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Efficient Sensor Placement for Leak Localization
Considering Uncertainties

David B. Steffelbauer1 ·Daniela Fuchs-Hanusch1

Abstract Losses in water distribution systems can be between several percent in well main-
tained systems up to more than 50 percent in developing countries. Most of the losses
originate from leaks. Therefore, a fast detection and localization of leaks is crucial for effec-
tively reducing this losses in water distribution networks. Model-based leak localization has
become increasingly popular in recent years. Certainly, the performance of these methods
is linked to 1) the measurement locations in the system and 2) uncertainties at these loca-
tions. This paper provides a methodology that incorporates uncertainties of different types
and sources in the optimal sensor placement problem for leak localization shown by the
example of the effect of demand uncertainties on potential pressure measurement points.
The problem is solved for different numbers of sensors and different strengths of uncer-
tainties are taken into account. Additionally, to describe the relation between the number
of sensors and the leak localization quality, a cost-benefit function is derived based on the
different sensor placement results and GoF statistics. It was found that the function follows
a power law. Results show that incorporating uncertainties leads to other optimal positions
than without uncertainties, but the power law behavior still stays true. Additionally, more
sensors are needed than without uncertainties.
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1 Introduction

In well maintained water distribution systems (WDS), only 3 - 7 % of water is lost. Though
in developing countries this number can go up to 50 % and more (Colombo et al. 2009).
Most of the lost water originates from leaks.

Therefore, water loss reduction through locating and repairing leaks inWDS is becoming
increasingly important.

In terms of leak localization water utilities follow two different approaches, the active
and passive leakage control (Puust et al. 2010). In case of the passive approach, the utility
waits until customers report leaks because they experience supply problems or leakages find
their way to the surface and thus become visible. However, not all leaks become visible
leading to high unreported leaks and hence to high total water losses.

The better strategy to reduce water losses is active leakage control (Farley and Trow
2003). One central task of an active leakage control strategy is searching for leaks on
a regular basis. Different methods are applied for finding the position of leaks, like e.g.
step testing or by temporary placing acoustic loggers. These methods are referred to as
leak localization, which has the purpose of limiting the possible location of a leak to
several hundred meters. Leak localization has to be followed by pinpointing to get the
exact position of the leak e.g. with ground microphones, leak-noise correlators or gas leak
detection.

Model-based leak localization methods have been introduced over the past few decades
using measurement data from hydraulic sensors along with hydraulic models. In general,
two different techniques are available. First, steady state analysis based techniques, second,
transient based techniques (Colombo et al. 2009).

This paper is based on steady state leak localization, which was first proposed by
Pudar and Liggett (1992). They formulated an inverse problem where the discrepancy
between real-world measurements and data obtained from hydraulic simulations was min-
imized. Since then, leak localization by solving inverse model-based approaches has been
extensively investigated (e.g. Wu et al. 2010; Pérez et al. 2011).

In fact, the success of model-based leak localization depends to a great extent on the
choice of the measurement positions within a WDS (Kang and Lansey 2010). For that
reason optimal sensor placement (OSP) has the potential for significantly improving the
localization of leaks.

While much research work has been put into dealing with OSP for contaminant detection
and WDS model calibration (see for example Savic et al. 2009), only few studies have
focused on the same problem for leak localization.

The first discussion and analysis of OSP for leak localization emerged in 2008 with the
work of Farley et al. (2008, 2010, 2013), followed in 2009 by Pérez et al. (2009). Both OSP
approaches are based on the leak sensitivity matrix. The approach of Pérez et al. (2009)
binarizes this matrix which leads to a loss of information (Quevedo et al. 2011).

To overcome this information loss, Casillas et al. (2013) formulated the OSP as an integer
optimization problem based on projections from a non-binarized leak sensitivity matrix
solved with a semi-exhaustive search and a genetic algorithm (GA).

Subsequently, Pérez et al. (2014) defined a greedy-search algorithm, which minimizes
the maximum distance of leak scenarios to the gravity center of the nodes with projections
over 99 % of the maximum value of the projections. This resulted in more robust sensor
placements.
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Recently, Cugueró-Escofet et al. (2015) extended the approach of Casillas et al. (2013)
with a relaxed isolation index taking practical applications like the acceptable isolation
distance into account.

Alternatively, Sarrate et al. (2012) invented a strategy maximizing a “leak isolability
index” based on structural analysis of a WDS solved by a depth-first search algorithm.
Since this strategy is only capable of medium-sized networks, it is combined in Sarrate et al.
(2013) with clustering techniques to reduce the size and complexity of the OSP problem.
However, due to its simple description, structural analysis cannot ensure that the diagnosis
performance obtained from such models hold for real-world systems. Therefore, in Sarrate
et al. (2014) the approach is combined with projections calculated again from sensitivity
matrices.

Nejjari et al. (2015) invented an algorithm based on pressure sensitivity matrix analysis
using an exhaustive search strategy with average worst leak expansion distances as sensor
placement performance measure.

Currently, Casillas et al. (2015) placed sensors in an optimal way by minimizing the
overlapping signatures in the leak signature space.

A completely different approach was introduced by Christodoulou et al. (2013), who
invented an entropy-based OSP algorithm by maximizing the total entropy in the network.

In hydraulic modeling as well as in measuring hydraulic parameters one has to face
several sources of uncertainty (Hutton et al. 2014). We therefore assume that these effects
should be taken into account in OSP algorithms. Blesa et al. (2014) studied the robustness of
the methodology introduced by Sarrate et al. (2014) against sensitivity matrix uncertainties.
The main result was that the sensor positions are not sensitive to the size of the leaks, but
to the working point of the WDS. Furthermore, Blesa et al. (2016) used multi-objective
optimization to place sensors. The objectives were to determine the mean and the worst
locatability index.

Both papers investigate the consequences of uncertainties on the OSP algorithms, but
neither of them incorporates these uncertainties in the OSP itself. To the best of our knowl-
edge, Steffelbauer et al. (2014) was the first study incorporating uncertainties in the OSP
problem. Unfortunately, the problem was only solved for four sensors.

The aim of this paper is to extend the work described in Steffelbauer et al. (2014) pro-
viding a methodology that uses cost-benefit functions for predicting the sensor placements
quality for leak localization depending on the number of sensors as well as the strength of
general and not only demand uncertainties. Therefore, it provides WU with a methodol-
ogy that helps them to decide how many sensors should be placed in their system for leak
localization.

2 Methodology

2.1 Efficient Sensor Placement - General Approach

Figure 1 depicts an overview of the methods used in this paper and their chronological order.
First, hydraulic simulations are used to calculate the sensitivity matrices s and the

residuals r (see Section 2.2). s and r are later used in the OSP algorithm.
Additionally, the hydraulic model is used to calculate the effect of uncertain input

parameters on the outputs of the hydraulic model (σ ), called model output uncertainty
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Fig. 1 Flowchart of the methodology

(MOU) throughout this paper. The MOU calculations are performed through Monte Carlo
simulations (MCS) (Section 2.3).

The MOU obtained from MCS are integrated into the sensor placement algorithm of
Casillas et al. (2013), by extending this approach to punish measurement points with high
uncertainties. The effect of uncertain demands on the pressures of the hydraulic model
serves as an example of application throughout this paper.

Together with the number N of sensors and a weighting factor ω to adjust the strength
of the uncertain demands on the sensor placement, s, r and σ are used with a GA (see
Section 2.5) for placing the sensors in an optimal manner (Section 2.4) resulting in a leak
localization quality parameter ε.

The calculation of ε for different N and ω allows the derivation of sensor placement
cost-benefit functions and different fit-functions are tested to describe the behavior of ε as
a function of N . Goodness-of-fit (GoF) statistics (Section 2.6) are then used to find the
cost-benefit function which fits the simulation data the best.

Sensitivities, residuals, MCS and the OSP are calculated by means of OOPNET, an
object-oriented Python network analysis tool forWDS (see Steffelbauer and Fuchs-Hanusch
2015). Leaks are simulated using the power leak law (Ferrante et al. 2014) outflow equation

Q = ce · pee , (1)

where Q is the leak outflow, ce and ee the emitter coefficient and exponent and p the
pressure at the leak position.

2.2 Calculating Sensitivity Matrices and Residual Vectors

The sensitivity matrix S states the key to decide where to install pressure measurements in
the system (Pudar and Liggett 1992)

S =
⎛
⎜⎝

s11 . . . s1n
...

. . .
...

sm1 . . . smn

⎞
⎟⎠ . (2)
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m is the number of leak scenarios and n is the number of possible measurement positions.
Leak scenarios are the output of hydraulic simulations by introducing a leak of a specific
size and on a specific position in the system. The individual elements of S are calculated
by subtracting pressures of simulations with no leak p̂j from the pressures which are calcu-

lated at the same position p
fi

j under leak scenario i with a leak of size fi and normalizing
according to the leak size

sij = ∂pj

∂fi

= p
fi

j − p̂j

fi

. (3)

In order to estimate the general sensitivity of a potential measurement point with respect to
all possible leak scenarios, the mean over the column of S is also calculated

sj = 1

m

m∑
i=1

sij . (4)

This is conducted for the graphical representation of the sensitivity calculation results (see
for example Fig. 2a).

The leak localization also relies on the computation of residuals, which are expressed as
the difference between real-world measurements and the expected behavior of the system
described by the hydraulic model. The residuals rij are thus built in a similar manner to the
sensitivity matrices, but in general with a different leak size fi and without normalization

rij = p
fi

j − p̂j . (5)

This results in a matrix R which represents measurements in the system. Furthermore,
the i-th column of R is called i-th residual vector ri.

2.3 Model Output Uncertainty Calculation with Monte Carlo Simulations

The quality of a hydraulic model relies heavily on the model input parameters. Gener-
ally, these input parameters are fraught with uncertainty. Consequently, the uncertain input
parameters will lead to MOU.

Demand Uncertainties Leakage Sensitivity

(a) (b)

Fig. 2 (a) Effects of demand uncertainties on nodal pressure and (b) overall sensitivity of nodal pressures to
leaks
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Hydraulic solvers like EPANET (Rossman et al. 2000) merely simulate the determin-
istic forward model without taking uncertainties into account. To compute the MOU, the
hydraulic solver must be combined with uncertainty propagation methods such as e.g. first
order second moment, MCS or Latin hyper-cube sampling (Kang et al. 2009). In this paper
MCS is chosen to calculate the MOU since MCS has the ability to converge to the exact
uncertainty estimates if a large number of parameter sets is simulated.

MCS can in general be applied to every combination of model input and model out-
put parameters in a hydraulic model and therefore every kind of input uncertainty can be
incorporated in the enhanced sensor placement algorithm in Section 2.4. However, in order
to make the method more tangible, it is described on the basis of calculating the effect of
uncertain demands on the pressures in the system.

For this example, the parameter set is realized in such a way that each demand in the sys-
tem is randomly drawn from a normal distribution with a mean μq and a standard deviation
σq . Subsequently, EPANET is called using these randomly distributed demands to perform
a hydraulic simulation for obtaining the resulting pressures pj at every node j in the system.
This procedure is repeated mcsteps-times to get the approximate probability distributions
P(pj ) of pj for every possible measurement position in the system.

Once P(pj ) is calculated, the standard deviation σpj
is taken from this distribution serv-

ing as MOU of the pressures in point j . The higher σpj
, the noisier the signal is at this point,

the less ideal this location is for pressure measurements.

2.4 Enhanced Sensor Placement Considering Uncertainties

The sensor placement algorithm described in Casillas et al. (2013) is based on calculating
projections ψij between ri and sj

ψij (q) = rT
i Q(q)sj

|rT
i Q(q)T ||Q(q)sj |

, (6)

where Q(q) is a diagonal matrix constructed from a binary vector q with the length of the
possible sensor positions, where qi is 1, if a sensor is placed at node i respectively 0 for no
sensor. The largest projection value represents the supposed leak spot. If this value lies on
the diagonal the correct leak spot is found by the sensor configuration q. Therefore, an error
index ε(q) is defined

ε(q) =
{
0 . . . if ψii(q) = max(ψi1(q), . . . , ψim(q))

1 . . . otherwise
. (7)

The mean over all leak scenarios takes every possible leak into account

ε(q) =
m∑

i=1

εi(q)

m
→ min

q
ε(q) . (8)

This value must be minimized to find the optimal sensor configuration q. The lower bound
of ε(q) is 0, denoting that every leak in the system is found correctly by the sensor
configuration q. If no leak scenario is identified correctly, ε(q) is 1.

To incorporate MOU in �(q), the pressure uncertainties σpi
(see Section 2.3) are sub-

tracted from ri . This punishes points with high MOU, since high MOU leads to a high
distortion of the residual vectors ri resulting in smaller ψij (q). Therefore, points with
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sensors at these positions will be less optimal. The extension of Eq. 6 under consideration
of demand uncertainties results in

ψij (q) =
(
rT
i − ωσpi

)
Q(q)sj

| (rT
i − ωσpi

)
Q(q)T ||Q(q)sj |

, (9)

where ω represents a weighting factor controlling the strength of the influence of MOU on
the OSP.

Furthermore, in a District Metering Area (DMA) flow and pressure of the inlet and outlet
of the system are assumed to be known. For this reason fixed pressure sensor positions are
incorporated into the sensor placement algorithm. This is achieved by setting qj = 1 if j is
the inlet respectively the outlet of the system.

2.5 Solving the Optimal Sensor Placement Problem with a Genetic Algorithm

GAs are widely used to obtain optimal solutions to countless problems in water related
fields (Nicklow et al. 2010). Meta-heuristics like GA are the only alternative for finding
optimal solutions in reasonable time for problems with enormous search space sizes.

For example, in the OSP problem calculating ε(q) for every possible combination of
sensors can result in an almost countless solution space. If there are M different possi-
ble measurement positions for pressure sensors in a network, there are C possible sensor
combinations for placing N sensors

C =
(

M

N

)
. (10)

This results in C independent calculations of ε(q), which grows exponentially with N .
The GA used in this paper is a simple GA as described in Bäck et al. (2000). The genome

of the individuals in the GA consists of N integers, were N is the number of sensors. Popu-
lation size is set to 100 and the evolution takes place for 100 generations. Single crossover
is used with a probability of pc = 80% followed by uniform integer mutation with a
probability of pm = 20%. Tournament selection with a tournament size of k = 3 is chosen.

2.6 Finding and Fitting an Ideal Cost-Benefit Function

Running the GA described in Section 2.5 for OSP defined in Section 2.4 for a fixed ω and
different number of sensors N results in different ε(q) values. The values of ε(q) serve as
a sensor placement quality parameter, since it is connected to the number of leak scenarios
which have not been allocated appropriately. The percentage L% of correctly found leak
scenarios is

L% = 100 · (1 − ε(q)) . (11)

As N increases, ε(q) has to decrease since more sensors lead to better leak localization. The
behavior of ε(q) as a function of N can be interpreted as a cost-benefit analysis answering
the following questions:

– How many sensors are needed to identify a specific number of leak scenarios correctly?
– How does the OSP improve leak localization if M more sensors are placed?

For reasons of simplicity, the cost is simplified here as the number of sensors whereas the
benefit is the quality of the leak localization in terms of leak scenarios found.

Nevertheless, carrying out this analysis is computationally expensive and leads only
to single points in dependency of N . Finding a cost-benefit function which describes the
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behavior of ε(q) due to N will lead to computational shortcuts, since the GA does not
have to find all possible quality parameters as a function of N and might also lead to bet-
ter insights into the sensor placement problem itself. Two questions arise; First, how to fit
a function optimally to the ε(q)? Second, how to decide which function best describes the
data?

For answering the first question the Levenberg-Marquardt algorithm is applied.
To answer the second question, GoF statistics are generally used. In this paper four dif-

ferent GoF measurements are applied to find the best cost-benefit function. The first one is
χ2 statistics

χ2 =
n∑

i=1

(yi − f (xi))
2 , (12)

where yi is the datapoint on position xi and f (xi) is the value calculated from the fit-
function and n is the total number of data points. χ2 does not solve the problem of over-
fitting. Therefore, the degrees of freedom ν, respectively the number of function parameters
(n − ν), must be taken into account. This is done by using the reduced χ2 statistics (χ2

ν )

χ2
ν = χ2

ν
. (13)

Third GoF measure is Akaike’s information criterion (aic), which penalizes the number of
parameters of the fitting function more than χ2

ν

aic = n ln
(
χ2/n

)
+ 2 (n − ν) . (14)

Bayesian information criterion (bic) punishes the number of parameters even more than aic

bic = n ln
(
χ2/n

)
+ (n − ν) ln (n) . (15)

The smaller the value of all four criteria compared to other fitting functions, the better the
chosen model describes the data.

2.7 Case Study

The hydraulic model of the real-world case study WDS consists of one tank at the inflow
point, 392 nodes and 452 pipes with a total length of approximately 37 km. The pipe diame-
ters vary from 70 to 400 mm. The pressure at night minimum flow varies between 29.31 and
43.46 m. Flow and pressure are continuously measured at the inflow and outflow point. The
hydraulic model was calibrated in terms of pipe roughness several years ago. The nodal base
demands were allocated from the billing information of the particular customers. The area
is mainly a residential zone with a few small industries. For the purpose of leak localization
and hence for the application of the introduced sensor placement approach, the nodal min-
imum night consumption is of interest. This was derived for every node from the assigned
demand patterns which were also available from the hydraulic model. These patterns were
derived during the model calibration process and hence are based on real-world measure-
ments. The uncertainties resulting from this very general demand allocations are taken into
account with the method described in Section 2.3.
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3 Results

First, the effect of demand uncertainties on possible pressure measurement points is inves-
tigated according to Section 2.3. MCS with 10000 mcsteps are performed with random
demands drawn from a normal distribution using the nodal demand at minimum night flow
as mean μq and a standard deviation σd of 10 %. The resulting σpi

of the nodal pressures
are depicted in Fig. 2a.

The sensitivity matrix S is calculated as described in Section 2.2. Leakage scenarios
were generated with an emitter coefficient of ce = 0.5 in EPANET for every node in the
system. Only one leak size ce = 0.5 was chosen to build the sensitivity matrices, since Blesa
et al. (2016) has found that the sensor positions are not sensitive to leak sizes. The overall
sensitivity at every possible measurement position sj in the system is calculated by Eq. 4
and plotted in Fig. 2b.

In the upper region of the case study area exist points that are sensitive to demand uncer-
tainties Fig. 2a. Therefore, this points should be punished by an OSP algorithm. For solving
the OSP problem it is needed to compute the residuals R. In this paper R are calculated with
the same emitter coefficient ce = 0.5 as S.

σpi
, S and R are then used for solving the enhanced OSP problem described in

Section 2.4. The OSP problem is solved for a different N ranging from 2 to 10 and different
ω (with ω = (0.0, 0.125, 0.25, 0.5, 1.0)).

The range of N was chosen, because for N = 1 the ideal sensor position is trivially at
the point with the highest overall sensitivity and N > 10 was viewed as uneconomical for
the size of the investigated WDS.

ω was chosen between ω = 0.0, which corresponds to the case with no uncertainties, and
ω = 1.0, which takes the uncertainties into account with full strength. Simulations with ω =
1.0 have shown that the sensors cluster too much in regions with low demand uncertainties
and are not spread anymore over the whole system (e.g. see Fig. 3h). Therefore, ω was

halved so long (ω = 1.0
1/2−−→ 0.5

1/2−−→ 0.25
1/2−−→ 0.125) until sensors appeared again in the

upper part of the system with high demand uncertainties.
For each combination of N and ω the GA described in Section 2.5 is applied 10 times

solving the enhanced OSP. Due to the stochastic behavior of the GA, the resulting sensor
placement quality parameters ε(q) may vary for different optimization runs with same N

and ω parameters. Table 1 thus illustrates the statistics of ε(q) found during 10 optimization
runs and contains the mean, the minimum and the standard deviation of ε(q) of all runs.

In Fig. 3 the optimal sensor positions for selected values of N and ω are presented1.
The first four plots (Fig. 3a–d) show the OSP results for N = 2 to N = 5 with ω = 0.0,
whereas the last four plots Fig. 3e and h show results for five sensors under incorporation
of uncertainties with varying ω (between 0.125 and 1.0).

Without uncertainties the algorithm tends to place sensors in regions with high demand
uncertainties (upper part in Fig. 2). This can be seen in Fig. 3a–d. The higher ω, the more
the sensors move to regions with low demand uncertainties (see Fig. 3d–h). Therefore, the
extension of the OSP algorithm by incorporating uncertainties shows the desired behavior
by punishing measurement points with high uncertainties. Nevertheless, this decreases the
spreading of the sensors over the whole system since sensors tend to cluster in areas with
low uncertainties.

1Due to lack of space the results for all combinations of N and ω can be found in the supplementary material
of this paper.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 Sensor positions (green triangles) resulting from the enhanced sensor placement algorithm described
in Section 2.4 for different number of sensors N and different weighting factors ω. Already installed sensors
at the inflow and outflow point of the DMA are depicted as purple triangles
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Additionally, in Fig. 3a–d it can be seen that the optimal set for N − 1 sensor positions
P(N − 1) is not a subset of the optimal placement P(N) of N sensors (P(N − 1) �
P(N)). The algorithm leads to different sensor positions for different N . The same results
are also found by Kapelan et al. (2005) for sensor placement for model calibration.

Finding the mathematical law behind the cost-benefit function describing the OSP is
a main objective of this paper since it provides WU with a methodology to answer how
many sensors should be placed in a WDS for leak localization. To predict the behavior
of ε(q) on N for different ω, the resulting mean values were chosen, fitted with different
functions and subsequently tested with GoF statistics to figure out which mathematical law
the cost-benefit functions follow.

Different functions were taken into account describing the decreasing behavior one can
see in Fig. 4 of the results of the GA.

Table 2 shows the result of the fits. In the first column, the different functions which were
fitted to the ε(q) values as a function of N are shown. Np is the number of parameters, ν

the number of degrees of freedom. χ2 is the value resulting from χ2 statistics calculated by
Eq. 12, χ2

r is the value from the reduced χ2-statistic (13), the value for Akaike’s information
criterion aic is calculated using Eq. 14 and the value for Bayesian information criterion
bic by Eq. 15. All values are the resulting means over the simulations with different ω. For
example, χ2 in Table 2 is calculated through

χ2 = 1

5

(
χ2

ω=0.0 + χ2
ω=0.125 + χ2

ω=0.25 + χ2
ω=0.5 + χ2

ω=1.0

)
. (16)

According to Table 2, function f6(N), an extended power law equation, leads to the best χ2

and χ2
r whereas the simple power law equation f7(N) leads to the best aic and bic values.

Table 3 shows the best-fit values of the parameters of functions f6(N) and f7(N) together
with the estimated standard error for these values. The best-fit values for equation f6(N)

show high standard errors, especially for parameters a and b, whereas the best-fit values of

Fig. 4 Cost-benefit functions of OSP for different ω



Efficient Sensor Placement for Leak Localization 5529

Table 2 Goodness-of-Fit table for different fit-functions fi(N) containing the number of parameters NP

for every function, the degrees of freedom ν, the resulting values for χ2 and reduced χ2
r statistics, Akaike’s

(aic) and Bayes information criterion (bic)

fit-functions NP ν χ2 χ2
r aic bic

f1(N) = a e−b N 2 7 0.00272 0.00039 −67.68 −67.28

f2(N) = a e−b N + c 3 6 0.01346 0.00224 −67.80 −67.21

f3(N) = e−a N + b 2 7 0.00355 0.00051 −64.37 −63.98

f4(N) = a N2 + b N + c 3 6 0.00082 0.00014 −74.96 −74.37

f5(N) = e−a N + b N + c 3 6 0.00031 0.00005 −83.12 −82.53

f6(N) = (a + b N)−c 3 6 0.00006 0.00001 −97.65 −97.05

f7(N) = a N−b 2 7 0.00009 0.00001 −97.93 −97.53

f7(N) show much lower error bounds. Therefore f7(N) is chosen as a cost-benefit function
for the values in Fig. 4.

The power-law behavior of f7(N) has practical consequences for water utilities. This is
shown through an example for ω = 0.0. Placing 3 sensors instead of 2 improves the quality
of the sensor placement by

εω=0
N=2(q) − εω=0

N=3(q) = 0.327 − 0.265 ≈ 0.06 . (17)

Values are taken from Table 1. To get again the same improvement for 3 sensors, the water
utility has to place double as many sensors as before going from 3 to 5 sensors

εω=0
N=3(q) − εω=0

N=5(q) = 0.265 − 0.203 ≈ 0.06 . (18)

For getting the same improvement for 5 sensors, 4 additional sensors, again double as many
as before, have to be placed

εω=0
N=5(q) − εω=0

N=9(q) = 0.203 − 0.144 ≈ 0.06 . (19)

Therefore, for a linear improvement of the quality the number of sensors has to be doubled.
Furthermore, the power-law behavior stays true under incorporation of uncertainties,

hence the former example is in general true. The only difference to simulations without
uncertainties (ω = 0.0) is that the quality parameter of a sensor placement with a specific
N becomes worse if ω is increased. This makes sense, since leaks are harder to find in
real-world networks with high uncertainties compared to theoretical perfect known systems.
For example, to achieve the same quality parameter as in simulations with no uncertainties

Table 3 Resulting fit parameters and error limits for fit-function f6(N) and f7(N) from Table 2

f6(N) = (a + b · N)−c f7(N) = a · N−b

ω a b c a b

0.000 0.0 ± 1.0 4.0 ± 1.0 0.52 ± 0.05 0.467 ± 0.006 0.517 ± 0.009

0.125 1.0 ± 0.5 2.2 ± 0.6 0.62 ± 0.05 0.512 ± 0.007 0.557 ± 0.010

0.250 0.7 ± 0.4 1.7 ± 0.4 0.66 ± 0.05 0.603 ± 0.008 0.591 ± 0.009

0.500 0.6 ± 0.2 1.3 ± 0.2 0.66 ± 0.03 0.705 ± 0.007 0.586 ± 0.007

1.000 −0.5± 0.5 1.9 ± 0.3 0.49 ± 0.03 0.804 ± 0.009 0.531 ± 0.007
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(ω = 0.0) for N = 2 sensors, N = 4 sensors are needed for ω = 0.5 and N = 6 are needed
if the uncertainty is fully taken into account (ω = 1.0). This can also be seen in Fig. 4.

4 Discussion

Incorporating uncertainties in the OSP problem for leak localization is of great importance.
Since points which are sensitive to demand variations can also be points which are sensitive
to leaks (upper part of Fig. 2). Hence, leaks can be hidden by demand fluctuations for
sensors placed at these points. Consequently, it may be harder to locate leaks with sensors
at these points.

Nevertheless, nodes from this region are always chosen by the sensor placement algo-
rithm if the uncertainty effects are not taken into account (see Fig. 3a–d for example). The
enhanced algorithm in Section 2.4 supposes a way out of this dilemma. Increasing the ω

value leads to placements avoiding these regions of high uncertainty.
Additionally, it is apparent from Fig. 3d–h that the higher ω is the more sensors are

placed in regions with low uncertainties. Unfortunately, this leads to a clustering of sensors.
However, a good sensor placement should also lead to positions that are spread over the
whole WDS, since sensors are more sensitive to changes in their close proximity. Therefore,
the OSP was solved not only for ω = 1.0, taking the full uncertainty into account, but also
for smaller ω values. Nevertheless, the paper lacks in providing a methodology for choosing
this value.

Another important finding is that the optimal set for N − 1 sensor positions P(N − 1)
is not a subset of the optimal placement P(N) of N sensors. Therefore, OSP algorithms
that solve the problem by placing one sensor and find the next sensor position through
incorporation of the previous one (greedy sensor placement algorithms) may not find global
optimal solutions of the problem.

It has to be mentioned that for a high number of sensors the results in Table 1
must be treated with caution, since the search space becomes very large. Placing 10
sensors on 392 measurement locations (network nodes of the case study) results in ≈
2 · 1019 possible combinations. Since the GA evaluates approximately 8000 times the
fitness functions in one optimization run, this is just a small part of the total solution
space.

Another interesting finding is that fitting the functions from Table 2 to the simulated
sensor placement cost-benefit values lead to two equations, which both have a power law
behavior (f6(N) and f7(N)). f6(N) has lower χ2 and χ2

r values while f7(N) results in bet-
ter Akaike and Bayes information criteria values. A closer look at the confidence intervals
of the fitness coefficients leads to favor equation f7(N) . This curve is therefore chosen as
the cost-benefit curve of the OSP for all ω parameters (see Fig. 4). It is surprising that higher
ω parameters do not change the form of the cost-benefit curve, they merely lead to higher
values of the cost-benefit function. One surprising finding is that the form of the function is
robust against uncertainties.

The limitations of this study are that it can only be applied to WDS where a hydraulic
model already exists since it is necessary to compute the sensitivity matrix. Additionally,
the OSP algorithm is only as good as the model. For example, an unknown closed valve can
have strong influence on the hydraulics and therefore the OSP result might not be optimal
in reality.
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Furthermore, for bigger systems the computation time increases for both, calculating the
MOU as well as solving the OSP problem, making the method not directly applicable for
big real world systems with thousands of nodes. Additionally, the OSP algorithm can only
take single leaks into account, not multiple leaks.

5 Conclusion and Outlook

This paper set out to determine the effect of MOUs (e.g. the effect of uncertain demands
on pressures) on OSP for leak localization in a real-world network. The research has shown
that pressure measurement points, which are sensitive to leaks may also be points which are
sensitive to uncertain demand and hence less ideal to place sensors on. Incorporating MOU
in the OSP algorithm leads to placements avoiding regions of high uncertainty.

The simulations confirmed that the optimal sensor positions for N − 1 sensors is not a
subset of the optimal locations of N sensors. As a consequence, greedy sensor placement
algorithms may fail in finding optimal measurement locations. Therefore, choosing GA to
solve the OSP problem in this paper was the right decision.

Furthermore, this paper showed that the effect of the number of sensors on the sensor
placement quality has a power law behavior. This even stays true under incorporation of
uncertainties.

Although, the work in this paper focuses on the effect of demand uncertainties on the
placement of pressure sensors, it should be mentioned that this method is more general in
scope. The method is also applicable for other sensors (e.g. flow or quality sensors) and
has capability for different sources of uncertainties as well (e.g. roughness, elevation, bulk
reactions, ...).

A limitation of this study is the high computation complexity since the search space of
the OSP problem can become very large even for small WDS. Clustering algorithms as in
Sarrate et al. (2014) can show a way out in future work to reduce the complexity of the
problem.

Additionally, further investigations are needed using different networks to provide proof
that the power law behavior of optimal sensor positions is true. Finally, what value has to
be chosen for the weighting factor ω in the sensor placement algorithm is still an open
question. This will be investigated in future work.
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Quevedo J, Cugueró MÀ, Pérez R, Nejjari F, Puig V, Mirats J (2011) Leakage location in water distribu-

tion neworks based on correlation measurement of pressure sensors, 8th IWA Symposium on System
Analysis and Integrated Assessment. International Water Association (IWA), San Sebastian, pp 290–297

Rossman LA et al. (2000) EPANET 2: users manual. US Environmental Protection Agency. Office of
Research and Development. National Risk Management Research Laboratory

http://dx.doi.org/10.1016/j.proeng.2014.11.453
http://dx.doi.org/10.2166/hydro.2015.021
http://jh.iwaponline.com/content/18/1/136
http://jh.iwaponline.com/content/18/1/136
http://dx.doi.org/10.3390/s131114984
http://dx.doi.org/10.3390/w7116496
http://dx.doi.org/10.1007/s11269-013-0419-8
http://dx.doi.org/10.1016/j.jher.2009.02.003
http://dx.doi.org/10.1016/j.ifacol.2015.09.675
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000290
http://dx.doi.org/10.1007/s11269-014-0708-x
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000325
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000037
http://dx.doi.org/10.1080/15730620802566844
http://dx.doi.org/10.1061/(ASCE)0733-9429(2005)131:3(190)
http://dx.doi.org/10.1016/j.proeng.2015.08.979
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000053
http://dx.doi.org/10.2166/ws.2009.372
http://dx.doi.org/10.1016/j.conengprac.2011.06.004
http://dx.doi.org/10.1016/j.proeng.2014.02.144
http://dx.doi.org/10.1080/15730621003610878


Efficient Sensor Placement for Leak Localization 5533

Sarrate R, Nejjari F, Rosich A (2012) Sensor placement for fault diagnosis performance maximization in
Distribution Networks. In: 2012 20th Mediterranean conference on control automation (MED), pp 110–
115. doi:10.1109/MED.2012.6265623

Sarrate R, Blesa Izquierdo J, Nejjari Akhi-Elarab F, Quevedo Casn JJ (2013) Sensor placement for leak
detection and location in water distribution networks. In: Proceedings of 7th IWA specialist conference
on efficient use and management of water. International Water Association (IWA), pp 1–10

Sarrate R, Blesa J, Nejjari F (2014) Clustering techniques applied to sensor placement for leak detection
and location in water distribution networks. In: 2014 22nd Mediterranean conference of control and
automation (MED), pp 109–114. doi:10.1109/MED.2014.6961356

Savic DA, Kapelan ZS, Jonkergouw PM (2009) Quo vadis water distribution model calibration? UrbanWater
J 6(1):3–22. doi:10.1080/15730620802613380

Steffelbauer D, Fuchs-Hanusch D (2015) OOPNET: an object-oriented EPANET in Python. Proc Eng
119:710–718. doi:10.1016/j.proeng.2015.08.924

Steffelbauer D, Neumayer M, Günther M, Fuchs-Hanusch D (2014) Sensor placement and leakage local-
ization considering demand uncertainties. Proc Eng 89:1160–1167. doi:10.1016/j.proeng.2014.11.242.
http://www.sciencedirect.com/science/article/pii/S1877705814023571

Wu Z, Sage P, Turtle D (2010) Pressure-dependent leak detection model and its application to a district water
system. J Water Resour Plan Manag 136(1):116–128

http://dx.doi.org/10.1109/MED.2012.6265623
http://dx.doi.org/10.1109/MED.2014.6961356
http://dx.doi.org/10.1080/15730620802613380
http://dx.doi.org/10.1016/j.proeng.2015.08.924
http://dx.doi.org/10.1016/j.proeng.2014.11.242
http://www.sciencedirect.com/science/article/pii/S1877705814023571

	Efficient Sensor Placement for Leak Localization
	Abstract
	Introduction
	Methodology
	Efficient Sensor Placement - General Approach
	Calculating Sensitivity Matrices and Residual Vectors
	Model Output Uncertainty Calculation with Monte Carlo Simulations
	Enhanced Sensor Placement Considering Uncertainties
	Solving the Optimal Sensor Placement Problem with a Genetic Algorithm
	Finding and Fitting an Ideal Cost-Benefit Function
	Case Study

	Results
	Discussion
	Conclusion and Outlook
	Acknowledgments
	Open Access
	References


