let L := hcap�. Note that, for R > 0 sufficiently large, one has the represen-
tation

f : [0, 1] → [0, L] , t �→ hcap�t = 1

2π i

∫

∂BR(0)
g�t (ξ) dξ.

By Carathéodory’s kernel theorem, f is continuous. By assumption, f is strictly
increasing, and hence a homoemorphism. Therefore, γ̃ j (t) := (γ j ◦ f −1) (Lt) , t ∈
[0, 1] satisfies the requirements of Definition 1.3, because of

hcap

(⋃

j

γ̃ j (0, t]

)

= hcap

(⋃

j

γ j

(
0, f −1 (Lt)

])

= f ( f −1(Lt)) = Lt.


�
6 By the kernel theorem, we refer to the following statement. Let 
n ⊂ C denote a sequence of domains.
Let X and 
 denote domains, where X is unbounded. If 
n converges in the kernel sense to a domain 
,
and the sequence fn : X → 
n of biholomorphisms satisfying (1.1) is locally bounded, then it converges
locally uniformly to the unique biholomorphism f : X → 
 with (1.1). This can be proved in the same
manner as the ordinary kernel convergence theorem.
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264 M. Technau, N. Technau

Now, we can characterise the limit behaviour of Ct,T,k and Jt,T,k as t ↗ T , or
T ↘ t as follows:

Lemma 3.4 The following statements hold:

(1) Ct,T,k shrinks7 to Uk (T ) as t ↗ T .
(2) Ct,T,k tends to Uk(t) as T ↘ t .
(3) J t,T,k shrinks to Uk(t) as T ↘ t .
(4) Jt,T,k tends to Uk (T ) as t ↗ T .

To prove this, we recall the following lemma (cf. [6, Lemma 2.1]):

Lemma 3.5 Let K1, K2 ⊂ C be compact sets, and let ϕ : Ĉ\K1 → Ĉ\K2 be
biholomorphic, moreover, denote by Br (c) the closed ball of radius r > 0 and centre
c ∈ C. If ϕ satisfies (1.1), then

(1) K1 ⊆ B2 diam(K2)(w0) for every w0 ∈ K2,
(2) K2 ⊆ B2 diam(K1)(z0) for every z0 ∈ K1.

Proof of Lemma 3.4 (1) and (3): By definition, we have Ct,T,k = h−1
T (γk [t, T ]) and

J t,T,k = gt (γk [t, T ]), so the assertions are clear.
(2): Let Jk,t,T denote the union of all Jt,T, j with j �= k. We consider the function

gJk,t,T . Then, we have

hJ̃t,T,k
= gJk,t,T ◦ ϕt,T where J̃t,T,k := gJk,t,T (Jt,T,k).

By Theorem 2.1, the map hJ̃t,T,k
extends to a biholomorphism from C\C̃t,T,k onto

C\(clos J̃t,T,k ∪ J̃ ∗
t,T,k), where

h−1
J̃t,T,k

(clos J̃t,T,k) =: C̃t,T,k ⊆ R.

Because of h−1
J̃t,T,k

◦ gJk,t,T = ϕ−1
t,T and Ct,T,k = ϕ−1

t,T (J t,T,k), it turns out that

Ct,T,k = h−1
J̃t,T,k

(gJk,t,T (J t,T,k)) = h−1
J̃t,T,k

(clos J̃t,T,k) = C̃t,T,k . (3.2)

We claim that J̃t,T,k tends to Uk(t) as T ↘ t . By Lemma 3.5 (1) with ϕ := hJ̃t,T,k

Ct,T,k = C̃t,T,k ⊆ B2 diam(J̃t,T,k)
(gJk,t,T (Uk(t))). (3.3)

Carathéodory’s kernel theorem yields that gJk,t,T converges locally uniformly on

C\(Jk,t,T ∪ J∗
k,t,T ) to the identity mapping on C\ ⋃

j �=k U j (t) as T ↘ t , i.e., we

have8

7 A sequence of sets (Mk ) shrinks to a point p if
⋂∞

k=1 Mk = {p}, and Mk+1 ⊆ Mk .
8 Note that Uj (t) �= Uk (t) for j �= k and Uk (t) ∈ R which implies Uj (t) ∈ C\(Jk,t,T ∪ J

∗
k,t,T ).
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A Loewner Equation for Infinitely Many Slits 265

gJk,t,T
(
Uk (t)

) → Uk(t) as T ↘ t.

Therefore, (2) is proved if we show that diam(J̃t,T,k) converges to zero as T ↘ t .
Using Lemma 3.1

diam(J̃t,T,k) = sup
z,w∈Jt,T,k

|gJk,t,T (z) − gJk,t,T (w) |

≤ 2 sup
z∈Jt,T,k

|gJk,t,T (z) − z| + diamJt,T,k .

Due to J t,T,k ⊆ C\(Jk,t,T ∪ J∗
k,t,T ) and Carathéodory’s kernel theorem, gJk,t,T con-

verges uniformly on J t,T ′,k , for some fixed T ′ ∈ (t, 1], to idJ t,T ′,k
. Hence

sup
z∈Jt,T,k

|gJk,t,T (z) − z| → 0 as T ↘ t.

By (3), J t,T,k shrinks toUk(t) as T ↘ t , which implies diam(Jt,T,k) → 0 as T ↘ t .
Therefore, we get diam(J̃t,T,k) → 0 as T ↘ t . By (3.3), we infer that Ct,T,k tends to
Uk(t).

(4): Lemma 3.5 (2) yields, similarly as above, the inclusion

J̃t,T,k ⊆ B2 diam(Ct,T,k )(Uk (T )),

and hence J̃t,T,k tends to Uk (T ) as t ↗ T .
To conclude that Jt,T,k tends to Uk (T ) as t↗T , it is enough to show that for

any given sequence tn↗T , there is a subsequence for which this claim holds. After
choosing an appropriate subsequencewhichwe denote again by (tn)n , themaps gJk,tn ,T

tend to some schlicht g on a compact set K containing Jt,T,k . Therefore, J̃tn ,T,k =
gJk,tn ,T (Jtn ,T,k) implies by taking n → ∞ that Jtn ,T,k has to converge to some point.
By arguing similarly, for k′ �= k, we get that for some appropriate subsequence of
(tn)n , all Jtn ,T,k′ converge to points. Hence, gJk,tn ,T converges to idC. This implies
that Jtn ,T,k tends to Uk(T ). 
�

The result above immediately implies the following important corollary.

Corollary 3.6 Let� beanadmissiblemultislit withLoewner parametrisationγ . Then,
the driving functions U j : [0, 1] → R, given by Definition 2.3, are continuous.

Proof For 0 ≤ t ≤ T ≤ 1, we get Uj (t) ∈ Ct,T, j and Uj (T ) ∈ J t,T, j . There-
fore, Lemma 3.4 implies the right continuity and left continuity of t �→ Uj (t), and
guarantees, furthermore, that limt↗τ Uj (t) = Uj (τ ) = limT↘τ Uj (T ). 
�

4 Weight Functions

Now, we are in the position to define the weight functions from Theorem 1.4. In
view of (1.2), we define these functions, roughly speaking, as the “residues” of the
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266 M. Technau, N. Technau

derivative z �→ ϕ̇t,1(z) in the “dynamical boundary points” Uk(t). However, doing so
requires some involved analysis.

Theorem 4.1 Let γ be a Loewner parametrisation of an admissible multislit �. If
τ �→ ϕτ,1(uk) is differentiable at t on a sequence (uk)k converging to a point in the
set ϕ−1

t,1 (Uj (t)), then the limits

lim
τ↗t

1

t − τ

1

π

∫

Cτ,t, j

Im ϕτ,t (ξ) dξ, lim
τ↘t

1

τ − t

1

π

∫

Ct,τ, j
Im ϕt,τ (ξ) dξ (4.1)

exist, and are both equal to

lim
k→∞ ϕ̇t,1(uk)

[
ϕt,1(uk) −Uj (t)

] =: λ j (t). (4.2)

In particular, λ j is defined for almost every t ∈ [0, 1].

Proof By Corollary 2.7, the second assertion is an immediate consequence of the first
one, which we prove in several steps. To simplify the notation, we assume j = 1. The
case j �= 1 can be treated similarly.

(i) Let 0 ≤ τ ≤ t . Using Lemma 2.6 with the abbreviation

ξ j,k(τ ) := Re
1

ϕt,1(uk) − ξ j (τ )
+ i Im

1

ϕt,1(uk) − ξ ′
j (τ )

, ξ j (τ ), ξ ′
j (τ ) ∈ Cτ,t, j ,

we find that

Dk(t, τ ) := ϕt,1(uk) − ϕτ,1(uk)

t − τ
=

∑

j

ξ j,k(τ )
1

t − τ

1

π

∫

Cτ,t, j

Im(ϕτ,t (ξ)) dξ.

(4.3)

Since Im ξ j,k(τ ) �= 0 is strictly negative, we can define the quantity

�k(τ ) := ϕt,1(uk) − ϕτ,1(uk)

(t − τ)ξ1,k(τ )
, τ ∈ [0, t) . (4.4)

Now let wk, j (τ ) := ξ j,k(τ )ξ1,k(τ )−1, and note that

�k(τ ) = 1

t − τ

1

π

∫

Cτ,t,1

Im ϕτ,t (ξ) dξ +
∑

j �=1

wk, j (τ )
1

t − τ

1

π

∫

Cτ,t, j

Im ϕτ,t (ξ) dξ.

(4.5)
Since, by Lemma 3.4, ξ j (τ ) and ξ ′

j (τ ) both converge to Uj (t) as τ↗t , Corol-
lary 2.7 provides the existence of

lim
τ↗t

wk, j (τ ) = ϕt,1(uk) −U1(t)

ϕt,1(uk) −Uj (t)
. (4.6)
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A Loewner Equation for Infinitely Many Slits 267

(ii) We claim that for any ε > 0, there is some δ > 0, and n0 ∈ N, such that for
all j �= 1 and τ ∈ [t − δ, t], we have |wk, j (τ )| < ε for k ≥ n0. To see this,
let K := min{dist(Cτ,t, j , Cτ,t,1) : j �= 1}, and note that we have K > 0, by
Theorem 3.2. Therefore, we use the estimate

|ξ j,k(τ )| ≤ 2
(

min
ξ∈Cτ,t, j

|ξ − ϕτ,1(uk)|
)−1

,

and

min
ξ∈Cτ,t, j

|ξ − ϕτ,1(uk)| ≥ min
ξ ′∈Cτ,t, j ,ξ∈Cτ,t,1

|ξ − ξ ′| − max
ξ ′∈Cτ,t,1

|ξ ′ − ϕτ,1(uk)|.

Hence, for k large enough, τ sufficiently close to t and j �= 1, we conclude that

min
ξ∈Cτ,t, j

|ξ − ϕτ,1(uk)| ≥ K

2
,

implying that |ξ j,k(τ )| ≤ 4
K and consequently

|wk, j (τ )| = |ξ j,k(τ )|
|ξ1,k(τ )| ≤ 4

K |ξ1,k(τ )| ,

which shows that |wk, j (τ )| < ε.
(iii) Next, we claim that the sequence defined by

ak := lim
τ↗t

�k(τ ) = ϕ̇τ,1(uk)(ϕt,1(uk) −Uj (t)) (4.7)

is a Cauchy sequence. Let L denote the Lipschitz constant of t �→ hcap(�t ). By
employing (4.5), Lemma 2.5 (3), and Step (ii), we deduce that

|aM − am | =
∣
∣
∣
∣limτ↗t

∑

j �=1

(wM, j (τ ) − wm, j (τ ))
1

t − τ

1

π

∫

Cτ,t, j

Im ϕτ,t (ξ) dξ

∣
∣
∣
∣

≤ lim sup
τ↗t

∑

j �=1

|wM, j (τ ) − wm, j (τ )| 1

t − τ

1

π

∫

Cτ,t, j

Im ϕτ,t (ξ) dξ

≤ 4

K

(

lim sup
τ↗t

|ξ1,M (τ )|−1 + lim sup
τ↗t

|ξ1,m(τ )|−1

)

× lim sup
τ↗t

∑

j �=1

1

t − τ

1

π

∫

Cτ,t, j

Im ϕτ,t (ξ) dξ

≤4L

K

(|ϕt,1(uM ) −U1(t)
∣
∣ + |ϕt,1(um) −U1(t)|

)
,

thereby proving the claim.
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(iv) We let a := limk→∞ ak ∈ C, and show that

lim
τ↗t

1

π

1

t − τ

∫

Cτ,t,1

Im ϕτ,t (ξ) dξ

exists, and is equal to a.9 To this end, let (τm)m be a sequence converging to t
from below. We let

bm := 1

π

1

t − τm

∫

Cτm ,t,1

Im ϕτm ,t (ξ) dξ ∈ [0, 1] .

With the help of Lemma 2.5 (3), we find that for all m, k ∈ N

|bm − a| ≤
∣
∣
∣
∣

�k (τm )
︷ ︸︸ ︷

bm +
∑

j �=1

wk, j (τm)
1

π

1

t − τm

∫

Cτm ,t, j

Im ϕτm ,t (ξ) dξ −a

∣
∣
∣
∣

+
∣
∣
∣
∣

∑

j �=1

wk, j (τm)
1

t − τm

1

π

∫

Cτm ,t, j

Im ϕτm ,t (ξ) dξ

∣
∣
∣
∣

≤ |�k(τm) − a| + 4

K |ξ1,k(τm)|
∑

j �=1

1

t − τm

1

π

∫

Cτm ,t, j

Im ϕτm ,t (ξ) dξ

≤ |�k(τm) − ak | + |ak − a| + 4L

K

1

|ξ1,k(τm)| .

Since (bm)m is a bounded sequence of real numbers, its limes superior exists. The
estimate above yields, that for any k ∈ N

∣
∣
∣lim sup
m→∞

bm − a
∣
∣
∣ ≤ lim sup

m→∞
|�k(τm) − ak | + |ak − a| + 4L

K
lim sup
m→∞

|ξ1,k(τm)|−1

= |ak − ak | + |ak − a| + 4L

K
|ϕt,1(uk) −U1(t)|.

Taking k → ∞, we get lim supm→∞ bm = a. By arguing in the same way as
above, we conclude that lim infm→∞ bm = a, which entails limm→∞ bm = a.
Hence, indeed

lim
τ↗t

1

t − τ

1

π

∫

Cτ,t, j

Im ϕτ,t (ξ) dξ = a.

Lemma 3.4, and Corollary 2.7 yield that

ak = lim
τ↗t

�k(τ ) = lim
τ↗t

Dk(t, τ ) = ϕ̇t,1(uk) = lim
T↘t

Dk(T, t).

9 Note that thus the limit a is in fact independent of the choice of the sequence (uk )k .
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By arguing as we did in the Steps (ii) to (iv), simply replacing τ by T , and τ ↗ t
by T ↘ t , we find that

lim
T↘t

1

T − t

1

π

∫

Ct,T, j

Im ϕt,T (ξ) dξ = a = lim
τ↗t

1

t − τ

1

π

∫

Cτ,t, j

Im ϕτ,t (ξ) dξ.


�

5 The Multislit Equation

Now, we combine the results from the previous sections, and deduce a generalised
Loewner equation.

Lemma 5.1 The map z �→ ∂tϕt,s(z) is defined for almost every t ∈ [0, s], and is
holomorphic in H.

Proof Let (zk)k be a sequence of pairwise distinct elements of H, such that M :=
{zk : k ∈ N} is dense in H, i.e., closM = closH. Then, t �→ ∂tϕt,s(w) exists for
every w ∈ M , and every t ∈ D for some set D ⊆ [0, 1] of full measure. Suppose that
tn ∈ [0, 1] tends to t ∈ D as n → ∞, but tn �= t for all n. Then

�n : H −→ C, z �−→ ϕtn ,s(z) − ϕt,s(z)

tn − t

is holomorphic. Since (�n(zk))n is convergent, and �n is locally bounded due to
Corollary 2.7, �n converges locally uniformly to some holomorphic � : H → C.
Using the identity principle, we see that� is independent of the choice of (tn)n , which
yields the claim. 
�

We are now able to prove our main result.

Proof of Theorem 1.4. We work in several steps. We fix s ∈ [0, 1]. By the relation
ϕt,s = gt ◦ hs , it suffices to deduce the Loewner equation for ϕt,s instead of gt .

(i) Let 0 ≤ τ ≤ t ≤ s ≤ 1. By Corollary 2.7, we already know that the function
t �→ ϕt,s(z) is differentiable for almost every t . Therefore, it suffices to calculate
its left derivative. We let � j (z, τ, t) := � jλ j (τ, t) where

λ j (τ, t) := 1

t − τ

1

π

∫

Cτ,t, j

Im ϕτ,t (ξ) dξ,

and � j = � j (z, τ, t) is from (3.1) (see also Lemma 2.6). By Lemma 3.4,

� j → 1

ϕt,s(z) −Uj (t)
as τ ↗ t
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and consequently
ϕt,s(z) − ϕτ,s(z)

t − τ
=

∑

j

� j (z, τ, t). (5.1)

Taking the limit τ↗t in (5.1), and interchanging limit with summation, by the
dominated convergence theorem, yields that for almost every t ∈ [0, s], and z ∈ H

the equations

∂tϕt,s(z) =
∑

j

λ j (t)

ϕt,s(z) −Uj (t)
, and ϕ0,s(z) = hs(z)

hold true. This implies (1.2).
(ii) We now prove that λ j actually has the properties it is claimed to have in The-

orem 1.4. Using Lemma 5.1, we note that t �→ ∂tϕt,1(ϕ
−1
t,1 (Uj (t) + k−1)) is

measurable for k sufficiently large. We use Eq. (4.2) with the sequence (k−1)k ,
and write

λ j (t) = lim
k→∞ ∂tϕt,1

(
ϕ−1
t,1 (Uj (t) + k−1)

) · k−1.

Hence, λ j is measurable. Equation (4.1), in combination with Lemma 2.5 (3),
yields that 0 ≤ λ j (t) ≤ L holds almost everywhere, where L denotes a Lipschitz
constant of t �→ hcap(�t ). Comparing coefficients in the expansion of

∑

k

λk(t)

ϕt,s(z) −Uk(t)
= 1

ϕt,s(z)

∑

k

∑

m≥0

λk(t)

(
Uk(t)

ϕt,s(z)

)m

= 1

ϕt,s(z)

∑

m≥0

∑

k

λk(t)

(
Uk(t)

ϕt,s(z)

)m

, |z| → ∞,

and the expansion of

∂

∂t
ϕt,s(z) = ∂

∂t

(

z + hcap�t − hcap�s

z
+ O

(|z|2)
)

= 1

z

∂

∂t
hcap�t + ∂

∂t
O

(|z|2), |z| → ∞,

yields (3). This concludes the proof.


�
Moreover, we can nowdeduce a relation between the existence of the limits defining

theweight functions in (4.1) at time t ∈ [0, 1] and the validity of theLoewener equation
(1.2) at t .

Theorem 5.2 Using the notation of Theorem 1.4, the following statements are equiv-
alent for an admissible multislit � with Loewner parametrisation γ , and t ∈ [0, 1]:
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(1) τ �→ gτ (z) is differentiable at t for all z ∈ H\�.
(2) The following two limits exist, and are equal for any j

lim
τ↗t

1

t − τ

1

π

∫

Cτ,t, j

Im ϕτ,t (ξ) dξ, lim
τ↘t

1

τ − t

1

π

∫

Ct,τ, j
Im ϕt,τ (ξ) dξ.

Proof Theorem 4.1 yields that (1) implies (2). By carefully reviewing the proof of
Theorem 1.4, we see that we could have written τ ↘ t instead of τ ↗ t . Hence, we
conclude that (2) implies (1). 
�
Remark 5.3 One can show, by replacing hcap by the logarithmic mapping radius lmr,
and arguing along the lines of [3], that the weight function λk of an admissible multislit
exists in t if and only if the map

Xk,t : (−t, 1 − t) → [0,∞) , h �→ hcap

(

γk (0, t + h] ∪
⋃

j �=k

γ j (0, t]

)

is differentiable at 0, and in this case, X ′
k,t (0) = λk(t). In view of this and since one

can vary γk suitably, it is clear that Theorem 1.4 is best possible in the sense that one
cannot get a Loewner equation for all t for an arbitrary Loewner parametrisation.
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