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results suggest that we cannot continue to develop methods 
for one speech style and expect that improvements transfer 
to other styles. Instead, the nature of the application data 
(here: read vs. conversational) should be taken into account 
already when defining the basic assumptions of a method 
(here: segmentation in phones), and not only when apply-
ing the method to the application data
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1 Introduction

Speech science and technology used to rely on the assump-
tion that speech utterances can be described as a sequence 
of words and that words are composed of a sequence of 
phones, also known as the ’beads on a string’ model of 
speech  (Ostendorf 1999). This model works satisfactorily 
for carefully produced speech, but it runs into problems 
with conversational speech, mainly due to the high pronun-
ciation variability (Saraçlar et  al. 2000). To some extend, 
the incorporation of pronunciation variants into the lexicon 
has shown to improve ASR systems e.g., Baum (2003); 
Lehtinen and Safra (1998). However, by adding variants 
also the internal confusability increases. For instance, 
Kessens et al. (2003) found that adding variants in princi-
ple decreases the WER compared to a lexicon with only 
canonical pronunciations as long as the average number 
of variants is ≤2.5 (specific for their system architecture). 
Nonetheless, there is evidence that the variability in con-
versational speech is much higher than what is possible to 
model with such a low number of variants. For instance, 
Greenberg (1999) reports an average of 22.2 pronunciation 
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variants for the 100 most frequent words of the Switch-
board corpus. Phone-based modeling of pronunciation vari-
ation is simply not able to capture the overlapping, asyn-
chronous gestures of the articulators (e.g., Kirchhoff 1998; 
Fosler-Lussier et al. 1999). Therefore, there is an interest in 
articulatory-acoustic features (AFs), i.e., the acoustic cor-
relates of articulatory gestures, as basic unit of representa-
tion. AFs that can change asynchronously seem to offer a 
natural way for representing (semi-) continuous articulatory 
gestures and the ensuing acoustic characteristics of speech 
signals (e.g., Frankel et al. 2007b).

In the last decades, AFs have received increasing interest 
in the field of speech technology (e.g., Bitar and Espy-Wil-
son 1996; Frankel et  al. 2007b; Hasegawa-Johnson et  al. 
2005; Juneja 2004; Juneja and Espy-Wilson 2008; King 
and Taylor 2000; King et  al. 2007; Kirchhoff et  al. 2000; 
Manjunath and Sreenivasa Rao 2016; Naess et  al. 2011).
Instead of building acoustic models for phones, separate 
classifiers are trained for articulatory-acoustic features such 
as manner of articulation, place of articulation, and voic-
ing. AF classifiers have been successfully used for speech 
recognition in adverse conditions (e.g., Kirchhoff 1999; 
Kirchhoff et  al. 2002; Schutte and Glass 2005), to build 
language-independent phone recognizers (e.g., Stüker et al. 
2003; Lin et  al. 2009; Siniscalchi et  al. 2008; Siniscalchi 
and Lee 2014), in the area of visual automatic speech rec-
ognition (Saenko et al. 2005), and in computational models 
of human spoken-word recognition  (Scharenborg 2010). 
Furthermore, the combination of phone-based acoustic 
modeling with AFs have shown to reduce the word error 
rate in task-oriented spontaneous speech (Kirchhoff et  al. 
2000; Metze 2005, 2007).

Even though the main reason for using AFs instead of 
phones is that AFs have more potential for capturing pro-
nunciation variation, most investigations on AF classifica-
tion have been carried out on read speech, while conversa-
tional speech is (far) more prone to pronunciation variation 
than read speech (Schuppler et  al. 2014). Even though it 
is well known that TIMIT (Garofolo 1988), a read speech 
corpus of American English, is non-generic, it continues to 
be the most popular corpus for research into AF classifica-
tion American English (e.g., Pernkopf et  al. 2009; Pruthi 
and Espy-Wilson 2004; Siniscalchi et al. 2007). The main 
reasons for using TIMIT are the high number of speakers, 
the quality of the manually created phonetic transcriptions 
and the large set of phonetic labels. To our knowledge, only 
the work done during the 2004 Johns Hopkins Summer 
Workshop (Frankel et  al. 2007a; Hasegawa-Johnson et  al. 
2005; Livescu et al. 2007), and the work by Greenberg and 
Chang (2000), Pruthi and Espy-Wilson (2007) and Naess 
et al. (2011) used Switchboard (Godfrey et al. 1992), a cor-
pus of American English spontaneous conversations. Other 
studies which go beyond AF classification for read speech 

are those based on German task-oriented spontaneous 
speech by Kirchhoff et al. (2000) and Metze (2005, 2007). 
Recently, Manjunath and Sreenivasa Rao (2016) compared 
the performance of their AF classifiers for read, spontane-
ous and conversational speech of a Corpus of the Indian 
language Bengali.

Research on AF classification has focused on finding the 
ideal set of acoustic parameters for building multi-value or 
binary classifiers (e.g., Salomon et al. 2004; King and Tay-
lor 2000; Niyogi et al. 1999; Scharenborg et al. 2007) or the 
ideal statistical classification method (e.g., a comparison of 
ANNs with SVMs by Chang et al. 2005). For an overview 
of different methods used for AF classification see King 
et al. (2007). These experiments have shown improvements 
of the newly proposed acoustic parameters and classifica-
tion methods over baseline conditions, for read speech. In 
general it is assumed that classification performance in 
spontaneous speech is simply lower than in read speech 
but that new methods also yield an improvement there. It 
remains to be actually shown whether improved classifica-
tion generalizes from read speech to conversational speech.

This paper presents two studies that investigate this 
question from two different viewpoints: acoustic parameter 
selection and classification method development. These two 
experiments will be outlined in the two following subsec-
tions. The first study aims to develop acoustic parameters 
for accurate classification of manner of classification. The 
requirement for the acoustic parameters, thus, is to have 
both a high frequency resolution (for stationary sounds like 
nasals and fricatives) and to have a high temporal resolu-
tion (for short acoustic events like bursts in plosives). The 
second study aims to improve the training material for AF 
classifiers by using a data selection approach. Both studies 
compare the performance achieved on read speech to the 
performance achieved on conversational speech and present 
analyses of observed discrepancies. Section  2 describes 
the acoustic parameters, the classification method, and 
the speech material used in both studies. In Sects. 3 and 4 
we present and discuss our results from Studies 1 and 2, 
respectively. The paper closes with a general discussion 
and conclusions.

1.1  Acoustic parameters for manner classification

Research aimed at finding acoustic parameters for accurate 
AF classification can be distinguished into two research 
lines. In one line of research, exemplified by Frankel 
et  al. (2007b), King and Taylor (2000), Manjunath and 
Sreenivasa Rao (2016) and Scharenborg et  al. (2007), 
attempts are made to cover a full set of features with a 
single multi-value classifier (with seven classes). In the 
second line, exemplified by Niyogi et  al. (1999), Pruthi 
and Espy-Wilson (2007), and Schutte and Glass (2005), 
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research concentrates on finding an optimal set of acoustic 
parameters for building a detector for one specific manner 
feature for, e.g., vowel nasalization (e.g., Pruthi and Espy-
Wilson 2007), nasal manner (e.g., Chen 2000; Pruthi and 
Espy-Wilson 2004), or stops (e.g., Abdelatti Ali et al. 2001; 
Niyogi et al. 1999). These type of binary classifiers tend to 
use highly specific parameters and perhaps also highly spe-
cific decision mechanisms.

In our work we are interested in creating a feature set 
that covers all aspects of manner of articulation for the 
automatic transcription of speech. Hence, this study follows 
the approach of building a single multi-value classifier. 
Here, the goal is to develop acoustic parameters for accu-
rate classification of both stationary sounds (e.g., nasals) 
and short acoustic events (e.g., bursts in plosives). A big 
challenge when using a single classifier for all manner 
features is that the accurate classification of some manner 
features requires high frequency resolution (e.g., glides), 
whereas others require high time resolution (e.g., the detec-
tion of bursts). In Study 1, we investigate whether the use 
of a combination of MFCCs calculated for both short and 
long windows serves this purpose and whether this set of 
acoustic parameters shows not only similar overall per-
formance but also similar improvements in TIMIT and 
Switchboard (see Sect. 3).

1.2  Impact of inaccurate labeling

The development and evaluation of AF classifiers suffer 
from the absence of large corpora that provide manually 
labeled AF values. As mentioned earlier, only a small set 
of 78 Switchboard utterances was manually transcribed at 
the AF level (Livescu et al. 2007). As a consequence, train-
ing and testing of AF classifiers is generally done on the 
basis of data that is labeled with broad phonetic transcrip-
tions (such as those that come with the TIMIT corpus), 
after which all phones are automatically replaced with their 
corresponding (canonical) AF values using a lookup table. 
As a result, these AF values change synchronously at phone 
boundaries, which obviously violates the observation that, 
at least some, AFs tend to change independently and asyn-
chronously. For example, /n/ would map to the AF values 
[+voiced, alveolar, nasal] but vowels surrounding the /n/ 
would not be automatically mapped onto [nasal]. However, 
it is well known that vowels following and preceding nasal 
consonants tend to become nasalized in English  (Ogden 
2009). Thus, AF transcriptions created from phone tran-
scriptions do not reflect the overlapping nature of articula-
tion. What is more, the effect of this automatic mapping on 
AF classification performance may well be much larger in 
conversational speech than in read speech. Even though the 
reason for using AFs in the first place is to get away from 
phones as basic unit, phones are still used as basic unit to 

create training material. In the current paper, we will show 
that this automatic mapping causes substantial performance 
drops and that this effect is stronger for conversational 
speech.

For read speech, the impact of using synchronously 
changing AF labels on classification accuracy was illus-
trated by  King and Taylor (2000). When evaluating the 
performance of their classifier, they showed that if fea-
tures are allowed to change within ±2 frames (with a dura-
tion of 10 ms) from the phone boundary, the measure ‘all 
frames correct’ increases significantly by 9% absolute to 
63%. Therefore, applying very strict criteria with respect to 
phone boundaries may introduce virtual errors that have a 
substantial impact on the apparent frame accuracy. Poten-
tially incorrect labels at phone boundaries do not only have 
an impact when testing the classifiers but also when train-
ing them. It is unclear to what extent classifiers trained and 
tested on error-prone data will yield classification results 
that truly reflect the underlying acoustic phonetic events 
one is interested in. Given that in conversational speech the 
number of phones realized canonically is much lower than 
in read speech (c.f. Schuppler et al. 2014), the number of 
incorrect labels in training and test data is higher. For this 
same reason, the creation of broad phonetic transcriptions 
is a much more difficult task for conversational speech than 
for read speech, which is for instance also reflected by sub-
stantially higher inter-labeler disagreement [5.6% for read 
speech vs. 21.2% for conversational speech (Kipp et  al. 
1996, 1997)].

In order to deal with these labeling issues, Chang et al. 
(2005) have developed the so-called elitist approach, a 
form of data selection with which a reliably labeled subset 
of training material is extracted with the help of the clas-
sifier. Afterwards, the same (training) set is used for test-
ing and only those frames that have a classification output 
larger than a certain threshold (0.7 in Chang et  al. 2005) 
are selected for subsequent training and testing. Using 
this approach, one hopes to eliminate frames that can-
not be unambiguously assigned to a particular AF value. 
For TIMIT, Chang et  al. (2005) yielded an 8% absolute 
improvement in classification accuracy. Whereas Chang 
et al. (2005) did not test the elitist approach on other speak-
ing styles than read speech, Study 2 of this paper will inves-
tigate whether such a data selection method can be used to 
improve AF classification for conversational speech.

2  Method and material

2.1  Support vector machines (SVMs)

For building AF classifiers, different statistical classi-
fiers have been used, such as artificial neural networks 
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(ANNs) (e.g., King and Taylor 2000; Kirchhoff 1998; 
Scharenborg et  al. 2007; Siniscalchi et  al. 2008) and 
FFNNs (Manjunath and Sreenivasa Rao 2016), HMMs 
(e.g., Kirchhoff 1999; Manjunath and Sreenivasa Rao 
2016), linear dynamic models (Frankel 2003), k near-
est neighbor (k-NNs) (Naess et  al. 2011) and dynamic 
Bayesian Networks (e.g., Pernkopf et  al. 2009; Frankel 
et  al. 2007b; Jyothi 2013). Niyogi et  al. (1999), Pruthi 
and Espy-Wilson (2007), Yoon et al. (2010), Scharenborg 
et al. (2007), and Schutte and Glass (2005) used support 
vector machines (SVMs) for the classification of articu-
latory-acoustic features, among other reasons because 
these show good generalization from a small amount of 
high-dimensional training data. Juneja (2004) developed 
SVM-based landmark detectors for classifying binary 
place and voicing features in TIMIT, while Niyogi and 
Sondhi (2001) used SVMs to detect stop consonants in 
TIMIT. Also King et  al. (2007) mentions SVMs as a 
powerful classification technique for binary tasks. Then, 
Scharenborg et al. (2007) showed that SVMs even com-
pare favorably to ANNs on the task of multi-level articu-
latory–acoustic feature classification, which is also the 
task at hand in the current work. We therefore use SVMs 
for our investigations.

SVMs learn the optimal hyperplane from labeled train-
ing material by separating two classes using the maximum 
margin principle (Cortes and Vapnik 1995). The margin is 
defined as the distance between the hyperplane and the data 
points in both classes closest to the plane. SVM classifiers 
are solely based on the data points at the margin, so called 
support vectors. When data cannot be separated by a hyper-
plane, SVMs can be made to use soft margins, allowing for 
some data points to be on the wrong side of the hyperplane 
(Schölkopf et  al. 2000). The soft-margin approach intro-
duces a parameter C, which controls the trade-off between 
the size of the margin and the number of misclassified data 
points. For problems that are not linearly separable directly, 
SVMs can construct models by mapping the input space 
into a higher dimensional space in which the optimal sepa-
rating hyperplane is calculated. For this purpose, we use 
the Radial Basis Function (RBF) kernel which has one 
parameter � that controls the width of the kernel functions.

Originally, SVMs were designed for two-class problems. 
However, multi-class problems can also be handled by 
reducing them to a set of binary problems. In one-versus-
rest, N binary classifiers are trained to separate one class 
from the N − 1 other ones; in one-versus-one, (N − 1)N∕2 
classifiers are trained, all separating one class from one 
other class. In our experiments, we view the AF man-
ner classification task as a multiclass problem with seven 
classes and adopt the one-versus-one classification method. 
For training and testing the models, we use the LibSVM 
package (Chang and Lin 2001).The parameters C and � 

are optimized for each experiment separately using a grid 
search (see Sects. 3, 4).

2.2  Evaluation of frame‑level classification

For all experiments, we will present frame-level classifica-
tion accuracies in terms of percentage correctly classified 
frames of the test material along with the 95% confidence 
intervals. The 95% confidence interval reflects a (conserva-
tive) significance level of 0.05, i.e., if two confidence inter-
vals do not overlap, the difference between two values is 
significant (Field 2013). Additionally, we will present the 
statistical measure F-score for each class (Powers 2011). 
Since the F-score considers both the precision p (number of 
true positives divided by the sum of true positives and false 
positives) and the recall r (number of true positives divided 
by the sum of true positives and false negatives), it gives a 
fairer picture of the actual performance of a classifier than 
the classification accuracy alone. The F-score is calculated 
as the harmonic mean of precision and recall:

2.3  Articulatory–acoustic feature values

Speech scientists do not agree on a unique mapping 
between articulatory gestures and AF values. Here we 
would like to go into more detail for the case of plosives. 
The canonical realization of a plosive consists of three 
stages: a closure, a burst and a subsequent release-fric-
tion. In not-canonical realizations, which are especially 
frequent in conversational speech (e.g., 88.5% of word-
final /t/ in Dutch Schuppler et al. 2009a), one or more of 
these stages can be absent. The stages of plosives have 
been mapped in different ways onto AF values. Plosives 
can be mapped as a whole on one AF value ‘plosive’ 
(King and Taylor 2000; Scharenborg et  al. 2007; Sinis-
calchi et  al. 2008), or on a sequence of ‘closure’ and 
‘friction’, due to which the burst and the release friction 
are modeled together with friction coming from frica-
tive consonants, e.g. the phones /f/ and /z/ (Frankel et al. 
2007a; Kirchhoff et al. 2002). This mapping is quite plau-
sible, since the difference between a release realized with 
friction and a release realized as burst and friction is only 
salient within the first milliseconds of the release, i.e., 
the steepness of its amplitude rise. In order to distinguish 
friction from fricatives and releases from plosives that 
might be realized with a burst, plosives are mapped on to 
the sequence ‘closure’ and ‘burst+release’ (Frankel et al. 
2007b; Pernkopf et  al. 2009). We also opt for the latter 
sequence of values, for two reasons. First, modeling plo-
sives as one unit violates the assumption of SVMs that the 

(1)F = 2×
p× r

p + r
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sequence of frames assigned to a sound can be considered 
as drawn from one population, which is definitely not true 
for plosives that consist of a sequence of ‘burst+release’. 
Second, we aim at using AF classifiers to analyze how 
the speech was actually produced, for instance whether a 
plosive was realized as a closure followed by friction, in 
which case the release friction of the plosive would be 
expected to be classified as ‘fricative’, or as a closure fol-
lowed by a clear burst, in which case the frames would be 
expected to be classified as ‘burst+release’ (cf. Schuppler 
et  al. 2009a). Therefore, we train separate classifiers for 
‘fricative’ and ‘burst+release’.

In the literature on AF classification there is no con-
sensus on whether to add the value ’vowel’ to the man-
ner classifier (e.g., Scharenborg et al. 2007; Chang et al. 
2005), or whether to exclude vocalic stretches of speech 
from manner classification. We opt for the latter, because 
from a phonetic point of view, manner (and also place) 
of articulation is only defined for consonants. A full 
overview of the manner features used in this research is 
given in Table 1. Note that affricates were excluded from 
our experiments. Affricates consist of a sequence of a 
plosive and a fricative; however, the boundary between 
these two acoustic events was not provided in the TIMIT 
transcriptions.

2.4  Read speech corpus: TIMIT

TIMIT contains phonetically balanced sentences read by 
630 speakers of American English (Garofolo 1988). We 
followed TIMIT’s training (3696 utterances) and test divi-
sion (1344). The TIMIT database comes with manual 
phone level transcriptions, which we have automatically 
relabeled in terms of AF values according to Table 1.

2.5  Conversational speech corpus: switchboard

Switchboard is a corpus of telephone bandwidth speech 
from spontaneous conversations from 500 speakers of 
American English (Godfrey et al. 1992).

2.5.1  SVitchboard-AF (SV-AF)

SVitchboard-AF (SV-AF) consists of 78 utterances (a total 
of 119s of speech, excluding silences) (Livescu et al. 2007) 
taken from the Switchboard corpus. SV-AF comes with 
manually created transcriptions at the phone and AF level. 
Since we use SV-AF as a gold standard, it is important to 
note that the inter-transcriber agreement was very high for 
the AF labels (kappa-values between 0.82 and 0.95), which 
is approximately 0.1 higher than for the phone-label tran-
scriptions of Switchboard.

We manually adapted the original set of AF labels from 
Livescu et al. (2007) to our set of AF labels using the map-
ping shown in Table 2, starting from the tier ‘Dg1’ (Degree 
of forward constriction). In the original transcriptions, both 
fricatives and plosive—release sequences were transcribed 
as ‘fricative’. We changed the label of releases of plosives 
that started with a burst to ‘burst+release’. The boundaries 
of the ‘nasality’ tier of the original transcription were used 
to annotate the nasal consonants. Apparent labeling mis-
takes that were observed in two utterances were corrected. 
When modifying the annotations, none of the original 
boundaries was moved or deleted, although new boundaries 
were placed when one value in the ‘Dg1’ set is transcribed 
as a sequence of two values in our set. For example, an 
‘approximant’ in the original set occasionally was replaced 
by a ‘liquid’ followed by a ‘glide’ in our set. Additionally, 
since background noise was labeled as silence, new bound-
aries were placed to separate background speakers from 
silence, because often their speech was of similar amplitude 
as the foreground speaker. The resulting transcriptions are 
referred to as manual-SV-AF in the remainder of the paper.

In order to be able to make direct comparisons between 
the Switchboard and TIMIT results, the AF labels (and 
boundaries) from the 78 manual-SV-AF utterances were 
also generated automatically, by automatically chang-
ing the phone labels into their AF values using a table 
lookup procedure. Note that this is the ‘standard‘ procedure 

Table 1  Mapping of TIMIT phone symbols to the manner AF values

Phone Manner AF value

sil, pau, h# Silence
l, el, r Liquid
w, y Glide
em, en, eng, m, n, ng, nx Nasal
dh, f, hh, s, sh, th, v, z, zh, hv Fricative
b, d, g, p, t, k, q Burst+release
bcl, dcl, gcl, pcl, tcl, kcl Closure
ch, jh, dx, epi, t all vowels NIL

Table 2  Phone-to-AF mapping in the SV-AF data

Phone Dg1 Our AF set

l, el Closure Liquid
er, r Approximant Liquid
w, y Approximant Glide
em, en, eng, m, n, ng, nx Closure Nasal
dh, f, hh, s, sh, th, v, z, zh, hv Fricative Ficative
b, d, g, p, t, k, q Fricative Burst+release 

or fricative
bcl, dcl, gcl, pcl, tcl, kcl Closure Closure
Silence Silence Silence
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in AF research. These transcriptions are referred to as 
automatic-SV-AF.

2.5.2  Switchboard Transcription Project (STP)

The Switchboard Transcription Project (STP) (Greenberg 
1997) contains 72 min of speech from the Switchboard cor-
pus (taken from 618 conversations by 370 different speak-
ers) that were manually transcribed at the phone level. 
There is no overlap between STP and SV-AF. The STP 
labels are related to the phone set used for TIMIT, but in 
STP, plosives are annotated as one segment and not as a 
sequence of closure and burst+release (e.g., /pcl/ and /p/ in 
TIMIT map to /p/ in STP). The STP plosives were therefore 
automatically split into closure and burst+release classes 
using an automatic procedure (Schuppler 2011). An inde-
pendent test of this splitting procedure on the plosive seg-
ments in the SV-AF corpus showed a 63% agreement with 
the manually place boundaries. This agreement is in the 
range of what has been reported in the literature. Khasa-
nova et al. (2009), for instance, reported that automatically 
and manually created burst labels coincided in 47% or 
the plosives in word-medial and in 97% of the plosives in 
word-initial position).

3  Study 1: improving acoustic parameters for AF 
classification

3.1  Four sets of acoustic parameters

Previous research investigated different methods to param-
eterize the acoustic waveforms and different window 
lengths, and shifts for the detection of specific acoustic 
events. For multi-value AF classification tasks, however, 
mostly MFCCs have been used (e.g., Chang et  al. 2005; 
King and Taylor 2000, but see Scharenborg and Cooke 
2008) for a comparison of different acoustic parameters for 
AF classification). Good results are obtained with the con-
ventional 25 ms window shifted with 10 ms for fairly sta-
tionary features. In order to accurately detect short acoustic 
events such as bursts in plosives, however, shorter window 
lengths and shifts are needed. For instance, Salomon et al. 
(2004) used 5 ms windows shifted with 1ms steps. A 2.5 
ms step size rather than the conventional 10 ms has also 
shown good results in combination with long 25 ms win-
dows for the detection of nasals (Pruthi and Espy-Wilson 
2004).

Our goal is to capture both very short (e.g., bursts) and 
longer acoustic events (e.g., nasality) both in read speech 
(TIMIT) and in conversational speech (STP). To that end, 
we investigate MFCCs derived using two different window 
lengths and shifts and their combinations:

• Baseline: window size: 25 ms; window shift: 10 ms
• Short: window size: 5 ms; window shift: 2.5 ms
• Long: window size: 25 ms; window shift: 2.5 ms
• Both: the short and long MFCCs are concatenated

For each of these types of acoustic parameters, the input 
speech is first divided into overlapping Hamming windows 
of 25 or 5 ms with a 10 or 2.5 ms shift and a pre-emphasis 
factor of 0.97. For the 25 ms windows, a filter bank of 22 
triangular filters equally spaced on the Mel-scale was used 
to calculate 13 MFCCs (C0–C12) and their first and second 
order derivatives (39 parameters). For the 5 ms windows, 
a filter bank of seven triangular filters was used and seven 
MFCCs (C0–C6) and their first and second order deriva-
tives were calculated (21 parameters). Cepstral mean sub-
traction (CMS) was applied to all parameters.

The SVM classifiers use a temporal context of 30 
ms at both sides of the frame to be classified. For Base-
line, three frames (30 ms) to the left and right of each 
frame were concatenated, resulting in MFCC vectors of 
length 7×39 = 273. For the Short, Long, and Both classi-
fiers also three frames were concatenated, but taking only 
every fourth frame, in order to cover the same temporal 
context as in Baseline. This resulted in feature vectors of 
length 273 for Long and 147 for Short. For Both, feature 
vectors of long and short windows with the same midpoint 
were concatenated, resulting in feature vectors of length 
273 + 147 = 420.

3.2  AF classification of TIMIT

3.2.1  Results

For the optimization of the C and � parameters, two inde-
pendent subsets of 5000 feature vectors (one for train-
ing and one for testing) were randomly extracted from the 
original TIMIT training set. An additional 100K vectors 
were extracted from randomly chosen files from the TIMIT 
training set for training the SVM classifiers with the Base-
line parameters. For the Short, Long, and Both parameters, 
the same audio data were used, resulting in 400K vectors 
(the shift is four times smaller). The resulting classifiers 
were tested on 294,984 10 ms frames and 1,173,665 2.5 ms 
frames from the TIMIT test set.

Table  3 shows the AF classification accuracy in terms 
of percentage correctly classified frames on the TIMIT test 
material. The diagonals additionally show the 95% confi-
dence intervals. F-scores are calculated as the harmonic 
mean of precision and recall and shown for each class.

The average frame level accuracies are: 83.4% for 
Baseline, 85.3% for Short, 87.0% for Long, and 87.7% 
for Both. Comparing our three sets of acoustic parameters 
with the baseline shows that the Both classifier performed 
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best for ‘burst+release’ (Bur): the F-score increased 
from 0.73 for Baseline to 0.82 for Both. This was to be 
expected, since bursts are events of very short duration. 
The Short and Both classifiers perform best for ‘fricative’ 
(Fric). Most importantly, the Both classifier seems to 
be able to combine the classification power of the Short 
and Long classifiers, its F-score increased from 0.84 for 
the Baseline acoustic set to 0.88, an overall improve-
ment in F-score of 0.04. The Both acoustic parameter set 
thus seems to be best able to capture both very short and 
longer acoustic events.

3.2.2  Discussion

Comparing the classification accuracies with those reported 
in the literature is not straightforward since, as indicated in 
Sect.  2.3, different authors used slightly different sets of 
manner features. For example, Scharenborg et  al. (2007) 
used the feature values ‘vowel’, which we did not con-
sider, and they modeled ‘plosives’ as a whole. Including 
the performance for ‘vowel’ classification, Scharenborg 
et al. (2007) obtained an average accuracy of 84%. In order 
to compare our results with those of Scharenborg et  al. 
(2007), we re-analyzed the data of that study and calculated 

Table 3  Frame-level confusion 
matrices for the AF classifiers 
trained on TIMIT and tested on 
TIMIT

Frame level accuracies for each AF are given in bold

Sil Liq Gli Nas Fric Bur Clo

BL
 Sil 93.2 ± 0.2 0.3 0.2 0.8 3.0 0.6 2.0
 Liq 0.4 89.0 ± 0.3 2.4 2.8 2.8 1.0 1.4
 Gli 0.8 12.8 77.0 ± 0.7 2.8 3.3 1.3 2.0
 Nas 1.6 2.4 0.6 86.3 ± 0.4 4.2 0.5 4.4
 Fric 2.7 1.1 0.4 1.6 89.5 ± 0.2 1.6 3.1
 Bur 2.8 2.9 0.6 1.9 12.8 65.2 ± 0.6 13.8
 Clo 4.3 0.9 0.3 3.5 4.9 2.4 83.6 ± 0.3
 F-score 0.93 0.88 0.81 0.84 0.88 0.73 0.83

Short
 Sil 92.5 ± 0.1 0.2 0.1 0.9 3.6 0.6 2.1
 Liq 0.6 89.1 ± 0.2 2.8 3.7 2.1 1.0 0.8
 Gli 0.6 13.8 78.1 ± 0.4 3.2 2.1 1.4 0.8
 Nas 1.7 2.7 0.8 87.6 ± 0.2 3.2 0.4 3.5
 Fric 3.0 0.8 0.4 2.0 88.5 ± 0.1 2.5 2.9
 Bur 2.5 1.5 0.5 0.8 11.6 76.4 ± 0.3 2.9
 Clo 4.9 0.6 0.2 3.2 4.1 2.1 84.8 ± 0.2
 F-score 0.92 0.89 0.81 0.85 0.88 0.80 0.85

Long
 Sil 93.3 ± 0.1 0.2 0.1 0.7 2.9 0.7 2.1
 Liq 0.5 90.3 ± 0.2 2.9 2.2 2.2 1.0 0.9
 Gli 0.8 9.8 83.1 ± 0.3 2.0 2.2 1.2 1.0
 Nas 1.7 1.8 0.7 89.0 ± 0.2 2.5 0.4 3.8
 Fric 2.4 0.8 0.4 1.3 90.1 ± 0.1 2.3 2.7
 Bur 2.4 1.4 0.5 0.5 10.3 78.0 ± 0.3 7.0
 Clo 4.3 0.7 0.2 3.0 4.0 2.7 85.1 ± 0.2
 F-score 0.93 0.90 0.85 0.88 0.90 0.81 0.85

Both
 Sil 93.5 ± 0.1 0.2 0.1 0.7 2.6 0.7 2.2
 Liq 0.5 91.0 ± 0.2 2.5 2.0 2.0 1.0 0.9
 Gli 0.6 9.3 84.2 ± 0.3 1.8 1.9 1.3 0.9
 Nas 1.6 1.7 0.7 89.4 ± 0.2 2.3 0.3 3.9
 Fric 2.3 0.7 0.3 1.2 90.8 ± 0.1 2.2 2.5
 Bur 2.0 1.3 0.5 0.6 8.9 79.6 ± 0.2 7.0
 Clo 4.1 0.6 0.2 2.9 3.8 2.8 85.6 ± 0.2
 F-score 0.93 0.91 0.86 0.88 0.90 0.82 0.86
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average classification accuracies over all other manner val-
ues, which gave accuracies between 66.8 and 75.6% for the 
different classification methods they used. Our classifica-
tion accuracy of 87.7% thus outperforms Scharenborg et al. 
(2007).

Chang et  al. (2005) used a similar set of manner val-
ues as Scharenborg et  al. (2007), but they did not study 
‘approximant’ and ‘retroflex’ consonants. Their base-
line system is different from ours: Classifiers are trained 
on NTIMIT (Jankowski et  al. 1990), which has telephone 
bandwith quality, and the acoustic frames have a length of 
25 ms and are shifted in 10 ms steps. Their average classifi-
cation accuracies for the manner values are lower than ours: 
70% excluding ‘vowel’, 75% including ‘vowel’ (Chang 
et al. 2005). One reason for their lower performance accu-
racy might also be the lower quality of the recordings used 
(NTIMIT vs. TIMIT).

 Salomon et al. (2004) developed a set of temporal meas-
ures for increasing the time resolution for manner classifi-
cation. They distinguished the values ‘sonorant’, ‘fricative’, 
‘stop’, and ‘silence’. They observed that the use of only the 
temporal measures yielded the same overall accuracy as 
the use of MFCCs (70.1%, using 20 ms windows and 5 ms 
shift for all parameters). For the combination of MFCCs 
and the temporal measures they reported an accuracy of 
74.8%, which is lower than our accuracy of 87.7% for Both. 
The relative improvement (4.7%) they report is compara-
ble to the improvement we obtained (4.3% in accuracy or 
0.04 in F-scores). In conclusion, our combination of acous-
tic parameters derived from short an long windows show 

satisfactory results for TIMIT, both in comparison with our 
baseline parameters and with previous results for multi-
value classification experiments from the literature.

3.3  AF classification of Switchboard

3.3.1  Results

We subsequently evaluated the best performing acoustic 
parameter sets on conversational speech. Following the 
procedure for read speech, we trained classifiers with the 
acoustic parameter set (Baseline and Both) on the com-
plete STP material. Classifiers were trained using 50K 
frames with the Baseline feature (10 ms shift) and the cor-
responding 200K frames for Both (2.5 ms shift). In order 
to compare the results with those obtained on TIMIT, the 
classifiers were tested on automatically created AF labeled 
material.

Table  4 shows the frame-level classification accura-
cies and the performances in terms of F-scores obtained 
on Switchboard. Our results show that for conversational 
speech, our set of acoustic parameters Both did not yield an 
improvement in comparison to Baseline (i.e., F = 0.65 vs. 
F = 0.66). Thus, whereas on TIMIT the F-score improve-
ment was 0.04, for Switchboard there was no improve-
ment at all. Moreover, the additional temporal information 
did not yield the rise in performance for the short events 
which was observed for TIMIT. The F-score improvement 
in performance for ‘burst+release’ was 0.04 for Switch-
board against 0.09 for TIMIT. Apparently, improvements 

Table 4  Frame-level confusion 
matrices for the AF classifiers 
trained on the conversational 
speech of STP and tested on the 
automatically derived AF labels 
from SV-AF

Frame level accuracies for each AF are given in bold

Sil Liq Gli Nas Fric Bur Clo

BL
 Sil 91.3 ± 0.6 0.4 0.2 1.0 5.0 0.7 1.5
 Liq 6.9 73.0 ± 3.4 6.9 6.3 5.1 0.2 1.6
 Gli 2.8 16.8 64.0 ± 3.8 10.2 5.2 0.7 0.2
 Nas 6.9 6.1 4.4 77.7 ± 2.8 4.5 0.1 0.4
 Fric 13.7 1.7 1.0 7.2 68.4 ± 2.2 4.9 3.1
 Bur 25.6 2.2 1.6 3.5 25.0 34.8 ± 4.5 0.7
 Clo 16.2 0.6 0.8 8.4 21.0 2.8 50.3 ± 2.9
 F-score 0.91 0.70 0.69 0.68 0.63 0.41 0.60

Both
 Sil 87.4 ± 0.3 1.2 0.9 2.1 5.2 1.1 2.1
 Liq 8.8 77.9 ± 1.8 4.4 3.5 3.5 0.4 1.5
 Gli 2.3 12.6 67.1 ± 2.3 11.1 6.2 0.8 0.0
 Nas 7.9 6.8 3.6 74.7 ± 1.5 5.0 1.1 1.0
 Fric 13.4 1.1 1.4 5.4 70.9 ± 1.2 4.4 3.3
 Bur 28.9 2.0 1.0 3.4 19.7 36.2 ± 1.8 8.9
 Clo 18.9 1.3 0.6 7.0 18.8 6.3 47.1 ± 1.5
 F-score 0.89 0.71 0.69 0.66 0.65 0.37 0.55
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obtained for read speech do not yield similar improvements 
in conversational speech.

3.3.2  Discussion

In general, we observed that classification performance 
for Switchboard is substantially worse (F = 0.66) than for 
TIMIT (F = 0.88). This is in line with earlier results by 
Pruthi and Espy-Wilson (2007) for detecting vowel nasal-
ization. For SVMs with RBF kernels they report chance-
normalized accuracies of 77.9% for TIMIT and 69.6% 
for Switchboard. The best results on Switchboard were 
achieved by Frankel et al. (2007a), who parameterized the 
acoustic waveforms with 12 PLP cepstra plus energy every 
10 ms with 25 ms Hamming windows and trained MLP 
classifiers. For the classification of degree (having the val-
ues ‘silence’, ‘vowel’, ‘fricative’, ‘closure’, ‘approximant’, 
and ‘flap’), they report a frame-level accuracy of 77.8% 
(34.3% chance), which is higher than our results for con-
versational speech (F-score = 0.66). Our results compare 
favorably to those recently reported by Manjunath and 
Sreenivasa Rao (2016) for conversational speech (56.25% 
accuracy with HMMs and 65.65% with FFNNs).

It is not surprising that in the present experiment, AF 
classification is overall worse for conversational speech 
than for read speech. Conversational speech shows more 
variability than read speech, because, among other things, 
words can be strongly reduced [e.g., see for American Eng-
lish (Johnson 2004)] and articulatory gestures may heav-
ily overlap. This may result in more labeling errors intro-
duced with the canonical mapping from phone labels to AF 
labels for conversational speech than for read speech. This 
hypothesis is investigated in the following subsection. It 
is, however, surprising that the improvements of our set of 
acoustic parameters obtained for read speech do not result 
in similar improvements for conversational speech. This 
result is one of the main findings of this paper: Not only the 
overall classification performance in conversational speech 
is lower, but also the relative improvement.

3.4  Impact of inaccurate labeling

In order to estimate the impact of the accuracy of the labe-
ling of the frames on the performance scores on the test set, 
the classifiers trained on the conversational speech of STP 
from the previous subsection were tested on the 53,115 
frames of manual-SV-AF, which supposedly contains more 
accurate AF labels since these labels are created manually 
and do not change synchronously at phone boundaries. The 
results show a substantial improvement of the Both classi-
fier compared to the Baseline classifier (F-scores: 0.60 for 
Baseline vs. 0.65 for Both); Thus, whereas when tested on 

the automatically generated labels of STP the improvement 
from Both over Baseline was only 0.01, on the manually 
created labels we reach an improvement of 0.05. The over-
all performance, however, still is the same as on the auto-
matically created labels (F = 0.65).

In order to estimate the impact of labeling accuracy in 
the training set, we estimated the number of erroneous 
labels in the training set on the basis of the disagreement 
in frame labels between automatic-SV-AF and manual-SV-
AF. We computed the number of speech samples where the 
labeling in automatic-SV-AF differed from that of manual-
SV-AF. Overall, we observed a disagreement for 19.9% of 
the frames. Of these, 29.4% of the samples carrying the 
label ’liquid’ (Liq) in the automatic-SV-AF set did not 
contain a liquid according to the human labelers. Extrap-
olating these results suggests that a substantial part of the 
labels used for training do not actually represent the puta-
tive acoustic feature. The question that arises is whether 
AF classifiers trained on better labeled frames will yield 
improved results for conversational speech. This is investi-
gated in the next section (Table 5).

3.5  Impact of sound quality

We were aware of the double mismatch between TIMIT 
and Switchboard: TIMIT is read speech, while Switchboard 
is conversational speech; and TIMIT was recorded in noise-
free condition, whereas Switchboard was recorded over 
the landline telephone network. In order to be able to esti-
mate, whether the decrease in classification performance in 
Switchboard is really mainly due to the speaking style, and 
not due to the lower sound condition, we performed a clas-
sification experiment with the Both AF classifier trained 
on TIMIT and tested on manual–SV-AF. The results (c.f. 
Table 6) show that both the F-scores and the overall accura-
cies of this classifier are much lower than in the matched 
condition (i.e., tested on on TIMIT 85.1 vs. 52.2%).

Part of the decrease in classification performance may be 
due to mismatch in the recording conditions. To investigate 
this hypothesis we analyzed the distributions of the MFCC 
coefficients C0 and C1. Figure 1 show the distributions cal-
culated from 20,772 frames for each set. It can be seen that 
cepstral mean normalization does not compensate for all 
differences in recording conditions. The distance between 
the first and second hump in the C0 distribution illustrates 
that there is a substantial difference in signal to noise ratio 
(SNR) between the TIMIT and the SV-AF set. Also, the 
difference in shape of the C1 distribution suggests that 
there remains a considerable mismatch between the range 
of spectral slopes in the different data sets. Another indica-
tor for the impact of the recording conditions on the classi-
fication accuracy is that silence and closures are more often 
(incorrectly) classified as fricative in the manual-SV-AF 
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test material than in the TIMIT test. One can observe that 
there is a much stronger bias towards classifying frames as 
‘fricative’ in manual-SV-PF than in the TIMIT material: 
the F-score for ‘fricative’ is much lower than one might 
expect from the classification accuracy.

From Tables 4 and 5 it can be seen that the frame-level 
classification results for a classifier trained on STP yields 
an F-score of 0.65 in the matched case (i.e., when tested 
on automatic-SV-AF) and the mismatched-case (i.e., man-
ual–SV-AF). The TIMIT classifier tested in the matched 
case (i.e., on TIMIT) yielded a much higher F-score of 0.88. 
However, classifiers trained on TIMIT and tested on man-
ual-SV-APF (the mismatched case) yielded a much lower 
F-score of 0.64, which is however only slightly lower than 
the STP-trained classifiers. There are two ways in which 
one can look at these numbers. On the one hand, we see 
a large detrimental effect of the mismatch between record-
ing conditions and speaking style between training and test. 

But at the same time we also see an equally large difference 
between matched results on TIMIT and on Switchboard. 
Although the acoustic conditions in Switchboard are likely 
to affect the classification performance somewhat, we still 
think that speech style is much more important.

4  Study 2: the elitist approach for AF 
classification

Chang et al. (2005) proposed the so-called elitist approach 
as a solution for dealing with mislabeled frames in the 
training data. In this approach, initial models are trained on 
the complete training set and each frame is assigned a prob-
ability for being correctly classified.

For training the final model, only those frames are 
selected whose probability for correct classification is 
above a predefined threshold. We follow their procedure. 

Table 5  Frame-level confusion 
matrices for the AF classifiers 
trained on the conversational 
speech of STP and tested on the 
manual AF labels of SV-AF

Frame level accuracies for each AF are given in bold

Sil Liq Gli Nas Fric Bur Clo

BL
 Sil 92.3 ± 0.6 0.5 0.2 1.2 4.3 0.5 1.1
 Liq 5.1 73.1 ± 3.5 5.9 6.7 6.8 0.2 2.2
 Gli 5.8 28.3 45.6 ± 4.0 12.7 5.6 1.3 0.7
 Nas 6.8 5.1 5.4 73.5 ± 3.0 7.9 0.6 0.8
 Fric 20.6 1.7 1.4 7.3 61.9 ± 2.3 3.8 3.3
 Bur 11.4 1.9 0.2 4.4 35.0 36.4 ± 4.6 10.7
 Clo 16.4 3.3 1.3 1.2 26.1 5.7 35.2 ± 2.8
 F-score 0.91 0.65 0.54 0.63 0.58 0.41 0.46

Both
 Sil 91.0 ± 0.3 0.5 0.1 1.4 4.0 0.9 2.0
 Liq 8.4 75.9 ± 1.8 3.3 3.9 5.0 1.1 2.3
 Gli 0.6 23.5 50.7 ± 2.3 9.9 7.1 1.4 1.4
 Nas 9.7 6.7 3.6 73.3 ± 1.5 4.8 1.1 0.8
 Fric 19.6 1.3 1.2 5.0 60.4 ± 1.2 7.3 5.2
 Bur 12.2 1.3 0.1 0.9 23.1 55.4 ± 1.8 7.0
 Clo 16.6 3.1 0.8 9.9 17.6 6.9 45.1 ± 1.5
 F-score 0.91 0.67 0.60 0.68 0.57 0.57 0.52

Table 6  Confusion matrices 
for the AF classifier trained on 
TIMIT and tested on manual–
SV-AF

Frame level accuracies for each AF are given in bold

Both Sil Liq Gli Nas Fric Bur Clo

Sil 53.0 ± 0.6 0.7 0.1 1.6 37.9 2.6 4.1
Liq 0.6 67.7 ± 1.8 4.7 8.6 13.3 3.6 1.5
Gli 1.4 39.0 23.0 ± 1.7 13.6 14.7 4.5 3.8
Nas 2.1 11.2 3.0 52.7 ± 1.7 26.4 1.5 3.0
Fric 4.3 2.7 0.5 4.9 73.8 ± 1.1 12.2 1.7
Bur 1.2 2.3 0.2 1.9 36.3 55.2 ± 2.4 3.0
Clo 10.3 4.1 0.3 9.7 41.2 3.3 31.1 ± 1.4
F-score 0.68 0.54 0.33 0.52 0.32 0.41 0.37
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First an SVM classifier with the Both acoustic parameters 
is trained on the 200K frames of the STP data set. Sub-
sequently, this classifier is used to predict the posterior 
probabilities for each frame of the STP training material. 
Finally, classifiers are trained only on those frames where 
the probability of the winning class is larger than a certain 
threshold. We compare the classification performance of 
five different threshold settings: 0.95, 0.90, 0.70, 0.50, and 
0.00 (original training set).

4.1  Results

When comparing all different threshold settings (see 
Table  7), the highest average overall accuracy (64.5%) is 
obtained with the original training set. Thus, there is no 
increase in overall classification accuracy when training 
the classifiers using a subset of supposedly better labeled 
frames. For individual AF values, however, improvements 
over the baseline setting can be observed. Here, different 
threshold settings are optimal. Whereas ‘silence’, ‘glide’, 

‘nasal’, and ‘burs’t do not profit from training on a selection 
of the best labeled frames, ‘liquid’, ‘fricative’, and ‘closure’ 
do profit from data selection. For the feature values of the 
first group it holds that they are likely to spread, so that 
including more frames may be profitable. For the second 
group it may be the other way around, also because these 
are often short-lived.

4.2  Discussion

Our results on conversational speech do not replicate 
the findings of Chang et  al. (2005), who achieved an 8% 
absolute improvement in classification accuracy on read 
speech(NTIMIT) when training on only the best labeled 
frames. In comparing these experiments, the recording 
quality is not a possible source for the difference in gain 
due to data selection, since both NTIMIT and Switchboard 
is telephone speech. Although in Chang et  al. (2005) a 
slightly different AF set was used, we think that the dif-
ference in performance is mainly due to the difference in 

Fig. 1  Distribution of the C0-coefficient (a) and the C1-coefficient (b) for the TIMIT test set (dashed line) the TIMIT train set (dotted line) and 
manual-SV-AF (solid line)

Table 7  Classification results 
for the elitist approach: frame-
level class-dependent F-scores 
and overall accuracy (Acc.) for 
the AF classifiers trained on 
STP and tested on SV-AF

Frame level accuracies for each AF are given in bold

Threshold Sil Liq Gli Nas Fri Bur Clo Acc. #SV

0.00 0.91 0.67 0.60 0.68 0.57 0.57 0.52 64.5 105,325
0.50 0.91 0.68 0.60 0.66 0.59 0.49 0.53 64.1 90,646
0.70 0.90 0.66 0.59 0.66 0.59 0.49 0.53 63.9 84,912
0.90 0.91 0.67 0.60 0.65 0.59 0.48 0.53 64.1 71,034
0.95 0.91 0.66 0.60 0.64 0.58 0.47 0.54 64.2 51,161
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speech style, i.e., read speech (NTIMIT) versus conver-
sational speech (Switchboard). In conversational speech, 
there are less frames than in carefully read speech that can 
be unambiguously assigned to one particular AF value, so 
training models on representative frames improves clas-
sification accuracy less in conversational speech than in 
read speech. As a result there may be too few unambigu-
ous frames left in conversational speech (due to highly 
overlapping sounds and reduced segments) for training a 
reliable classifier. In addition, Chang et al. (2005) applied 
data selection also on the test set; thus, they optimized not 
only the frames on which classifiers were trained, but they 
also selected ’representative’ frames for the evaluation of 
the classifiers. Selecting an optimal subset for testing the 
classifiers certainly raises the classification accuracy; how-
ever, it is questionable whether these classifiers also per-
form better.

From the rightmost column in Table 7 it can be seen that 
the number of support vectors decreases as the selection 
of the training samples becomes more strict. Thus, selec-
tion does have an effect, however this seems to surface in 
the form of more compact classifiers rather than in higher 
classification accuracy. This finding suggests that the clas-
sification task in the conversational speech in Switchboard 
is inherently very difficult. Finally, we need to mention 
another possible source for the lack of improvement due 
to the data selection approach: by filtering the training set, 
the number of frames available for training is decreased. 
Summing up, even though data selection showed to be a 
well working approach on the large read speech data from 
TIMIT, it does not yield similar improvements on the con-
versational Switchboard data.

5  General discussion

The main aim of this paper was to show that it can not be 
assumed that methods yielding improved classification 
results on read speech also yield a similarly high improve-
ment in spontaneous, conversational speech. Whereas 
most previous studies assumed that the classification per-
formance in conversational speech would simply be over-
all lower than in read speech, we showed on the basis of 
two studies that it is not only lower, but that improvements 
reached on read speech do not transfer to other speaking 
styles. The aim of the first study was to find a set of acous-
tic parameters with a high time and a high frequency reso-
lution. Classifiers with different sets of acoustic parameters 
were tested on read (TIMIT) and conversational speech 
(Switchboard). In both cases, the AF labels were obtained 
through an automatic mapping from phone to AF labels. 
The results showed that combining MFCCs derived from 
a long window of 25 ms and from a short window of 5 ms 

both shifted with 2.5 ms steps (F = 0.88) outperformed a 
baseline system where the MFCCs were derived from a 
window of 25 ms shifted with 10 ms (F = 0.84) for read 
speech. For conversational speech, however, the overall 
performance dropped to F = 0.66 for the Baseline system 
and, importantly, there was no gain in performance for our 
acoustic parameters (Both: F = 0.65) over Baseline.

The aim of the second study was to test whether a data 
selection approach for creating the training material is an 
equally powerful method with conversational speech as 
with read speech material. Previous work using this elit-
ist approach by Chang et al. (2005) showed a performance 
improvement of 8% for read speech (NTIMIT). Our results 
on conversational speech (Switchboard), however, did not 
show such an improvement in overall classification perfor-
mance when only the best-labeled frames were selected for 
training; only a small improvement of 2% was found for 
fricatives and closures and of 1% for liquids. In order to 
interpret these results, we need to look at the distribution 
of the classification confidence of the frames within a seg-
ment. In read speech, the highest confidence is in the mid-
dle of the phone and the lowest confidence is at the bounda-
ries (Schuppler et al. 2009b). Thus, with the elitist approach 
mainly frames close to the phone-boundaries are removed 
from the training material. In conversational speech, how-
ever, where segment durations are much shorter and the 
overlap of features is higher, frames are also removed from 
the center of the phone. The question arises whether in con-
versational speech, unambiguous frames, i.e., frames with 
a single manner value, exist at all and whether it is at all 
possible to train classifiers for a single manner value using 
conversational speech as training material. In the future, 
one might train classifiers on read speech (where frames of 
well defined class membership exist) and test these classifi-
ers on conversational speech. In doing so, however, test and 
training material will not be matching and thus again not 
result in a classification improvement.

Performance drops when going from read speech 
(TIMIT) to conversational speech (Switchboard) have also 
been reported for ASR, where word accuracies for TIMIT 
typically exceed 95%, while for Switchboard they tend to 
be in the 50–70% range (Godfrey et  al. 1992). This diffi-
culty is also reflected in the inter-human labeling disagree-
ment of phonetic transcriptions (5.6% for read speech vs. 
21.2% for conversational speech; Kipp et  al. 1996, 1997). 
Hence, it is not surprising that our classification perfor-
mance is overall worse for conversational speech than for 
read speech. Whereas such overall performance drops from 
read to conversational speech have previously been shown 
(e.g., Manjunath and Sreenivasa Rao 2016), it has not pre-
viously been shown that relative performance improve-
ments (here: due to our set of acoustic parameters and due 
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to the elitist approach) does not transfer from read to con-
versational speech.

We suggest that one reason for this lack of transfer is 
that a segmentation in terms of phones, which is the basis 
for the automatically created AF labels, is not equally suit-
able for the two speech styles. As observed above, due to 
the high pronunciation variability in conversational speech 
(e.g., Johnson 2004; Kohler 2001), segmenting speech in 
terms of phones is extremely difficult. Therefore, the accu-
racy of the phonetic segmentation of read speech is surely 
higher than that of conversational speech. Consequently, 
the canonical mapping from phone labels to AF labels 
may still result in relatively good training material for read 
speech, while it does not for conversational speech. These 
problems with phone to AF label mappings are especially 
apparent for features that are inherently difficult to define. 
For example, confusions of glides and liquids are much 
more frequent in conversational than in read speech (22.8 
vs. 8.6%). An explanation may be that in American Eng-
lish word final /l/ tends to be velarized, making the sec-
ond formant similar to that of /w/, which we label a glide 
(Espy-Wilson 1992). Thus, some confusions are not due 
to low performance of the classifier, but rather and more 
fundamentally to inextricable overlap between the manner 
features in conversational speech and the resulting errors 
that are made when automatically converting transcription 
symbols to AF values. More insights will be found not until 
a much larger spontaneous speech corpus with reliable AF 
transcriptions becomes available (i.e., currently only 78 
utterances from Switchboard are transcribed manually on 
the AF level).

6  Conclusions

To sum up, the work presented in this paper has extended 
previous research on AF classification with an emphasis on 
conversational speech. We have presented a set of acous-
tic parameters with a high frequency and time resolution, 
which reached an improvement of the performance of 4% 
of the classifiers when tested and trained on TIMIT. On the 
conversational telephone speech in Switchboard, the new 
set of acoustic parameters only yielded an improvement 
compared to the baseline parameters when using manu-
ally labeled testing material. In general, in all Switchboard 
experiments, we have observed lower performances than in 
TIMIT experiments. Therefore, it appears that the overlap 
between the acoustic parameters corresponding to AFs in 
spontaneous speech is much larger than in carefully read 
speech. This acoustic overlap is due to a larger degree of 
articulatory variability in spontaneous speech which is not 
captured by the phone-level segmentations, which were the 
starting point for the experiment.

In speech science, methods are mostly developed and 
improved using read speech corpora (e.g., TIMIT) and only 
afterwards they are adapted to conversational speech. Simi-
larly, in image recognition methods are mostly developed 
and improved on some standard databases (e.g., MNIST) 
without having the application characteristics in mind 
from the beginning. Our studies suggest that the nature of 
the application data needs to be taken into account already 
when defining the concepts (here: starting point of a seg-
mentation in terms of phones) and the basic assumptions 
of a method. Applying concepts and methods that were 
designed for a different speech style to the application data 
may fail due to the inherent differences between read and 
conversational speech.
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