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Abstract Deterministic timed automata are strictly less expressive than their non-
deterministic counterparts, which are again less expressive than those with silent
transitions. As a consequence, timed automata are in general non-determinizable. This
is unfortunate since deterministic automata play a major role in model-based testing,
observability and implementability. However, by bounding the length of the traces
in the automaton, effective determinization becomes possible. We propose a novel
procedure for bounded determinization of timed automata. The procedure unfolds the
automata to bounded trees, removes all silent transitions and determinizes via dis-
junction of guards. The proposed algorithms are optimized to the bounded setting
and thus are more efficient and can handle a larger class of timed automata than the
general algorithms. We show how to apply the approach in a fault-based test-case gen-
eration method, called model-based mutation testing, that was previously restricted
to deterministic timed automata. The approach is implemented in a prototype tool
and evaluated on several scientific examples and one industrial case study. To our
best knowledge, this is the first implementation of this type of procedure for timed
automata.
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1 Introduction

The design of modern embedded systems often involves the integration of interacting
components /1 and I that realize some requested behavior. Figure 1 illustrates two
components /1 and /; that realize the integrated system /. In early stages of the design,
I1 and I, are high-level and partial models that allow considerable implementation
freedom to the designer. In practice, this freedom is reflected in the non-deterministic
choices that are intended to be resolved during subsequent design refinement steps. In
addition, the composition of two components involves their synchronization on some
shared actions. Typically, the actions over which the two components interact are
hidden and become unobservable to the user. It follows that the overall specification
I = I || I, can be a non-deterministic partially observable model.

The passage from a high-level model towards an implementation consists of an
iteration of refinement steps. In every refinement step, the designer must ensure that
the more concrete model I’ restricts the behavior of I (e.g. by resolving some of the
non-deterministic choices in /) and does not add new behavior which I does not admit.
It follows that the designer has to check, using for instance model checking or model-
based testing techniques, whether I’ refines I. When considering non-deterministic
partially observable models, the notion of refinement is often based on trace or alter-
nating trace inclusion. In practice, checking whether I’ refines I often requires the
determinization of I. In fact, for many problems, such as model-based testing, observ-
ability, implementability and language inclusion checking, it is desirable and in certain
cases necessary to work with the deterministic model.

Many embedded systems must meet strict real-time requirements. It follows that
the timing constraints are needed to be part of the model from the early stages of the
design. Timed automata (TA) (Alur and Dill 1994) are a formal modeling language
that enables specification of complex real-time systems. The theory of TA has received
considerable attention in the past decades and is supported by a number of tools, such
as UPPAAL (Bengtsson et al. 1996), IF (Bozga et al. 2002), Kronos (Daws et al.
1996) and RED (Wang 2003). In contrast to the classical automata theory, determinism
and observability play a crucial role in the theory of TA. In particular, deterministic
TA (DTA) are strictly less expressive than the fully observable non-deterministic TA
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Fig. 1 Embedded components /1 and /5, and their composition /
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(NTA) (Alur and Dill 1994; Tripakis 2006; Finkel 2006), whereas the latter are strictly
less expressive than TA with silent transitions (eNTA) (Bérard et al. 1998). This strict
hierarchy of TA with respect to determinism and observability has an important direct
consequence - NTA are not determinizable in general. In addition, due to their complex-
ity, it is rarely the case that exhaustive verification methods are used during the design
of modern embedded systems. Lighter and incomplete methods, such as model-based
testing (Tretmans 1996) and bounded model checking (Biere et al. 2003) are used in
practice, in order to gain confidence in the design-under-test and effectively catch bugs.

In this paper, we propose a procedure for bounded determinization of eNTA. Given
an arbitrary strongly responsive! eNTA A and a bound k, our algorithm computes a
DTA D(A) in the form of a timed tree, such that every timed trace consisting of at
most k observable actions is a trace in A if and only if itis a trace in D(A). It provides
the basis for effectively implementing bounded refinement checking and test-case
generation procedures.

Our concrete motivation behind determinizing the model was induced by our pre-
vious model-based testing approach, called model-based mutation testing Aichernig
et al. (2013). The approach aims at building a test suite that covers specific types of
possible faults in the model. In the first step, it alters the model according to a set
of mutation operators, to create a set of faulty models, called mutants, where each
contains one fault. Then it performs a language inclusion check, implemented via
SMT-solving, between the original model and each of the mutants. If the two models
do not conform to each other, a test case is created, that leads to the first transition that
uncovers the fault. This creates one test case for each non-equivalent mutant, and thus
covers all faults specified by the set of mutation operators.

The language inclusion check, however, relies on deterministic original models.
Thus, for non-deterministic models, we were previously not able to perform the test-
case generation. The bounded determinization introduced in this paper works as a
pre-processing step for the test generation. It enables the processing of a wider class
of models. The restriction to bounded traces does not pose a problem, as testing only
considers finite traces.

The proposed algorithms are performed in three steps: (1) we unfold the original
automaton into a finite tree and rename the clocks in a way that only needs one clock
reset per transition, (2) we remove the silent transitions from the tree, (3) we deter-
minize it. Our determinization procedure results in a TA description which includes
diagonal (Bouyer et al. 2005) and disjunctive constraints. Although non-standard,
this representation is practical and optimized for the bounded setting—it avoids costly
transformation of the TA into its standard form and exploits efficient heuristics in SMT
solvers that can directly deal with this type of constraints. In addition, our focus on
bounded determinization allows us to consider models, such as TA with loops contain-
ing both observable and silent transitions with reset, that could not be determinized
otherwise. We implemented the procedure in a prototype tool and evaluated it on sev-
eral examples. To our best knowledge, this is the first implementation of this type of
procedure for timed automata.

! In model-based testing, strong responsiveness is the requirement that there are no silent loops, otherwise
the tester cannot distinguish between deadlocks and livelocks.
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Fig. 2 Running example

Running example The different steps of the algorithms will be illustrated on a
running example of a coffee-machine shown in Fig. 2. After inserting a coin, the
system heats up for zero to three seconds, followed by a beep-tone indicating its
readiness. Alternatively, if there is no coffee or water left, the beep might occur after
exactly two seconds, indicating that the refunding process has started and the coin
will be returned within four seconds. Heating up and graining the coffee together may
only take up to two seconds, indicated by the invariant of the graining location. Then
the brewing process starts and finally the machine releases the coffee after one second
of brewing. There is no observable signal indicating the transition from graining to
brewing, thus this transition is silent.

This article is an extended version of a publication in the proceedings of the 13th
International Conference on Formal Modeling and Analysis of Timed Systems (Lorber
et al. 2015). The additional content presented in this paper covers a short introduction
into model-based mutation testing, which is our motivation behind the determinization,
an industrial case study for evaluation, proofs of the theorems and an update of the
algorithms, that allows to keep invariants in the final automata.

The rest of the paper is structured as follows: first, we give the basic definitions
and notation of TA with silent transitions (Sect. 2). Then we present our practical
motivation behind the determinization approach, give a short overview of model-
based mutation testing (Sect. 3), and explain why it needs the determinization. Next,
we illustrate the first step of our procedure, the bounded-unfolding of the automaton
and the renaming of clocks (Sect. 4.1). This is followed by the second step, the removal
of silent transitions (Sect. 5) and the final step, our determinization approach (Sect. 6).
Section 7 summarizes the complexity of the different steps. In Sect. 8 we evaluate our
prototype implementation and in Sect. 9 we address related work. Finally, in Sect. 10
we conclude our work.

2 Timed automata with silent transitions

A timed automaton is an abstract model aiming at capturing the real-time behaviour
of systems. It is a finite automaton extended with a set of clocks defined over R, the
set of non-negative real numbers. We may represent the timed automaton by a graph
whose nodes are called locations. To each location there may be assigned a set of
invariants, which are non-negative integer upper bounds on the values of the clocks.
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While being at a location, all clocks progress at the same rate, but they are not allowed
to pass the location invariants. The edges of the graph are called transitions. Each
transition may be subject to constraints, called guards, put on clock values in the form
of integer inequalities. At each such transition an action occurs and some of the clocks
may be reset. The actions take values in some finite domain denoted by X. Here we
are dealing with the class of timed automata with an extended set of actions including
also silent actions, denoted by €. These are internal actions that are non-observable
from the outside, and we distinguish them from the actions that are not silent and
called observable actions. We call a TA without silent transitions fully-observable.

Let X be a finite set of clock variables. A clock valuation v(x) is a function v :
X — Rsp assigning a real value to every clock x € &X. We denote by V the set of
all clock valuations and by 0 the valuation assigning 0 to every clock. For a valuation
vand d € R->o we define v 4 d to be the valuation (v 4 d)(x) = v(x) + d for all
x € X. For a subset X, of X', we denote by v[A,,] the valuation such that for every
x € Xygr, V[ 1(x) = 0 and for every x € X \ &5, V[ X5 1(x) = v(x). A clock
constraint ¢ is a conjunction of predicates of the form x ~ n, where x € X, n € N
and ~ € {<, <, =, >, >}. Given a clock valuation v, we write v |= ¢ when v satisfies
¢. We give now a formal definition of (non-deterministic) timed automata with silent
transitions.

Definition 1 (eNTA) A (non-deterministic) timed automaton with silent transitions
Ais atuple (Q, ginit, Xe, X, Z,G, T, Qaccept), where

1. Qis a finite set of locations and g;,;; € Q is the initial location;

2. ¥ = X U {€} is a finite set of actions, where X are the observable actions and €

represents a silent action, that is a non-observable internal action;

. X is a finite set of clock variables;

4. T : Q — LI is a mapping from locations to location invariants, where each
location invariant /i € LI is a conjunction of constraints of the form true, x < n
orx <n,withx €e Xandn € N;

5. G is a set of transition guards, where each guard is a conjunction of constraints
of the form x ~ n, wherex € X, ~ e {<,<,=,>,>}andn e N;

6.7 C QX X xGxP((X) x Q is a finite set of transitions of the form
(q. . g, Xrs1, q'), where
(a) g, q’ € Q are the source and the target locations,

(b) o € X is the transition action,
(c) g € G is the transition guard,
(d) X5 C X is the subset of clocks to be reset;

7. Qaccepr © Q is the subset of accepting locations.

W

Example 1 For the eNTA illustrated in Fig. 2 we have Q = {qo, - . -, 94}, qinit = 9o,
Y. = {€, coin, beep, refund, coffee}, X = {x},Z(qo) = true,Z(q1) = true,Z(q2) =
x<2,L(q3)=x<1,T(gs)) =x<4,G={0<x <3, x=2,x <4, 1 <x,x =
1}, Quccepr = {qo0}. T is the set containing all transitions, e.g. the transition from ¢,
to g3, with & = € (thus, it is a silent transition), g = 1 < x < 2 and &5, = {x}.

The semantics of an eNTA A is given by the timed transition system [[A]] =
(S, Sinit, REOa e, T, Saccept), where
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L. §={(qg,v) e QxV|vEI(Q}

2. Sinit = (Qinir» 0);

3. T € S x(XcURsp) x S is the transition relation consisting of timed and discrete
transitions such that:

(a) Timed transitions (delay): ((q,v),d,(q,v +d)) € T, where d € R, if
v+d E=1(qg),

(b) Discrete transitions (jump): ((q,v), a, (¢’,v')) € T, where a € X, if there
exists a transition (¢, «, g, Xy, ¢') in 7, suchthat: (1) v = g; 2) v’ = v[X5]
and 3) v’ = Z(¢");

4. Saccepr € S such that (g, v) € Succepr if and only if g € Quccepr-

A finite well-behaving run p of an eNTA A is a finite sequence of alternating timed
. ... . . d
and discrete transitions, that ends with an observable action, of the form (g, vo) SN

(g0, vo+d1) > (g1, v1) LN (@n—1+ Vn—1+dn) = (qn, vn), Where go = inir,
vo =0, 7 = (gi—1, 2, &, Xst(i)- qi) € 7T and a; € X fori < n, a, € 2.
In this paper we consider only finite and well-behaving runs. A run p is accepting
if the last location g, is accepting. The run p of A induces the timed trace o =
(11, 1), (12, 2), ..., (ty, o) defined over X¢, where t; = Zj.:ldi. From the latter
we can extract the observable timed trace, which is obtained by removing from o
all the pairs containing silent actions while taking into account the passage of time.
A TA is called deterministic if it does not contain silent transitions and whenever
two timed traces are the same then they are induced by the same run. Otherwise, the
TA is non-deterministic. The language accepted by an eNTA A, denoted £(A), is
the set of observable timed traces induced by all accepting runs of A. Note, that the
restriction to well-behaving runs is compatible with the definition of the language of
the automaton, where silent actions that occur after the last observable action on a
finite run are ignored. As a consequence, a location with in-going edges consisting of
only silent transitions cannot be an accepting location.

Additionally note, that our determinization process produces a class of timed
automata where the definition of guards and invariants is weakened, allowing the
disjunction of constraints.

3 Practical motivation

The practical motivation behind our determinization approach comes from the field
of model-based testing. In previous work (Aichernig et al. 2013) we developed a
fault-based testing approach for timed automata, called model-based mutation testing.
One restriction of the approach was the limitation to deterministic and fully observ-
able models. In this section we will first introduce our model-based mutation testing
approach, and then briefly illustrate how the determinization developed in this paper
removes our restriction.

Model-based testing (Tretmans 2008) was introduced as a pragmatic compromise
between the conceptual simplicity of classical testing, and automation and exhaustive-
ness of model checking. In model-based testing, test suites are automatically generated
from a mathematical model of the system-under-test(SUT). The main advantage of
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this technique is the full test automation that provides effective means to catch errors
in the SUT. The aim of model-based testing is to check conformance of the SUT to
a given specification, where the SUT is often seen as a “black-box” with unknown
internal structure, but observable input/output interface. Model-based testing is com-
monly combined with some coverage criteria, with the aim to generate test cases that
cover most possible use cases of the SUT.

Model-based mutation testing is a specific type of model-based testing, in which
faults are deliberately injected into the specification model. This generates a set of
faulty models, called mutants, where each contains exactly one fault. The aim of
mutation-based testing techniques is to generate test cases that can detect the injected
errors. This means that a generated test case shall fail if it is executed on a (determin-
istic) SUT that implements the faulty model. The power of this testing approach is
that it can guarantee the absence of certain specific faults. To generate the test cases,
we check for conformance between the original specification model and each of the
mutants. If we detect non-conformance, we generate a test case leading directly to
the conformance violation, otherwise we consider the mutant to be equivalent. An
example for an equivalent mutant would for instance be a mutant adding or removing
a clock reset of a clock that is never used in a guard after the reset.

We already presented our model-based mutation testing approach for timed
automata (Aichernig et al. 2013), using timed input output conformance (Schmaltz
and Tretmans 2008) for the conformance check between the models. The check was
expressed as a language inclusion problem, which we solved via SMT-solving. The
approach is restricted to deterministic specifications that are fully observable, as it
might produce spurious counterexamples for non-deterministic models. The algo-
rithm searches for a location in the specification, where the mutant may perform more
outputs than the specification. If such a location is found in a non-deterministic spec-
ification, there might still be another location, that can be reached by the same trace
and allows the behavior of the mutant. In such a case, we would generate a test case,
even though the mutant actually conformed to the specification.

Using the bounded determinization approach presented in this paper, we are able
to determinize the specification and the mutants in a preprocessing step. In principle,
to remove the spurious counter examples, it would suffice for the original model to
be deterministic, while the mutants may contain non-determinism. However, as the
conformance check cannot handle silent transitions, at least the silent transitions have
to be removed in the mutants as well. As this already includes the unfolding, we also
determinize them, to keep the number of transitions in the mutants low. After the
determinization, we can safely apply the test-case generation approach to all timed
automata, as long as they do not contain loops of silent transitions that reset clocks.
In case a mutation introduces such loops, we discard the corresponding mutant from
our experiments. Figure 3 illustrates the updated workflow of model-based mutation
testing, including the determinization and silent transition removal of the original
and the mutated specifications, as a preprocessing step to the conformance check.
First we model the correct specification as a non-deterministic timed automata with
silent transitons, and mutate it to generate a set of non-deterministic mutants. Then all
the automata are determinized and the test-case generator checks whether the mutants
conform to the speciﬁcation or not. In case of non-conformance, we generate test cases,
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Fig. 3 Model-based mutation testing including determinization of model and mutants

which can than be executed on the SUT. If the SUT conforms to the specification, the
test cases will successfully be executed and assign the verdict pass.

Figure 4 shows a possible mutant of the running example, where the coffee machine
refunds the money, instead of producing coffee. A timed trace for revealing the muta-
tion would be (0, coin), (1, beep), (0.5, €), where the specification would expect
(1, cof f ee) in the next step, and the mutant produces (1, refund) instead.

Note that in model-based mutation testing, we consider timed automata with inputs
and outputs. Thus, the set of observable actions is split into two disjoint sets of inputs
and outputs. For the coffee machine, we consider refund, beep and coffee as outputs,
and the coin as an input. However, this is only relevant for the test case generation and
will not be considered during the determinization.

4 Preprocessing
4.1 k-Bounded unfolding of timed automata
Given an eNTA A which is strongly responsive, its k-prefix language £4(A) € £(A)

is the set of observable timed traces induced by all accepting runs of A
which are of observable length bounded by k. That is,

L£i(A) ={w € £(A) | |w] < k}. e))

start
BREWING "¢/ “'"f IDLE
xr

r <4

GRAINING HEATING

Fig. 4 Possible mutation
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Fig. 5 Unfolding, clock renaming and integrating of invariants

By unfolding A and cutting it at observable level &, the resulting TA, Ui (A), satisfies
L(Uk(A)) = Lk(A). @)

Uk (A) is in the form of a finite tree, where each path that starts at the root ends
after at most k observable transitions, and we may also further cut A by requiring that
all leaves are accepting locations. Note, that if we reach in Uy (A) a copy of an accept-
ing location g of A by a silent transition then it will not be marked as an accepting
location (but another copy might be marked as an accepting location if reached by an
observable transition).

Figure 5a shows the unfolding of the coffee-machine up to observable depth three.
The left branch is longer than the right, as it contains a silent transition.

4.2 Renaming the clocks

Every unfolded timed automaton can be expressed by an equivalent timed automaton
that resets at most one clock per transition. This known normal form Baier et al. (2009)
crucially simplifies the next stages of our algorithm, where we do not need to bother
with multiple clock resets in one transition. While this is not a novel contribution of this
paper, we will now give some details on the algorithm, to enhance the comprehensible-
ness of the paper. The basic idea is to substitute the clocks from the original automaton
by new clocks, where multiple old clocks reset at the same transition are replaced by
the same new clock, as they measure the same time until they are reset again. The sub-
stitution of the clocks works in a straightforward way: At each path from the root, at the
i-th observable transition, a new clock x; is introduced and reset, and if this transition
is followed by [ > 0 silent transitions then new clocks x; o, ..., x; ;-1 are introduced
and reset. A clock x that occurs in a guard is substituted by the new clock that was
introduced in the transition where the last reset of x happened, or by x if it was never
reset. Let 7; and 7; be two transitions on the same path in the original automaton at
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observable depths i and j, withi < j. Assume that a clock x that appears in the guard
of 7; is reset in the previous transition t;, but is not reset on any of the transitions
between 7; and 7;. Then, x; is introduced and reset at 7; and the original clock variable
x is substituted by x; in the guard of 7;. Clocks in invariants are updated the same way
as guards. Figure 5b illustrates the clock renaming applied to the coffee machine. In
the guards of the two beep-transitions starting at g, x is replaced by x1, since the last
reset of x in the original automaton was at depth one, while in the coffee-transition
from g3 itis replaced by x7 o, as x was reset in the first silent transition after depth two.

Algorithm 1 Renaming the Clocks

Input: A € eNTAk, a tree of depth K and observable depth k, clocks X, |X| =n

Output: A € eNTAk, clocks X', |X'| = K, single clock reset per transition, same
clock reset at same (observable, silent) level

1: 11 <0 > observable (primary) level
2: Iy — —1 > silent (secondary) level
3: fori<—0,...,n—1do

4: X[i] — xo >z is reset at the initial location
5: end for

6: RENAMECLOCKS(qo, X, 1, 12)

7: procedure RENAMECLOCKS(q, X, l1,12)

8: for each 7 = (¢, @, g, Xrst,q’') € trans(q) do

9: for i — 0,..,n—1do

10: g — glxs — X[i]] > renaming the clocks in the guard g
11: Z(q) «— Z(q)|z: — Xi]] > renaming the clocks in the invariant Z(q)
12: end for

13: if o = e then > silent transition
14: lo —1la+1

15: T Ty, > the new reset clock in case of a silent trans.
16: else

172 l1 — l1 + 1

18: log «— —1

19: T — T > the new reset clock in case of an observable trans.
20: end if
21: for i« 0,..,n—1do
22: if x; € X5t then
23: X[i]| — = > updating the clock substitution list
24: end if
25: end for
26: Xrst — {x} > updating the reset clocks of 7
27: if [y < k then
28: RENAMECLOCKS(q', X, l1,l2) > recursive call with the target location
29: end if
30: end for

31: end procedure

The concrete algorithm used for renaming of the clocks is presented in pseudo-code
in Algorithm 1. The original clocks are xo, ..., x,—1. Each new clock has either one
index (/1) in case the transition in which it is reset is observable, or two indices (/1, [)
in case of a silent transition. After the removal of the silent transitions stage we will
be left with clocks with a single index and the same clock reset for the same level of
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the tree. The vector X[0..n — 1] holds the clock substitution list: X[i] refers to the new
clock that substitutes the original clock x;. The set of transitions with source location
q is denoted by trans(q).

4.3 Integrating invariants into guards

In this last preprocessing step, we integrate (i.e. conjugate) the location invariants into
the guards of all the incoming and outgoing transitions from that location. Since the
guards are updated and synchronized during the silent transition removal, this ensures
that the constraints of the invariants are also taken into account in that step. The
invariants are still kept unchanged in the automaton. Figure 5c shows the integrating
of the invariants in the running example, where e.g., the guard of the silent transition
was augmented by x; < 2 and the guard of the left beep transition was modified
to 0 < x; < 2. Note that the guard of the coffee transition was not modified, as
x2,0 = 1 is already more strict than x3 0 < 1. Additionally, the guard of the silent
transition was not updated according to the invariant of its target location, since the
invariant uses the clock that was reset by the silent transition and thus only influences
the coffee transition. As no transition can be traversed if the invariant of its source or
target location is not enabled, adding the invariants to the guards does not change the
language of the automaton. Due to the fact that a transition can not be traversed if the
invariant of the target location is not enabled, the invariants of the target locations need
not be incorporated into the guards of a transition for performing the silent transition
removal. However, during the determinization we add disjunctive invariants, which are
possibly weaker than the original invariants. For this reason we also need to integrate
the invariants into the guards of incoming transitions.

5 Removing the silent transitions

In this section we present an algorithm that removes the silent transitions from the
eNTA A, where A is the automaton obtained by the preprocessing stage in the form of
a finite tree with renamed clocks. That is, one clock x is reset at the initial location.
Then, at each path from the root, at the i -th observable transition a clock x; is reset, and
if this transition is followed by / > 0 silent transitions then the clocks x; o, ..., x; ;-1
are reset. In the next observable transition the clock x;4 is reset, and so on. All these
clocks are not reset again. After removing the silent transitions, the new TA, R(A),
will have the same one clock reset at all transitions of same level.

We remove the silent transitions one at a time, where at each iteration we remove the
first occurrence of a silent transition on some path from the root, until no silent transi-
tions are left (e.g. we can pick a path and remove one-by-one all its silent transitions,
then move to another path, and so on).

In order to remove a silent transition we add a new transition that bypasses the silent
transition by connecting the location that leads to the source of the silent transition to
the location that is the target of the silent transition. This is illustrated in Fig. 6, where
the silent transition 7,0 from location g, to location gy o is removed and a bypass is
formed from location g;_ to location g5 0. The case where ¢; is the initial location
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Fig. 6 Bypassing the silent transition

is simpler, as it does not require building a bypass. We just check the conjunction of
constraints on the single reset clock xq of the guard of the silent transition, delete the
transition and the subtree beneath if the guard defines an empty set, and otherwise
delete only the silent transition as described in the workflow below, which leads to the
merging of its target location and the initial location.

The removal of the silent transition enforces the update of the transitions’ guards
and the locations’ invariants. First we create the guard of the bypass transition. This is
done by conjuncting the original guard g of the transition from ¢,_1 to gy with what
we call an enabling guard (guard eg(ty o) in Fig. 6). The aim is to guarantee that the
bypass could have been followed by the silent transition if the latter would not have
been removed. In order to achieve this goal we need to make sure that by the time
the bypass is taken the upper bounds of the clocks that appear in the guard g, o of the
silent transition are not passed, and, moreover, that the clocks appearing in g, o are
synchronized in such a way that after a possible delay all the constraints of the silent
transition guard are satisfied simultaneously.

Since the bypass transition occurs before the silent transition, it is necessary to
ensure that after taking the bypass and reaching g ¢ we stay at g5 ¢ long enough that
all lower bound constraints of the silent transition guard are reached. This is done by
adding the taken guard to all out-going transitions of g .

The next step is to update the guards and location invariants in all the paths that
start at g, o, the target of the silent transition. These may refer to a clock that was reset
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during the silent transition (clock x; ¢ in Fig. 6). Thus, we may not be able to refer
to the exact time of the silent transition (captured by x; ), but instead we can refer
to the clocks that form the constraints of the silent transition. In addition, we need
to synchronize between these added constraints to the future guards and invariants,
in such a way that simultaneously they satisfy the same possible reset of the silent
transition clock.

Algorithm 2 shows the overall workflow of the silent transition removal.

Algorithm 2 Removing the Silent Transitions
Input: A € eNTAj in the form of a tree of observable depth k with renamed clocks
Output: R(A) € NTAy, such that £(R(A)) = £(A)
1: while there are silent transitions do
2: FIND a first (from root) silent transition 75, from location gs to location gs,o
3 SET a lower bound to the silent transition
4 CREATE a bypass transition with an enabling guard
5: AUGMENT the transitions from ¢s,0 with a taken guard
6: UPDATE the guards on paths from gs,0
7.
8
9:

UPDATE the location invariants on paths from gs,0
: REMOVE the silent transition 7,0
end while

Setting a lower bound to the silent transition

We set a lower bound to the silent transition by augmenting the guard gs o of 740
to be g;,o = gs.0 A (0 < Xxy), where x; is the clock that is reset on the transition
7, that precedes the silent transition. This additional constraint per definition always
evaluates to true, but it is used in the next step to compute the unary constraints of the
enabling guard. The guard of the silent transition in Fig. 5 (c) after setting the lower
boundis 1 < x; <2 A0 < x.

Creating a bypass with the enabling guard

The enabling guard eg(ts,0) guarantees that each clock’s constraint that was part of
the silent transition is satisfied at some non-negative delay and that these constraints
are satisfied simultaneously, thus at some point during the bypass transition the silent
transition would have been enabled as well. We describe here how the enabling guards
are defined for strict inequalities, as shown in the first line of Table 1. The other cases
are dealt with similarly, as seen in the next lines of the table, and the constraint x; = n;
is treated as n; < x; < n;. For each pair of a lower bound constraint m; < x; and
an upper bound constraint x; < n; that appear in g;’o, we form the enabling guard
binary constraint x; — x; < n; —m;.

The last line of Table 1 refers to the special case where the lower bound constraint is
0 < x;, the constraint, added in the previous step, that involves the new clock x; (that
is reset on the silent transition). Since at the time of the silent transition the value of x;
is 0, the inequality x; —x; < n; — 0 simplifies to the unary constraint x; < n;, which
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Table 1 Enabling guard constraints

Silent Trans. Constraints Clock Reset Enabling Guard Constraint
(mj <xi)) AN(xj <nj) Xg Xj—xp <nj—m;

(mj <x;) N(xj <nj) Xg Xj—xj <nj—m;

(mj <xij) A(xj <nj) Xg Xj—x;<nj—m;

(mj <xi) N (xj <nj) Xg Xj—Xxi <nj—mj

(mj =xi)) A(xj =nj) Xg Xj—xj=nj—m

O =<xs)A(xj<nj) Xg Xj<nj

guarantees that at the time of the bypass x; does not pass its upper bound constraint
of the silent transition. An example of such a unary constraint is marked in red in the
transition from ¢ to g3 in Fig. 7. The silent transition in the original automaton could
not have been enabled if x; had already been higher than 2 after the beep-transition,
thus the bypass can also only be enabled while x; is smaller than 2. The running
example does not contain any binary constraints.

Note that the upper bound constraints of the invariant of ¢; were integrated into the
guard of the silent transition. Thus, they are also integrated into the enabling guard.
Consequently, the bypass will satisfy the constraints of the location invariant. The
invariant itself remains unchanged, as it remains active for all traces that pass through
¢s, but do not take the silent transition.

To create the bypass, we split the paths through ¢, in the original automaton A into
two. Those that do not take the silent transition 7, o continue as before from gs_1 to
gs and then to some location different from gs . The paths that went through 7, o are
directed from g5 to gs,0 and then continue as before. The bypass 7, from gs_; to
gs,0 has the same observable actions as those of 7y, the same new clock reset x;, and
the guard g} which is the guard g, of t; augmented with the enabling guard eg(z o)
(see Fig. 6). Fig. 7 shows the removal of the silent transition illustrated on the coffee-
machine. The transition from g to g3 is the bypass and the transition from ¢ to g2

refund
1 <4

{ws}

Fig. 7 Fully observable non-deterministic TA
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Table 2 Update rules for future guards after removing the silent transitions

Silent Trans. Constr. Future Constr. Replaced Constr.
m; < xj, {x5,0} Mgt j < Xs,0 OF Mgyj < X5,0 mi +mgtj <X
m; < xj, {x5,0} Mgyj < Xg0 mi +msyj <X
m; < xi, {x5,0} Mgy < X0 mi +mgqj < x;
xi < ni, {x5,0} X5,0 < Mgqj OF X5 0 = Mg Xi <nj+nggj
x; < nj, {x5,0} X5,0 < gt Xj <nj+ngyj
x; <nj, {x5,0} X5,0 < gt j Xj Snp+ngtj
x;j = nj, {xg,0} X5,0 ~ s j X~ np+ngyj

is the original transition. Since the silent transition was the only transition leaving ¢»,
¢>» does not contain any outgoing transitions anymore, once the bypass is generated.

Adding the taken guard

For each transition from gy, ¢ to ;11 we augment its guard g1 by forming g; , ; =
8s+1 N tg(ts,0) (see Fig. 6), where 1g(ts,0) is the taken guard. tg(z o) is composed
of a single constraint: 0 < x ¢, where x; o is the clock that is reset at the silent
transition 75 0. In the next stage of the algorithm of updating the future guards it
will be transformed into the conjunction of the lower bound constraints m; < x; or
m; < x; that appear in g;,o. These constraints make sure that we spend enough time
at g5,0 before moving to the next locations, as if we had taken the silent transition.
The constraint is also used for synchronization of the future guards in the next step.
In Fig. 7, the red-marked part of the guard from transition g3 to ge¢ shows the taken
guard that has already been updated from 0 < x2 9 to 1 < xj.

Updating the future guards

The removal of the silent transition 7, o enforces updating of the guards in the paths
that start at g0 and that refer to the clock x; o, that is reset on the silent transition.
The constraints that refer to the other clocks can remain as they are.

The most simple case is when the silent transition guard g;,o contains an exact
constraint x; = n;, because then any future constraint of the form x; o ~ [ where ~
is one of the signs =, <, >, < or >, can be replaced by x; ~ n; + [. In that case we
know the exact time of the silent transition, and all other constraints may be ignored.
So, let us assume that the silent transition does not contain an exact constraint. The
rules for updating the future guards are summarized in Table 2. Note, that an equality
constraint Xy, 0 = ny; in a future guard may be treated as nyy; < x50 < 154 ;.

Let gs41,...,8s+p be the ordered list of guards of consecutive transitions
Tg41, - .., Tstp along a path that starts at g, 0. Suppose, for simplicity, that each g, ;
contains constraints that refer to x; o (if not - we can ignore g4 ;). Then, if gsy;
contains a constraint mg j < X0 then it is replaced by the conjunction of constraints
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Fig. 8 Guard synchronization

m; +mgyj < x;, for each constraint m; < x; that appears in g;,o- Similarly, an upper
bound constraints x50 < ng4; of gg1; is replaced by the conjunction of constraints
X; < n; + ngyj, for each constraint x; < n; or x; < n; of 82,0- In Fig. 7, one future
guard was updated in the transition from g3 to gg: The original guard of this transition
was x2,0 = 1 (where x2 ¢ was reset on the silent transition) and the guard of the silent
transition was 1 < x; < 2. Thus, according to the update rules, the updated future
guard is 2 < x; < 3 (written in black), conjuncted with the taken guard (marked in
red).

These rules ensure that each future constraint on the clock x; ¢ separately conforms
to and does not deviate from the possible time range of the silent transition. Yet,
we need to satisfy a second condition: that along each path that starts at g, ¢ these
future occurrences of x; o are synchronized. For example, if one constraint is x; 0 = n
and another one further on the same path is x;,0 = n + 2 then there should be a time
difference of exactly 2 time units between these events. This is achieved by augmenting
the future guards with constraints of the form that appear in Table 3, which refer to each
pair of alower bound and an upper bound constraint on x; ¢ in two different transitions.
No transition in our running example needs synchronization, hence we use a different
example: the upper automaton in Fig. 8 shows one silent transition followed by two
observable transitions. Using only the previous update rules when removing the silent
transition, the first observable transition might occur between 3 and 4 seconds, and
the second one between 5 and 6 seconds. If the first transition occurs after exactly 3.1
seconds and the second one after exactly 5.9 seconds, this would not conform to the
original automaton which required exactly 2 seconds between them. Thus, applying
the last synchronization rule of Table 3, the constraint x; = 4 — 2 is conjuncted to the
second guard. The lower automaton in Fig. 8 illustrates the synchronization. Note, we
do not need a bypass transition here, since the silent transition starts in the initial state.

Updating the future location invariants

In this last step, we need to update all location invariants that refer to x; o, the clock
that was reset by the silent transition. Consider an invariant /i in any location after
the silent transition (which might be g o, the target location of the silent transition,
or any following location). All constraints in /i that do not involve x; ¢ can remain
unchanged, and we can assume that there is only one constraint for each clock, as a
stronger upper bound subsumes a weaker one. Thus we only consider the constraint
Xs,0 < n. This constraint is updated the same way as a future guard that refers to x; o.
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Table 3 Synchronization constraints for future guards after removing silent transitions

onstr. o P onstr. o iixeai i< g nc. Constr. o P
Constr. of g5+ Constr. of gsj, {Xsi J Sync. Constr. of gy ;
Mgtj < Xg,0 X5,0 < Ngyj OF Xg 0 = Mgt Myyj = Ngti < Xg+i
Mgy j = X5,0 X5, 0 < Mgy Myt j — Ngij < Xg4i
Mgy = X5,0 Xs5,0 = gt Mgyj —Neqi = Xgti
Xs,0 < Ng4j Mgy < Xg 0 OF Mgy < Xg0 Xsti < Nsg4j — Myi
X5,0 = Mgt Mytj < Xg,0 Xsi < MNgyj = Msti
X5,0 = Ny j Myt = X5,0 Xgi S Ngpj — Mgt
Xs,0 = Mg+ Xs5,0 = Mgt Xs4i = Ns+j — Mg

The upper bounds of the silent transition (x; < n;) and the upper bound of the invariant
(x5,0 < n) are combined to the new upper bounds x; < n; + n. Note that it is not
necessary to synchronize updated invariants among each other, as they only contain
upper bounds and thus do not interfere with each other. The synchronization of the
future guards with the invariants already happened in the last step, as the constraints
of the invariants were added to the guards of the following transitions. Figure 7 shows
that the invariant of location g3 was updated from x; o < 1 to x; < 3, according to
the upper bound x; < 2 of the silent transition.

Removing the silent transition

Finally, we can safely remove the silent transition 7, 0 from g, to g, o after forming
the bypass from g;_; to g5 ¢ with the necessary modifications to the transition guards.

Theorem 1 (Silent Transitions Removal) £(R(A)) = £(A).

A proof of the theorem can be found in the appendix.

6 Determinization

Existing determinization algorithms (as e.g. applied in Wang et al. 2014) create the
powerset of all transitions to be determinized, and build one transition for each subset
in the powerset. We propose an alternative approach, that reduces the amount of
locations and transitions in the deterministic automata, by shifting some complexity
towards the guards. Our motivation is the use of SMT solvers for model-based test-case
generation from timed automata, as described in our first paper on mutation-based test-
case generation from timed automata (Aichernig et al. 2013). The larger guards can be
directly converted into SMT-LIB formulas, and thus should not pose a problem. The
produced automata contain disjunctions, both in the guards and the invariants. While
this does not conform to the standard definition of timed automata, in the context of
SMT-solving the disjunctions can efficiently be processed and do not hinder test-case
generation.
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The approach works under the following prerequisites: After the removal of the
silent transitions the timed automaton A is in the form of a tree of depth k. At each
level i the same new clock x; is reset on each of the transitions of that level. This is
the only clock reset on this level, and no clock is ever reset again.

Algorithm 3 Guard-Oriented Determinization

Input: A € NTAj in the form of a tree of depth k with renamed clocks
Output: D(A) € TAg, such that £(D(A)) = £(A)

1: P—{Qinit}

2: while P # () do

3 PICK (i) € P; P «— P\(q:)

4 for each o € X' do

5 if 3 (¢, 0,91, {z}, 1) € T, (s, @, g2, {x},q2) € T s.t. ¢1 # q2 then
6: Gace < false; g-acec — false
7
8

Q — QU {qace, q-ace}
(Q,T) < MERGE TRANSITIONS(A, ¢i, Jace, §—ace, Gace, §aces @, T)
9: end if

10: for each transition (¢;, o, g, {z},¢') € T do
11: P—Pu{qd}

12: end for

13: end for

14: end while

Algorithm 4 Merging of Transitions

IHPUt: A7 qis Jaccs 9—accy Qaces §—ace

Output: updated sets of locations and transitions (Q,7)
1: for each transition (¢;,a, g,{z},q') € 7T do

2 9gd—g

3 for each clock z; in gq do

4: gd < gd[z; = x; — ]

5: end for

6.

7

8

for each transition (¢, 3,9, {*'},¢"”) € T do
T—TuU (Qacmﬁ7 (g/ A gd)v {x/}7 q//)
: T(_Tu(qﬂlcmﬁv (gl/\gd)v{x,}vq/,)
9: T‘*T\(qlvﬁvglv{xl})q")
10: end for
11: if accepting(q’) then

12: Gace < Gace V G5 li(qaw) = li(qaCC) \ li(ql)

13: end if

14: if —accepting(q’) then

15: 9-acc <~ J-acc \ 9; li(QﬁaCC) = li(QﬁﬂCC) Vv ll(ql)
16: end if

170 T« T\(gi, 2, 9,{2},q'); Q — Q\¢'

18: end for

19: T «— T U Tacc(Qz‘, &, Jacc, {I}v Qacc)
20: 7 «—TU T-acce (Qi, a, (gﬁacc A _‘gacc)y {I}v Qﬁacc)
21: return (Q,7)

The basic idea behind the determinization algorithm is to merge all transitions of
the same source location and the same action via disjunction, and to push the decision
which of them was actually taken to the following transitions. The postponed decision
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Fig. 9 (a) Modified guards added to future transitions (b) determinization via disjunction

regarding which transition was actually taken can be solved later on by forming diago-
nal constraints (as in zones) that are invariants of the time progress, and are conjuncted
to immediately following transitions. Note that the distinction between accepting and
non-accepting locations increases complexity slightly: the determinization of transi-
tions leading to accepting locations and transitions leading to non-accepting locations
can not be done exclusively by disjunction of their guards. We therefore need to add
an accepting and a non-accepting location to the deterministic tree, and merge all
transitions leading to non-accepting locations and all transitions leading to accept-
ing locations separately. To ensure determinism for these transitions, we conjunct the
negated guard of the accepting transition to the guard of the non-accepting transi-
tion. Additionally, the location invariants of merged target locations are combined via
disjunction.

A pseudo-code description is given in Algorithm 3 and Algorithm 4. Algorithm 3
contains the outline of the algorithm: The determinization is done in several steps
applied to every location ¢ with multiple outgoing transitions with the same action
(Line 5), starting at the initial location (Line 1). First, we add an accepting and a
non-accepting location g,¢¢, g—acc that will replace the target locations of the multiple
« transitions (Line 7). Then we perform the merging of these transitions according to
Algorithm 4: let g; be such alocation with multiple « transitions (Line 1). For each 7; in
the « transitions with guard g from g; to ¢/, let g4 be the result of subtracting the clock
x that is reset on 7; from all clocks that appear in g (Lines 2-5). Next, g4 is conjuncted
to the guards of each transition t; 1 that follows 7; and the source location of 7; 1 is set
to either g4ec OF g—gec, depending on whether g’ is accepting or not. Transitions leaving
g-acc are additionally copied to g,.¢, in case the guards of « transitions overlap. (Lines
7,8). Note that g; evaluates to true in every branch below t; if t; was enabled, thus
the conjunction does not change the language of the automaton. Figure 9a illustrates
the conjunction of the modified guards on our running example, marked in red. Note
that the determinization did not involve any accepting locations, thus there was no
splitting into gg¢. and g—qcc. Next, all the a-transitions from ¢ leading to accepting
locations are merged into a transition leading to g, (Line 19) and all others into a

@ Springer



310 Real-Time Syst (2017) 53:291-326

Fig. 10 A non-deterministic unfolded timed automaton Ay

transition leading to g—,..(Line 20), by disjuncting their guards (Lines 12,15). The
guard of the transition leading to g—qcc is conjuncted to the negation of the other
guard, to ensure determinism (Line 20). Additionally, in Lines 12 and 15, the location
invariants of the different target locations of the merged transitions are combined via
disjunction. Finally, all merged t; and their target locations can be removed (Line
17). Figure 9b shows the determinized coffee-machine. The location g, contains a
location invariant that is a disjunction of the invariants from locations ¢», ¢3 and g4 of
the non-deterministic tree.

Example 2 Figure 10 shows a non-deterministic timed automaton A,, and Fig. 11
shows its determinized form D(A.y). The automata illustrate the separation into
accepting and non-accepting locations. As there is only one accepting location in
A,y the transition from ¢ to g/, in D(A,,) simply keeps that guard, while the tran-
sition from g(, to ¢’ is a disjunction of the guards of the two other non-deterministic
transitions, conjuncted with the negation of the guard of the transition to the accepting
location. The example also shows the propagation of the diagonal constraints in case
of sequences of non-determinism, e.g. in the transition from ¢, to g;: since g,
combines the locations g1 and g3 from Ay, the two b transitions from g to g4 and
from g3 to ge need to be determinized once more, after being updated via diagonal
constraints, resulting in the guard (xg > 3 Axp —x1 < 2) V (xo0 < 3 Ax0 —x1 < 3).

a
(o < 3V > 3)
A(z0 < 2)

(zo >3 Ao —a1 <2

. V(zo <3Amp—x1 <3
T0>2AT0 —T1 >3 {22}

{a2}

c
T0>2AT0 —T1 >3

{2}

b
(zo >3 ANwo—x1 <2)
V(zo < 3AT0— 71 < 3)

Fig. 11 The determinized timed automaton D(A.y)
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The c transition leaving ¢,,.. does not need to be determinized and thus it does not con-
tain disjunction. It does, however, contain the diagonal constraints that were attached
when the a transitions were determinized.

Theorem 2 (Determinization) The determinization algorithm constructs a determin-
istic timed automaton D(A) such that £(D(A)) = £(A).

The proof of the theorem can be found in the appendix.

7 Complexity

Bounded unfolding We unfold the timed automaton A into a tree and cut it when
reaching observable level k. Let us assume that the tree is of depth K, K > k, and of
size N = O(dX), withd > 1 representing the approximate out-degree of the vertices
in the graph of A. Since the analysis of the SMT solvers for different applications
requires the exploration of all the transitions in the unfolded graph of A, the unfolding
stage of our algorithm does not necessarily increase the overall time complexity of the
algorithm.

Removing silent transitions Our algorithm does not increase the size of the tree
since we only substitute the silent transitions by the bypass transitions. We do add,
however, constraints. The number of enabling-guard constraints that we add to each
bypass transition is of order O (K 2). Each updated future constraint is of order O (K)
(including on-the-fly simplification, so that each clock has at most one lower and one
upper bound), and each future transition may be updated at most O (K) times. Hence,
the updating step is also of order O (K?), and the complexity of the whole algorithm
is O(NK?). Note, we do not need to transform the diagonal constraints introduced
in the algorithm into unary constraints, nor do they introduce problems in the next
algorithm of determinization.

Determinization decreases the size of the unfolded automaton, if non-determinism
exists. The complexity gain can be exponential in the number of locations and transi-
tions, but is lost by a proportional larger complexity in the guards.

8 Implementation and experimental results

The algorithms were implemented in Scala (Version 2.10.3) and integrated into the test-
case generation tool MoMuT::TAZ?, providing a significant increase in the capabilities
of the tool. MoMuT::TA provides model-based mutation testing algorithms for timed
automata (Aichernig et al. 2013), using UPPAAL’s (Larsen et al. 1997) XML format
as input and output. The determinization algorithm uses the SMT-solver Z3 (Moura
and Bjgrner 2008) for checking satisfiability of guards. All experiments were run on
a MacBook Pro with a 2.53 GHz Intel Core 2 Duo Processor and 4 GB RAM.

The implementation is still a prototype and further optimizations are planned.
One already implemented optimization is the “on-the-fly” execution of the presented

2 https://momut.org/?page_id=355
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Fig. 12 The four timed automata used in Study 1 and Study 2

algorithms, allowing the unfolding, clock renaming, silent transition removal and
determinization in one single walk through the tree. The combined algorithm does not
suffer from the full exponential blow-up of the explicit unfolding: if the automaton
contains a location that can be reached via different traces, yet with the same clock
resets, the unfolding splits it into several, separately processed, locations, while the
on-the-fly algorithm only needs to process it once.

The following studies compare the numbers of locations and the runtimes of a)
the silent transition removal, b) a standard determinization algorithm that works by
splitting non-deterministic transitions into several transitions that contain each possible
combination of their guards, ¢) the new determinization algorithm introduced in Sect.
6 and d) its on-the-fly version, where the runtime includes the time for unfolding,
silent transition removal and determinization. The runtimes of the determinization do
not include the removal of silent transitions.

8.1 Scientific studies

For the current subsection we picked two small examples that were introduced in
previous papers on determinization and one example that was previously used for
test-case generation.

Table 4 Runtime and number of locations for the automata of Fig. 12a (first three rows) and Fig. 12b (last
three rows)

Depth  Number of locations Runtime (sec.)
Unfolded SD New det.  On-the-fly e-Removal SD New det.  On-the-fly

2 8 7 7 7 0.1 0.3 0.1 0.1
5 78 63 63 63 0.4 0.5 0.4 0.2
9 1278 1023 1023 1023 16,011.2 6.7 7.2 1.0
2 9 8 8 8 0.2 0.2 0.2 0.1
5 177 135 84 63 0.8 0.9 1.3 0.7
9 8361 4364 3609 1023 20,969.0 71.2 88.3 9.6
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Table 5 Runtime and number of locations for the automata of Fig. 12c (first five rows) and Fig. 12d (last
three rows)

Depth  Number of locations Runtime (sec.)
Unfolded SD New det.  On-the-fly e-Removal SD New det.  On-the-fly

2 5 5 4 4 - 0.1 0.1 0.1

11 10 8 8 - 0.2 0.3 0.1
10 21 21 16 16 - 0.3 0.3 0.1
25 51 50 38 38 - 0.5 0.9 0.2
50 101 100 76 76 - 0.7 391.6 0.3
2 5 5 4 4 0.1 0.1 0.1 0.01
5 24 26 8 8 0.2 2.1 0.4 0.3
10 140 661 16 16 0.5 1945.1 2.1 0.5

Study 1 The first example, taken from Diekert et al. (1997), is the timed automaton
illustrated in Fig. 12a, where the silent transition cannot be removed, as there is no
unbounded observable automaton with the same language. We then added another
a-transition (Fig. 12b), which causes non-determinism after removing the silent tran-
sition. The test results are shown in Table 4 (before and after modification).
Study 2 The second example is taken from Baier et al. (2009) and is illustrated in
Fig. 12c. We modified the automaton by adding a silent transition (Fig. 12d). Table 5
shows the results of the two determinization approaches.
Study 3 This study is part of a model of an industrial application: it is based on a
car alarm system that was already used as an example in our work on model-based
mutation testing from timed automata (see Aichernig et al. 2013 for the whole model).
In this evaluation, we introduced a silent transition that adds a non-deterministic delay
of up to two seconds before the timer of the alarm starts, and our results are given
in Table 6. We were able to perform the removal of silent transitions and the guard-
oriented determinization up to depth 12, and the location-oriented determinization up
to depth 8. The on-the-fly algorithm still only took ten seconds for depth 12. However,
it also shows a 10— times increased runtime on depth 12 compared to depth 8.

As expected, the studies confirm that the size of the produced tree and the runtime
of the algorithm depends vastly on the input models.

Table 6 Runtime and number of locations for the Car Alarm System (Aichernig et al. 2013), modified by
adding a silent transition causing a 0-2 seconds delay

Depth  Number of locations Runtime (sec.)

Unfolded SD New det.  On-the-fly e-Removal SD New det.  On-the-fly

2 8 8 8 8 0.108 0.2 0.1 0.0
5 153 139 83 81 0.4 1.0 0.8 0.2
8 2062 1973 757 739 4.1 129.0 11.6 0.9
12 78,847 - 14,009 13,545 10,592.3 - 4832.1 10.2
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8.2 Industrial case study

In this subsection we present an industrial study, that was provided as a use case by
Volvo within the European Artemis Project Crystal.> The use case evolves around
an automated speed-limiter (ASL), that limits the actual car speed according to an
internally stored value.

The speed limiter can assume three operating states: deactivated, limiting and over-
ridden. In the limiting state the device is active, and overridden means that the user
temporarily deactivated it by a kickdown of the gas pedal. In its initial state, the ASL
is deactivated.

After receiving any of the inputs preset?, plus ? or minus?, the speed limiter switches
from deactivated to limiting. There it stays, until the user either turns it off via the
off? input, or overrides it via a kickdown?. The kickdown triggers a timed transition
back to the limiting state, that is executed within eight to ten seconds, if there was no
manual state change in between. This timed transition is a silent transition, thus it is
not observable by the user.

The current speed limit is stored internally. It can be modified by three inputs:
preset? sets it to a predefined constant value, plus? increases the limit and minus?
decreases it. However, plus and minus only change the limit, if the system is limiting,
otherwise they only trigger a state change towards limiting.

For the current experiments, we concentrate on the state-change mechanics, neglect-
ing the actual value of the current limit. The only important information is whether
the limit is zero, lower than the predefined value that is set by the preset? input, equal
to it, or higher. Thus, we applied qualitative abstraction to the limit and encoded these
four value ranges in the locations.

Figure 13 gives an impression of the case study. Note that the first column of
locations contains the deactivated states, the second column contains the limiting
states and the third contains the overridden states. The first row indicates that the
current limit is higher than the preset, the second row indicates that it is equal, the
third that it is lower and the bottom row indicates that the limit is zero. The figure is
a little simplified for presentational purposes: in the real automaton each state has an
“on entry”’-transition. That is, each state consists of two locations, where all ingoing
transitions lead to the firstlocation, and there is an output transition labeled by the name
of the state, leading to the second location. For example, there is a limiting! output
for the limiting state. All outgoing transitions only leave the second location. These
“on entry”’-transitions were neglected in the figure to make it more understandable.
Additionally, for every location besides g7 there exists a transition with label preset?
leading to g7, as the preset? input both turns the state to limiting and sets the limit to
the predefined value. These transitions were omitted to reduce the amount of crossing
and overlaying transitions.

In g10, where the current limit is higher than the preset value, a minus? transition
may non-deterministically stay in 1o or lead to g7, where the current limit equals the
preset. The same non-determinism also appears in g4.

3 http://www.crystal-artemis.eu/
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Fig. 13 The automated speed limiter, slightly simplified for readability

We produced 342 mutants from the original automaton, using the mutation operators
described in our paper on model-based mutation testing for timed automata (Aichernig
etal. 2013). 40 of these mutants contained loops of silent transitions and were neglected
from the following process. The remaining 302 mutants were unfolded to depth ten,
together with the original specification. Then the silent transition removal and the
determinization were performed on all of them, using the on-the-fly algorithm. The
on-the-fly algorithm took an average of 0.2 seconds, with a maximum of 1.0 and a
minimum of 0.14 seconds. The unfolded determinized mutants contained an average
of 620 locations, with a minimum of 337 and a maximum of 1065 locations. The
correct specification contained 606 locations. The different amount of locations is
caused by the fact that the mutations change the amount of non-determinism (and thus
the amount of merged locations in the trees) of the mutants.

Then we started the test-case generation, which means applying tioco- conformance
checks between the determinized mutants and the determinized specifications. The
checks took an average of 63.3 seconds, with a minimum of 0.2 and a maximum of
201.9 seconds. In total, the test-case generation took 5.4 hours, and produced 128 test
cases. All runtimes are summarized in Table 7, including the quartiles (Q1...Q3).

The results show that the determinization only takes a fraction of the time needed for
test-case generation. However, due to the increased amount of locations and transitions
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Table 7 Runtime of determinization and test-case generation for the speed limiter. All numbers are given
in seconds, unless otherwise noted

Depth  Mean Min  Max 01 (o)) 03 Total
Determinisation 10 0.2 0.14 1.0 0.16 0.18 0.20 60.4
Test-case generation 10 63.3 0.17  201.9 17.1 76.7 94.2 5.4h

in the explicit unfolding, the runtime of the test-case generation was significantly
increased, compared to being executed on a deterministic model that was not unfolded.
The most efficient way to combine determinizing and test-case generation would most
likely be to integrate the test-case generation into the on-the-fly algorithm.

9 Related work

The main inspiration to our work comes from Bérard et al. (1998) and Baier et al.
(2009). Bérard et al. 1998 show that silent transitions extend the expressive power of
TA and identify a sub-class of eNTA for which silent transitions can be removed. By
restricting ourselves to the bounded setting, we can remove silent transitions of all
strongly-responsive eNTAs. In addition, our approach for removing silent transitions
preserves diagonal constraints in the resulting automaton, thus avoiding a potential
exponential blow-up in the size of its representation (see Bouyer et al. 2005 for the
practical advantages of preserving diagonal constraints in TA). Baier et al. (2009) pro-
pose a procedure for translating NTA to infinite DTA trees, and then identify several
classes of NTA that can be effectively determinized into finite DTA. In contrast to our
work, their procedure works on the region graph, which makes it impractical for imple-
mentation. In addition, we also allow in our determinization procedure disjunctive
constraints which results in a more succint representation that can be directly handled
by the bounded model checking tools. While transitions with disjunctive constraints
in their guards can be split into multiple transitions containing only conjunctions, this
may result in a huge blowup in the number of locations. Both Bérard et al. (1998)
and Baier et al. (2009) tackle non-determinism and observabilty in TA from a general
theoretical perspective. We adapt the ideas from these papers and propose an effective
procedure for the bounded determinization of eNTA.

There already exist several tools for model-based testing with timed automata:

The UPPAAL tool family contains a series of tools working with timed automata.
There are three UPPAAL tools used in the context of testing: UPPAAL Cover (Hessel
and Pettersson 2007) generates tests offline and allows the specification of observers to
generate tests satisfying pre-defined coverage criteria. Cover required the specification
to be deterministic. UPPAAL Tron (Mikucionis et al. 2003) is used for online testing,
where inputs and delays are chosen non-deterministically and executed on the system-
under-test and the specification simultaneously and all outputs that are received from
the system are checked for conformance on the model. UPPAAL Yggdrasil (Kim
et al. 2015) is the newest testing tool in the UPPAAL family, allowing offline test-
case generation, with the advantage of adding test scripts to transitions, that are added
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to the tests during generation. The resulting tests can thus be executable scripts or
function calls in any desired language. None of the tools in the UPPAAL family
performs mutation-based test-case generation. Note that while we model our automata
in UPPAAL, the produced automata can not be analysed with UPPAAL anymore, as
they contain disjunctions. They can, however, still be opened and viewed.

Wang et al. (2014) use timed automata for language inclusion. Their procedure
involves building a tree, renaming the clocks and determinization of the tree. Contrary
to our work, they do not restrict themselves to the bounded setting, thus taking the risk
that their algorithm does not terminate for some classes of timed automata. Also, they
use the “standard” determinization method that involves splitting non-deterministic
transitions into a possibly far larger set of deterministic transitions, whereas we join
them into one transition.

Krichen and Tripakis (2009) produce deterministic testers for non-deterministic
timed automata in the context of model-based testing. They consider only testers using
one clock, which is reset upon receiving an input. The testers are sound, but not in
general complete and might accept behavior of the system under test that should be
rejected. Bertrand et al. (2011) develop a game-based method for determinization
of eNTA which generates either a language equivalent DTA when possible, or its
approximation otherwise. A similar approach is proposed in Bertrand et al. (2011) in
the context of model-based testing, where it is shown that their approximate deter-
minization procedure preserves the tioco relation. In contrast to our approach, which is
language preserving up to a bound &, and thus appropriate for bounded model check-
ing algorithms, determinization in the above-mentioned papers introduces a different
kind of approximation than ours.

In a recent paper, Aichernig et al. (2016) compared the bounded model-checking
approach for test-case generation with symbolic execution. The bounded model-
checking required the determinization approach described in this paper as a pre-
processing step, while the symbolic execution approch did not. It showed that symbolic
execution could deal with the non-determinism more efficiently than the bounded
model-checking approch.

10 Conclusion

The bounded setting allows the handling of a larger class of TA and in a more efficient
way than in the unbounded setting. The extension from standard unary constraints to
diagonal and disjunctive constraints has a practical reason: it is more efficient to let the
SMT solvers deal with them than to translate them into standard form. In this paper
a novel procedure was presented, which transforms bounded, non-deterministic and
partially-observable TA into deterministic and fully-observable TA with diagonal and
disjunctive constraints. The procedure includes an algorithm for removing the silent
transitions and a determinization algorithm. The performed experiments show that
runtimes increase drastically for greater depths. However, the depths needed for test-
case generation can be performed in reasonable times. To ensure that all mutations
created by our mutation operators can be reached, and eventually be detected by a
wrong output, one could calculate the needed depth by the number of steps needed to

@ Springer



318 Real-Time Syst (2017) 53:291-326

reach the deepest location in a specification plus the highest number of steps needed to
reach an output in any location. For the presented industrial study, these numbers would
be 7 and 2, indicating that 9 would be a suitable search depth. It was implemented,
tested and integrated into a model-based test generation tool. We applied the tool to
an industrial case study and presented the results of both the determinization and the
test-case generation.

Proofs
Proof of Theorem 1 [Silent Transitions Removal]

Given a non-deterministic timed automaton with silent transitions A in the form of a
finite tree, we need to show that our algorithm of removing the silent transitions results
in an equivalent timed automaton, that is, £(R(A)) = £(A).

By induction, it suffices to show that if A’ is the result of removing one first silent
transition then A and A’ are equivalent: for every timed trace of A there is an equivalent
timed trace of A" and vice versa, in the sense that the corresponding observable timed
traces are identical. Note that the removal of a silent transition does not change the form
of the guards at the part of the automaton that contains the remaining silent transitions:
the introduction of diagonal constraints happens only at the enabling guards, which
are observable transitions.

So, let 75 ¢ be a first silent transition on a path y that starts at the initial location.
Let 75,0 be from location ¢, to location g; o, let gs—1 be the location that leads to g;
and let g5+ be a location that follows g ¢ on the path. Let A’ be the automaton that
results after removing t and performing the steps as in Algorithm 2. Clearly, for every
run that does not pass through i ¢ there is an identical run in the other automaton.
Thus, we restrict ourselves to runs though 7, 9. We will mostly restrict ourselves to
strict inequalities, as the extension to the other cases (strict inequality versus weak
inequality or weak inequality versus weak inequality) is straight forward.

£(A) € £(A’) Let p be arun on A through . We need to show that there exists a
run o’ on A’ with the same observable trace as of p. The run p’ will go through the
same locations and transitions as does p, except for the part gs—1, T, gs, Ts.0, gs.0 IN
A which will be replaced by the bypass gs—_1, 7, ¢s.0 in A" as in Fig. 6. The times of
the transitions will also be the same, except for the silent transition that is missing in
p’. That is, if #;, 50 and ;4 are the times of p at the transitions t, 75,0 (the silent
transition) and 7,4 then the corresponding transitions of p’ will take place at f; (the
time of the bypass) and #;41.

We first need to show, that the guard of the bypass transition, g, = g5 A eg(7s.0),
is satisfied at time #;. The enabling guard consists of unary constraints and binary
constraints. The unary constraints are simply the upper bound limits of the guard
of the silent transition. The time of the bypass #; lies before the time of the silent
transition #; o. But since p is arun on A through #; o, we know that these upper bounds
are satisfied at the time of 7, 9. Thus, they also have to be satisfied at the time of .
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The binary constraints are built by comparing the upper bounds of all clocks with
the lower bounds of all other clocks, where x; < n; and m; < x; build the constraint
nj —x; > m; — x;. This constraint ensures, that at time #; the delay needed to reach
the upper bound of x; (which would disable the silent transition), is greater than the
delay needed to reach the lower bound of x; (which enables the silent transition). As
the silent transition is enabled at £ o, we know that all lower bounds can be reached,
without violating any of the upper bounds. Thus, the binary constraints are satisfied.

We have seen that all the constraints of eg(t,, o) are satisfied at time ¢, and so the
constraint g, of p’ is satisfied at 7, and the transition 7, can be taken.

The next step is to show that the transition 7y with guard g ; of p’ from location
gs,0 to location g, 1, as well as the next transitions 7,4 j, j = 2, ..., p, with guards
g;+j can be taken at the same times 7, ; on which 7, ; are taken in p on guards g, ;,
j=1...,p.

If the silent transition happens to be on an exact time: x; = n; then the update of the
future guards that refer to the clock x; o that was reset at 7, ¢ is clear: each occurrence
of x; ¢ is replaced by x; — n;, and we are done. So, suppose that there are no exact
constraints at the silent transition.

We write the guard gé,o of the silent transition 7y ¢ as:

g;,ozofxs/\ /\ m; < Xx; < nj, 3)

where for some of the clocks x; there may be only a lower bound or only an upper
bound constraint.

The constraints on x; ¢ at the transitions 7,4, j = 1,..., p contain 0 < x, ¢ in
7o+1 and are of the general (strict inequalities) form m1 ; < x50 < ng4jin 754 ;. The
corresponding updated constraints of A" attime 7,4, j =1, ..., p, are

/\ mi +meyj < Xj <nj+ngyj. 4)
i=1,..r

First, we need to show that the taken guard g (7, o) is satisfied at time #;11. The
taken guard is the constraint 0 < x . After the update of the future guards this
constraint is replaced by the conjunction of all the lower bound constraints m; < x; of
g;’o. But since these lower bound constraints are satisfied at the time #; ¢ of the silent
transition (in p) then clearly they are satisfied at #;11, fs+1 > f;0, that is, the updated
taken guard tg(ty,0) is satisfied in p'.

Let us look at the other updated future constraints. Since at the time of the silent
transition x;0 = 0 and m; < x; then at time #,4; when my,; < x50 we have
m; +mgy; < x;. With a similar argument for the upper bound constraints, we see that
the constraints of (4) are satisfied in p’.

Also the part of the synchronization rules is clear since it refers to the possible
minimum and maximum time difference between every two transitions on which
Xg,0 occurs, and since the run p goes through these transitions it assures that these
constraints can be satisfied. So, for example, the synchronization constraint ng; —
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Nsti < Xgqi < Ngyj —myy; thatis added to the guard g, ; of 744 ;, refers to the time
difference #; ; — ;4 between the transition 7,4; and the transition 7,4 ;,i < j.
Note that the synchronization with the constraint 0 < x; ¢ of 7,4 results in adding
to 7gyj, j =1,..., p the constraint x;11 < nsyj, thatis ty4; — ty41 < ngy;, which
clearly is satisfied since ty4; — 5.0 < n54 .
We showed that the observable trace of o’ is the same as that of p and this completes
the proof of £(A) C £(A").

£(A’) € £(A) Letp' bearunon A’ going through the bypass t,. We will show that
there exists a run p through ;o in A with the same observable trace as of p’.

The first thing we need to check is that the silent transition 75 ¢ can be taken, given
that the enabling guard eg(7,,0) is satisfied at time #;. The unary constraints x; < n;
(xj < nj)of eg(s,0) guarantee that each of the constraints in the guard g;’o of the
silent transition 7, ¢ can be satisfied separately at some time that is equal or is later than
ty. Then, in order that all the constraints could be satisfied simultaneously, it suffices
to show that the minimum upon the time delays to the upper bound constraints of
the clocks appearing in g;’o is greater than the maximum upon the time delays to the
lower bound constraints in g;’o (the "greater’ should be replaced by ’greater or equal’
in case both the maximum and minimum come from weak inequalities):

min(n; — x;) > max(m; — x;). 5)
J L

But this condition is equivalent to the condition that n; — x; > m; — x; at time #; for
every i, j, which is exactly the conjunction of diagonal constraints

/\x./—xi<nj—mi (6)
i#]

of eg(7s,0)-

Thus, we know that the silent transition 7, o can be taken in the run p at some time
ts,0 after a delay of M = max; (m; — x;) from ¢, (this delay is not negative since we
introduced the constraint 0 < xy) and before a delay of N = min;(n; — x;).

It remains to show that the transitions sy 1, ..., Ts4p On guards geyq, ..., gs4p Of

o can be taken at the same times #y1, ..., fy4, as the corresponding transitions on
/ / : /
guards 841> -+ &sp AT taken in p’.

To be more specific, it suffices to prove that there exists #; o with the following
conditions:

1., < 15,0 < Is+1;
2. gl is satisfied at 7 o;
3. the constraints on x; o are satisfied at t;1 1, ..., ty4 p, With x4 o Teset at £, o.

For the second condition the constraints of g; o that should be satisfied at time ;o
are

N mi < xits0) <ni. (N

i=1,...r

@ Springer



Real-Time Syst (2017) 53:291-326 321

Equivalently, at each time 7,4 ;, j =1, ..., p:
/\ mi + by —ts0 < Xi(bsj) < nj +bsyj — I5,0, (8)
i=l1,..., r
or,
/\ mi — Xi(ts4j) +tsqj <ts0 <nj —Xi(bsyj) + 154 9
i=l1,..., r

For the third condition the constraints on x; o that should be satisfied at times
Lsils oy toqp are myyj < Xg0(t54j) < neyj for j = 1,..., p. The constraint
here at time #;11 is 0 < x4 0(#+1) possibly conjuncted with other constraints (for
convenience we wrote all constraints as strict inequalities). This is equivalent to

I\ Mo <torj =50 < nsyj (10)

or

/\ —Nsj Flsqj <50 < —Mgyj +ls4j. (11)

We need to show that the constraints on o of (9) and (11) do not define an empty
set. This condition is equivalent to showing that the set S; of the above expressions
to the left of #; o is smaller than the set S, of the expressions to the right of # ¢
(equivalently that the maximum of S is smaller than the minimum of S;), where

S ={mi—x,-(ts+j)+ts+j|i=1,...,r,j=1,...,p}
U—ngyj+it4jlj=1,....ph (12)

and

Sy ={ni —xi(ts+j) +ts4jli=1,...,r, j=1,..., p}
U{—ms+j +t‘g+j |J = 1, ,p} (13)

There are two types of expressions in S and two types of expressions in S», hence we
need to check that the following 4 cases are satisfied.

Case I mj — xi(tyyj) +ts1j < ny — xpr(tgq /) +ts4 . This inequality is equivalent
to

m; — X (tx,O) +t50 < ny — xi’(ts,O) + 1.0, (14)
or to

m; — xi(ts,0) < ny — x;7(ts,0). (15)
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The latter is equivalent to
xjr(ts) — xi(ts) < nyr —mj, (16)
which is (6), the enabling guard eg(z; o) that is satisfied at time #; of the run p’.

Case 2m; — xi(ts1j) +tsyj < —msyjr +tey i This inequality is equivalent to

mi — Xi(bsy jr) + b jr < —Mgqjr+ Loy, )
mi — Xi(fy4j) < —mgyjr, (18)
mi +mgyjr < Xi(tsqjr). (19)

The last inequality is no other than one of the left inequalities of (4), which are the
updated future constraints in A’ of the reset clock x;,0, and thus are given to be satisfied.

Case 3 —ngy jr + tsqj < nj — Xi(ts4j) + tgy; This inequality is equivalent to

= Ngqjr + by < i — Xi(Fsqj7) + Ls4jrs (20)
gy < np — Xi(fs4 1), (2D
Xi(bgyjr) < nj +ngyj. (22)

But the last inequality is one of the right inequalities of (4), which are the updated
future constraints in A" of the reset clock x;s o, and thus are given to be satisfied.

Case 4 —ngsq + ts4i < —mgyj + 11 j This inequality is equivalent to
Mytj — Nsti < lsyj — lsti- (23)

The inequality certainly holds when i = j. When i < j we can write this inequality
with the clock x4, that is reset at time #;1; in A”:

Mytj — Nti < Xsti(fstj). (24)

But the last inequality can be found in the first row of Table 3 which contains the
synchronization constraints of the updated future constraints in A’ of the reset clock
X5.,0-

Similarly, when j < i we need to satisfy the inequality

Xstj (Espi) = bsi — bsj < Mspi — My, (25)

which can be found in the fourth row of Table 3.

We showed that the set of possible time values £, o for the silent transition in p
is not empty, that is, there is a solution to the set of inequalities (9) and (11) in the
indeterminate #; o (again, the extension to weak inequalities is straight forward).
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To complete the proof it remains to show that the solution for # ¢ satisfies the
first condition, that is that t;, < #;0 < fs41. The left inequality f;, < f; 0 comes
from satisfying the inequality m; — x;(ts4 ;) + ty4; < t50 of (9) with x; = x; and
m; = mg = 0 (it refers to augmenting the silent transition guard with the constraint
0 < x,). This inequality is equivalent to 0 — xs(t5) +£; < fs,0 Or ts < Is,0 Since x5 was
reset at time 7.

The right inequality comes from satisfying the inequality #; 0 < —mgy1 + t541 of
(11) with mg11 > 0, thatis, t5,0 < fo41.

Proof of Theorem 2 [Determinization] The deterministic property of D(A) follows
from the fact that when merging «-transitions into t,.. and 74 then the guard of
T—gec 1S @ conjunction of some guard with the negation of the guard of t,... Hence,
different runs will induce different time traces.

When we merge two transitions we also merge their target locations, and all transi-
tions leaving those locations now leave the merged location. The guard of the merged
transition is weaker than the individual guards, thus by merging locations of A in
D(A) we may only expand the language and conclude that £(A) € £(D(A)). The
same holds true for the disjunction of two invariants, which also weakens the original
invariants. On the other hand, the new diagonal constraints introduced in D(A) and
conjuncted to the guards of the following transitions may restrict the language. So,
let us examine the new transformed constraints and show that they do not impose
additional restrictions. Suppose the guard of transition T contains the constraint x ~ n
and that y is reset on 7. Then, for any run through 7, at the time # of t, the constraint
x(tg) — y(to) ~ n holds. But also at time #; > fy, the constraint x(¢1) — y(¢;) ~ n
holds since x and y progress at the same rate and are never reset again. Hence, for
any run through 7 in A there exists a corresponding run in D(A) with the same trace
because the additional constraints of the form x — y ~ n that are added to the future
guards are satisfied automatically by all runs in D(A) that satisfy the guard of 7. Thus,
it remains £(A) C £(D(A)).

To show that the language of D(A) does not contain accepting traces that are not in
the language of A, and thus that £(D(A)) C £(A), it suffices to show two parts: First,
we need to show, that whenever the merged transition in D(A) is enabled, at least
one of the non-deterministic transitions in A is enabled. This is trivially true, as the
guard of the merged transition is a disjunction of the guards of the non-deterministic
transitions. Second, we show that when a transition in a merged location of D(A) is
enabled, then the corresponding original transition in A is enabled. But this is indeed
the case, since the diagonal constraints that are attached to these transitions are, as
already shown, always enabled when the original transitions in A are reachable, and
the rest of the guard is identical in both transitions. As for the invariants, it holds that if
the invariant of a merged location/ in D (A) is satisfied, then at least on of the invariants
of the split locations in A is enabled. Since each transition has the invariants of its
target and source locations integrated into its guard, it is ensured that, even though the
invariant in D (A) is weaker than each original invariant in A, the transition leading to
[ and leaving / are only enabled if they satisfy their original invariants.
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