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Abstract
Property-based testing is well suited for web-service applications, which was already shown in various case studies. For
example, it has been demonstrated that JSON schemas can be used to automatically derive test case generators for web forms.
In this work, we present a test case generation approach for a rule engine-driven web-service application. Business-rule
models serve us as input for property-based testing. We parse these models to automatically derive generators for sequences
of web-service requests together with their required form data. Property-based testing is mostly applied in the context of
functional programming. Here, we define our properties in an object-oriented style in C# and its tool FsCheck. We apply our
method to the business-rule models of an industrial web-service application in the automotive domain.

Keywords Model-based testing · Test case generation · Property-based testing · QuickCheck · FsCheck · Web services ·
Business-rule models

1 Introduction

Property-based testing (PBT) is a testing technique that
tries to falsify a given property by generating random input
data and verifying the expected behaviour [8]. Properties
can range from simple algebraic equations to complex state
machine models. On the basis of the taxonomy of Utting
et al. [31], we can characterise the models that are sup-
ported by PBT as follows. PBT can handle various forms
of input–output models that have a transition-based pre-post
modelling paradigm. It supports timed or untimed model
characteristics and the models can be non-deterministic. The
test case generation technology is based on random genera-
tors, but next to simple randomness stochastic distributions
may be applied to guide the test-selection process. The test
execution is offline, which means that a test case is first gen-
erated and then it is executed.
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Like in all model-based testing techniques, the proper-
ties serve as a source for test case generation as well as test
oracles. PBT is a well-known testing practice in functional
programming [3,8,9], but nowadayswe see a growth of appli-
cations outside its traditional domain. Examples include the
automated testing of automotive software [4,30], cloud com-
puting [16] and web services [11,18]. In this work, we will
focus on the latter.

Many web services store configurations in XML files.
Some web services also store workflow details and user-
access rules in XML business-rule models [25,27]. These
XML definitions can be seen as an abstract specification of
the service behaviour which may serve as a basis to verify
whether the service complies with this specified behaviour
[21]. We present an automated approach that uses these
business-rule models to derive FsCheck1 models and gen-
erators that are applied to generate command sequences with
random input data. FsCheck is a PBT tool for .NET which
supports the definition of properties and generators in both a
functional style with the programming language F# and an
object-oriented style with C#. We opted for C#, because it is
the implementation language of our industrial case study and
because the system-under-test (SUT) has an object-oriented

1 https://fscheck.github.io/FsCheck
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architecture. However, the testing approach is general and
can be ported to any PBT framework.

The process of our testing approach is illustrated in Fig. 1.
The first step is to parse and translate the XML business-
rule files to input models for FsCheck. FsCheck supports all
kinds of models that have states, transitions, postconditions
and optionally preconditions, but in our case themodels were
extended finite state machines (EFSMs) [6]. These EFSMs
are used by the specification builder to create generators and
FsCheck interface implementations according to the parsed
model. FsCheck transforms these interface implementations
into a property to be tested via randomly generated command
sequences. This property requires that the state of themodel is
equal to the state of the SUT after each transition (command).
As soon as a command sequence has been generated, it is
executed on the SUT as a test case. When the property holds
throughout the execution, then the test case was successful
resulting in a pass-verdict, otherwise a fail-verdict with a
counterexample is produced. The number of test cases can
be specified by the user, but if a property fails, then no further
test cases are executed.

For our use case, a transition is not a simple action. It
represents the opening of a page of a graphical user interface,
the entering of data for form fields and saving the page. In the
test case generator, the transitions are realised as command
classes with attributes representing the associated form data.
Our target is to test the underlying requests of the transitions,
which are necessary for the interaction with the web-service
application.

1.1 Related work

PBT was already applied to a number of web-service appli-
cations, because it is a good way to verify that a variety
of inputs are supported without problems. The most similar
approaches are described below.

López et al. presented a domain-specific language (DSL)
that allows non-experts to perform an automatic test data
generation with QuickCheck [20]. The DSL reuses syntax
from theweb services description language (WSDL) in order
to generatewell-formedXML for the input ofweb services. It
supports constraints for different data types and combinators
that enable the application of constraints to all kinds of data.
The difference in this approach to our work is that it does
not consider state machines and that the generator definition
must be created manually.

Lampropoulos andSagonas [18] present a similar approach
that automatically reads the WSDL specification of a web
service and makes web-service calls with generated data.
The approach was implemented with the PBT tool PropEr
for Erlang. They support many data types, but only a few
constraints for the data. However, they show how addi-
tional constraints can be added manually. In contrast to our
work, they also do not use state machines to test the service
behaviour. They only test if the web-service result is valid
and whether no error occurred.

A similar approach was presented by Li et al. [19]. They
also show how WSDL can be used to automatically derive
generators, but the focus of their work is primarily on evolv-
ing web services. Their approach facilitates adapting the
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Fig. 1 Overview of the steps for the FsCheck command sequence generation for business-rule models
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test environment to a new version of a web service. This
is achieved by automatically generating refactoring scripts
for the evolving test code. The difference in our work is that
their models have to be created manually by the user and that
their focus lies on evolving web services.

Frelund et al. [12] present a library called Jsongen, which
can generate JSON data to test web services. Many web
services communicate via JSON because it is a convenient
language to encode data. It is similar to XML, but more com-
pact and more readable. Their library uses JSON schemas
with the structure of the data, data types and data constraints
to automatically create QuickCheck generators. They use
these QuickCheck generators to generate input data that ful-
fils the requirements of a web-service call. They apply their
library to test a small service, where users can post questions
and answers.

Earle et al. [10] extend this library so that the JSON
schema also includes an abstract specification of the service
behaviour. This specification is in the form of a finite state
machine (FSM). In the previous work, the FSM definition
had to be made separately to the JSON schema for the web-
service data. In this work, they show how it can be encoded
in the JSON schema. Their FSM is defined with hyperlinks,
which represent the events of the FSM and the states can
be chosen dynamically. In contrast to our work, the JSON
schema for the service has to be produced manually and it
cannot be used from the service components directly. Fur-
thermore, their approach was only evaluated with a small
test web service; they have not made a meaningful case
study.

The most similar work to ours was presented by Fran-
cisco et al. [11]. They show a framework that automatically
derives QuickCheck models from a WSDL description and
OCL semantic constraints. They show how the models can
be applied to automatically test both stateless and stateful
web services with generated input data. The WSDL descrip-
tion contains information about the required data, the data
structures, data types and the possible operations. The OCL
constraints define pre- and postconditions for the operations
and can be used to describe a state machine for the service
behaviour. The used service description is very similar to
our business-rule models, but their generators consider only
data types, while we also support constraints for the data,
like a minimum value for an integer. Another difference is
that the OCL semantic constraints are added manually. Our
business-rule models were already part of the web-service
architecture.

To the best of our knowledge, there is no other work
that uses inherent web-service components, respectively,
business-rule models to automatically derive PBT models.
Although there are some similar publications that show how
PBT models can be used for web services, they mostly rely
on a manual specification of a model separate to the web-

service implementation. In contrast to this, our approach can
be directly applied to a service component, which is also
used directly on the server-side to verify if a command is
permitted in the current state and if the attributes are fit-
ting to the model. Furthermore, the other approaches were
all implemented with functional programming languages.
Our approach uses C# to define the properties in an object-
oriented way.

1.2 Contribution

This article is an extension of our workshop paper on
property-based testing with business-rule models [2], where
we presented a new test case generation approach that uses
XML business-rule models in the form of EFSMs as input
for PBT.

Compared to our previous work, the novel contributions
of this work are the following. We formalise the underlying
concepts and algorithms of PBT with EFSMs and present
an extended description of the structure and architecture
of our web application under test. A detailed definition of
our rule-engine models is given with an abstract grammar.
Moreover, we show a formalisation of the translation of our
business-rule models to EFSM. Another contribution is the
extension of ourmodels to include the functionality to switch
between multiple objects and different rule-engine models
in order to test whether there are issues, when we con-
sider sets of objects. Furthermore, we present an additional
case study, which highlights the usefulness and applica-
bility of our approach by revealing several issues in the
SUT.

1.3 Structure

The rest of the paper is structured as follows. First, in Sect. 2,
we present ourweb application under test and define its corre-
sponding rule-engine system and rule-engine models. Then,
Sect. 3 will explain the basics of PBT and FsCheck. The
contributions start from Sect. 4, where we introduce PBT
with EFSMs and we present a small example of model-based
testing with FsCheck. Section 5 presents application-specific
extensions to ourmethod, like the translation of business-rule
models to EFSMs. Then, in Sect. 6 we describe details about
the structure and implementation of our approach. Section 7
shows the results of an evaluation, where we performed two
case studies for twomajormodules of an industrialweb appli-
cation. In Sect. 8, we discus the limitations and threads to
validity and potential future work. Finally, the work is con-
cluded in Sect. 9.
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Fig. 2 Client–server
architecture of the SUT. Source:
AVL
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2 Web application under test

2.1 System overview

Our approach was developed for a web-service application
which was provided by our industrial project partner AVL.2

This application originates from the automotive domain and
is called testfactory management suite (TFMS).

This system supports the process of instrumenting and
testing automotive power trains—a core business of AVL.
The web-service may capture test field data, activities,
resources, information and workflows. A variety of activities
can be realised with the system, like test definition, plan-
ning, preparation, execution, data management and analysis.
The system is a composition of a variety of components and
services that serve different purposes. For example, there is
a service for the authentication and a database for the data
management.

The architecture of the system is illustrated in Fig. 2. It can
be seen that it has a client–server architecture. A web server
called TFMS server is the central component of the system.
The server runs the Internet Information Services (IIS) from
Microsoft and provides several Simple Object Access Pro-
tocol (SOAP) web services, which are described with the
WSDL. It can use an internal service or the lightweight direc-
tory access protocol (LDAP) for the user authentication and
an Oracle database (DB) for the data storage. Furthermore,
additional enterprise systems can be connected to the server
via enterprise application integration (EAI). The system has
different types of clients, one for the test field to collect
test data, one office client for management activities and a

2 https://www.avl.com

scheduler to control the order of the test activities. The devel-
opment of the system started about 12 years ago by applying
a Capability Maturity Model Integration (CMMI) develop-
ment process, which is a form of a waterfall process. Now
there are about 15 people working on the development and
testing of the system applying the principles of the scaled
agile framework.

The web services on the server are driven by busi-
ness rules. A rule engine takes this business logic in the
form of business-rule models and interprets them on the
server. This defines the control-flow of the application. In
TFMS, the business-rule models are called Rule-Engine
Models (REM). The system consists of multiple modules
Module1, . . . ,Modulem. For example, there is a module for
test orders called Test Order Manager and one for test equip-
ment called Test Equipment Manager.

Modules can be seen as groups of functionality, and they
consist of multiple REMs. These REMs describe what forms
canbeopenedby auser andhow they look like, e.g.what form
fields they contain. Only one of the REMs can be active, and
it determines which forms can be opened by the user in the
current state of the system. Amodule can be defined as a pair
(REMs, activeREM)with REMs being a (non-empty) finite
set of rule-enginemodels and activeREM being an optionally
active REM that represents the activities that can be currently
executed by a user. Each REM is represented by an XML file
that can be edited via the TFMS server. Hence, the top level
structure of the system can be defined as follows:

Definition 1 (System)

System =df {Module1, . . . ,Modulem}
Module =df (REMs, activeREM)
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REMs =df {REM1, . . . ,REMn}

and activeREM ∈ REMs ∪ {Nil}.
An REM describes the behaviour of a class of objects of
the application domain. In order to enable the selection of
such objects and also to select the activeREM, we introduce
a switch mechanism, which will be explained in Sect. 5.2.
In the following, we take a closer look at these business-rule
models.

2.2 Business-rule models

Anapplicationmay need variousmodifications depending on
the customer or on the country of deployment. It is infeasible
to apply these modifications to the source code, because it
would require the development of different versions for each
customer. A business-rule engine is a good way to apply
the different modifications in the form of rules for differ-
ent deployments of an application. Business-rule engines are
used to integrate these rules in the business logic. They are
often combined with business-rule management systems that
can be used to store, load and easily modify the rules. There
are many frameworks, architectures or systems for web ser-
vices and applications in general that provide business-rule
management functionality [14,23,28].

Most of them only differ by the information that can be
encoded in the rules. For example, business-rule engines
can store constraints, conditions, actions and other business
process semantics. Even workflow details can be included,
although there is a separate technology, called workflow
engine or also business processmanagement system [1,5,26].
The major difference is that workflows/processes define the
order or sequence of tasks (actions/operations) and business
rules describe conditions and resulting actions.

The web-service application of our case study has a cus-
tom implementation of a rule management system. This
custom implementation was made, because there were not
many existing approaches at the time, when the applica-
tion was developed. Our business-rule models are similar
to other rule definitions. For example, the rule markup lan-
guage (RuleML) [33] could be applied to encode ourmodels.
Note that we talk about rules and not processes as our models
have the main purpose of storing costumer-specific business
logic, and they specify conditions for enabling certain tasks,
which can be seen as condition-action pairs. They do not
focus on the sequence of tasks and do not support the com-
position of services. Moreover, this term is used within the
given commercial system.

As mentioned, in this work business-rule models are also
called REMs and they are the primary basis for our approach.
AnREM is a statemachine defining the behaviour of a TFMS
Object Class. A TFMS Object Class describes objects of

our application domain, like incidents or test orders. Each of
these objects has a state, an identifier, attribute values/data,
and they are stored in the database of our SUT.

The abstract syntax of a rule-engine model can be defined
as follows. Its definition corresponds to the concrete XML
syntax, but is more concise.

Definition 2 (Rule-engine models)

REM=df rem(AllAttributes,AllTasks,AllStates)

AllAttributes=df Attr∗
Attr=df attr(Name,DataType,Parameter∗)

| attr(Name,DataType)
DataType=df Integer |Bool | String |Enum |Object

|Date |DateTime |Float |File |Reference
Parameter=df MinValue |MaxValue |EnumItem∗

|Query |Regex | . . .
AllTasks=df Task∗

Task=df task(id : Name, attributes : Name∗,
possibleNextStates : Name∗)

AllStates=df State∗
State=df state(id : Name, possibleTasks : Name∗)

For easier readability, we use record types to define compos-
ite data: an REM is defined as a record rem with three fields:
the set of AllAttributes, the set of AllTasks and the set of
AllStates. In fact, these sets are represented as sequences, e.g.
the sequence of all attributes Attr∗. An attribute comprises a
Name, aDataType and optionally a sequence of Parameters.
Parameters may further restrict a data type, like a maximum
value for an Integer. A more complex form of restriction of
an attribute may be realised via aQuery to a database, which
will be further explained in Sect. 6.1 (reference attributes).
This allows to implement a selection of existing values, e.g.
a dynamic drop-down menu in a web-form. Another restric-
tion can be applied with a regular expression (Regex), which
can limit a string attribute to only allow certain patterns.

Tasks represent the behaviour, i.e. the actions or events a
user may trigger. For readability, we define tasks with field
names. A task has an identifier, i.e. a Name, a number of
attributes to be entered into a form and the possible next
states a task may reach. If there is more than one possible
state, then it can be selected via an external choice by the user;
hence, this does not represent non-determinism. Finally, all
States define the complete state-space with each state being
associated with a sequence of tasks that can be triggered in
this state.

For illustration, Listing 1 shows a simplified version of the
XML file of an REM that was used as basis for the example
in Sect. 4.2. It can be seen that these models are structured
very similarly to our abstract syntax. The main components
are:
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1 <?xml version="1.0" encoding="utf−8"?>
2 <RuleEngineModel TfmsType="Incident">
3 <AllAttributes>
4 <StaticAttributeInfo Name="ParentFolder"
5 DataType="Reference">
6 <Query Criteria="Class=IncidentFolder">
7 <RequestedAttributes>
8 <string>∗</ string>
9 </RequestedAttributes>

10 </Query>
11 </ StaticAttributeInfo>
12 <StaticAttributeInfo Name="Description"
13 DataType="String" MaxValue="128" />
14 . . .
15 </AllAttributes>
16 <AllTasks>
17 <Task Name="IncidentCreateTask">
18 <DynamicAttributesInfo>
19 <Attribute Name="ParentFolder"
20 Enabled="true" Required="true" />
21 <Attribute Name="Description"
22 Enabled="true" Required="true" />
23 . . .
24 </DynamicAttributesInfo>
25 <PossibleNextStates>
26 <State Name="Submitted"
27 NoteRequired="false" />
28 </PossibleNextStates>
29 </Task>
30 . . .
31 </AllTasks>
32 <AllStates>
33 <State Name="Submitted">
34 <PossibleTasks>
35 <Task>IncidentEditTask</Task>
36 <Task>IncidentCloseTask</Task>
37 </PossibleTasks>
38 </ State>
39 . . .
40 </AllStates>
41 </RuleEngineModel>

Listing 1 Simplified XML representation of a rule-engine model

– attribute definitions with data types and constraints
(Lines 3 to 15)

– tasks with enabled and required attributes and possible
next states (Lines 16 to 31)

– states with possible tasks (Lines 32 to 40)

Optionally, the models may also include:

– scripts, which can be executed on certain events
– queries for the selections of specific objects
– reports for a good overview of the entered objects

Note that our REMs do not always represent the actual
behaviour of the web application under test. REMs deter-
mine what tasks are currently active and what attributes are
required. However, developers can overrule the constraints
that are included in REMs, when they implement a task. For
example, a task can lead to different target states that are not
specified in an REM. Moreover, a form of the SUT might
require additional attributes for special cases that are only
implemented in theSUT, but not contained inREMs. Itmakes
sense to search for such cases where REMs are overruled by
the implementation in order to find out, if this behaviour is
intentional or was introduced by mistake. Moreover, manual

adjustments to the test models had to be made so that this
deviations are not found repeatedly.

3 Property-based testing

3.1 Overview

Property-based testing (PBT) is a random testing technique
that evaluates a system by verifying a given property. A prop-
erty is a high-level specification of behaviour that should hold
for a range of data points. For example, a propertymight state
that a function should have a certain expected behaviour. A
test for this property is successful, when the function runs
through as expected, otherwise a counterexample is returned.
Simple properties canbe expressed as functionswithBoolean
return values that should be truewhen the property is fulfilled.
These functions should work for any input values; hence, a
high number of random inputs are generated for the param-
eters. Another important aspect of PBT is shrinking, which
is used to find a similar simpler counterexample, when a
property fails. In order to shrink a counterexample, a PBT
tool searches for smaller failing counterexamples. The search
method can be specified individually for different data types
[15,24,29].

A simple example of an algebraic property is that the
reverse of the reverse of a list must be equal to the origi-
nal list:

∀xs ∈ List[T ] : reverse(reverse(xs)) = xs

A PBT tool will invoke its built-in generator for Lists and
generate a series of random lists xs, execute the reverse
function and evaluate the property. A tester may extend
or replace the basic generators with special-purpose gener-
ators, e.g. generating extremely long lists. Generators are
type based and provide a sample function for the given
type. In the simple case, they can be described as follows:
AGen =df gen(sample : A), where A is the type of the
generator, which provides a sample function that returns an
instance of this type. For nested data types, generators take
other generators as arguments. For example, a generator for
List[T ] needs a generator for element values of type T .

PBT constitutes a flexible and scalable model-based test-
ing technique because it is random testing, and it has been
shown that it generates a large number of tests in reason-
able time [32]. The first PBT tool was QuickCheck [8] for
Haskell. There aremany other tools that are based on the con-
cepts of QuickCheck, e.g. ScalaCheck [22] or Hypothesis3

for Python. For our approach, we work with FsCheck.

3 https://pypi.python.org/pypi/hypothesis
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3.2 FsCheck

FsCheck is a PBT tool for .NET based on QuickCheck
and influenced by ScalaCheck. Like ScalaCheck, it extends
the basic QuickCheck functionality with support for state-
based models. A limitation of the current version is that
it does not consider preconditions when shrinking com-
mand sequences. Due to this limitation, we initially had
to disable shrinking for our case study, because it was not
possible to receive proper counterexamples. However, this
feature is included in an experimental release and we were
able to apply shrinking with this experimental version. With
FsCheck, properties can be defined both in a functional pro-
gramming style with F# and in object-oriented style with
C#. Similar to QuickCheck, it has default generators for
basic data types and more complex ones can be defined
via composition. It has an arbitrary instance that groups
together a shrinker and a generator for a custom data type.
This makes it possible to use variables of this data type as
input for properties. New arbitrary instances can be dynam-
ically registered at run time, and then the new data type can
be directly used for the input data generation. Furthermore,
FsCheck has extensions for unit testing, which support a con-
venient definition and executionof properties like normal unit
tests.

4 Property-based testing with extended
finite state machines

4.1 State machine properties

PBT can also be applied to models in the form of extended
finite state machines (EFSMs) [17].

Definition 3 (EFSM) An EFSM can formally be defined as
a 6-tuple (S, s0,V , I,O,T) ∈ State_set × State
×Variable_set × Input_set × Output_set×
Transition_set.

S is a finite set of States,
s0 ∈ S is an initial State,
V is a finite set of Variables,
I is a finite set of Inputs,
O is a finite set of Outputs,
T is a finite set of transitions, t ∈ T can be defined as

a 5-tuple (s, i, g, op, s′),
s is the source State,
i is an Input,
g is a guard of the form e ◦ e′, where e and e′ are

algebraic expressions and ◦ ∈ {<,>, �=,=,≤,≥},
op is a sequence of output and assignment operations

of the form v = e with

v ∈ V and e is an expression,
s′ is the target State [17].

An example EFSM is presented in Sect. 4.2 in Fig. 4. Seman-
tically, a guard g is a Boolean function that takes the variable
valuations v as input and returns a Boolean value. An opera-
tion op is a function mapping the current variable valuations
to a pair of new valuations and an optional output o ∈ O .

In order to perform PBT for an EFSM, a state machine
specification spec has to be provided. This specification
includes functions to set the initial state of the model and
the SUT, a set of commands cmds and a next function that
builds a commandgeneratorCmdGen for a givenmodel state:

Definition 4 (State machine specification)

Spec =df spec(initalModel : () → Model,

initialActual : () → Sut,

cmds : Cmd_set, next : Model → CmdGen)

Algorithm 3 in Sect. 4.2 outlines an example specification
for the incident manager as it is required for FsCheck.

AModel object consists of fields representing the current
EFSM state s, the valuations for the variables v, the transition
set T , the last output o and a doStep function that performs
the execution of a transition.

Model =df model(s : State, v : Variable → Val,T :
Transition_set, o : Output, doStep : Input → Model)

doStep(in) =df model(s′, v′, o′, doStep) such that

(s, in, g, op, s′) ∈ T ∧ g(v) = True ∧ (v′, o′) = op(v)

Note that the SUT is defined in the same way as the model
and is, therefore, omitted.

A command Cmdin ∈ spec.cmds encodes a set of
transitions Tin with the same input in. They encapsulate
preconditions, postconditions and the execution semantics
of these transitions. Preconditions pre define the permitted
transition sequences by enabling the command only in states
where the input in is allowed. Postcondition post can verify
the effects of the command, e.g. by comparing the state of
themodel and the SUT. The execution semantics are encoded
via the functions runModel and runActual for executing the
Model and the SUT. The definition of a command is shown in
Fig. 3. Note that in this definition we show various possible
checks in the postcondition, i.e. we analyse the current state
of the SUT, variable valuations and the output. In reality this
may not be feasible, because the SUT might not provide all
this information. Hence, in many cases it may only be pos-
sible to check the output in the postcondition. An example
implementation of a command is presented in Sect. 4.2 in
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Cmdin =df cmdin(Tin : Transition set , prein : Model → Bool , postin : (Model ,Sut) → Boolean,

runModelin : Model → Model , runActualin : Sut → Sut)

Tin =df {(s, i , g, op, s′) | (s, i , g, op, s′) ∈ T ∧ i = in}

prein(model) =df

{
True if ∃(s, i , g, op, s′) ∈ Ti . s = model .s ∧ g(model .v) = True
False otherwise

runModelin(model) =df model .doStep(in)

runActualin(sut) =df sut .doStep(in)

postin(model , sut) =df
True if model .s = sut .s ∧ model .v = sut .v ∧ model .o = sut .o
False otherwise

Fig. 3 Command definition

Algorithm 4. This example demonstrates the function defi-
nitions for an IncidentCreateTask.

A property of an EFSM is that for each permitted path,
the postcondition of each transition, respectively, command
of the path must hold. In order to verify this property, a PBT
tool produces random command sequences and checks the
postconditions after each command execution.

The state machine property must hold in all settings of the
modelModel_set and theSUTSUT_set that are reachable via
valid command sequences. A command sequence is valid if
all its preconditions are satisfied.Hence, given a specification
spec, a state machine property for EFSMs can be defined as
follows:

Definition 5 (State machine property)

∀cmdin ∈ spec.cmds,model ∈ Model_set :
∃sut ∈ SUT_set : cmdin.pre(model) �⇒

cmdin .post(cmdin.runModel(model),

cmdin .post(cmdin.runActual(sut))

Algorithm 1 shows the pseudocode of the test case gen-
eration for such a property. The algorithm takes a spec and
a size parameter for the length of the test case as input and
returns a testSequence, which is a sequence of (Cmd,Model)
pairs. In the first step, the initial model is created with the

Algorithm 1 Pseudocode of the test case generation.
Input:

spec: state machine specification
size ∈ N>0 :parameter for test-case length

Output:
testSequence : (cmd1,model1), . . . , (cmdn,modeln)

1: model ← spec.initialModel()
2: for i ∈ {1, ..., si ze} do
3: gen ← spec.next(model) � next returns a cmd generator
4: cmd ← gen.sample() � command is generated
5: model ← cmd.runModel(model) � command is executed
6: testSequence[i] ← (cmd,model) � build test sequence
7: end for
8: return testSequence
9: function spec.next(model)
10: cmdSet ← {cmdin ∈ spec.cmds | cmdin.pre(model) = True}
11: return Gen.Elements(cmdSet)
12: end function

Algorithm 2 Pseudocode of the test case execution.
Input:

testSequence : (cmd1,model1), . . . , (cmdn,modeln)
spec : state machine specification

Output:
Pass, if the test case is successful, Fail otherwise

1: sut ← spec.initialActual()
2: for (cmdi,modeli) ∈ testSequence do
3: sut ← cmdi .runActual(sut) � command is executed
4: if ¬cmdi .post(modeli, sut) then � check post condition
5: return Fail
6: end if
7: end for
8: return Pass

initialModel function of the spec. Next, there is a loop over
the size parameter. In each iteration, a command generator
gen is built with the next function of the spec. This function
takes the model (Line 9) and creates a subset of all com-
mands by checking their precondition. The function returns
an Elements generator, which selects one element of this set
with a uniform distribution (Line 11). The sample function
of this generator is called to produce a command (Line 4).
This command is executed with runModel, which returns
a new model that incorporates the state change. Note that
we need a new model and not only change the current one,
because future changes should not affect the old storedmodel
instances. This newmodel and the command are stored in the
testSequence. Finally, after the loop is finished we return the
testSequence, which represents a test case.

Algorithm 2 shows how such a generated test case can be
executed. The test case is the input of this algorithm together
with a spec, and the result is a verdict. (Note that shrinking
is omitted in this simplified algorithm.) In the first step, the
initial SUT is built by the initialActual function of the spec.
After that we loop over the testSequence. Next, the command
is executed on the SUT with runActual, which results in a
modified SUT (Line 3). The postcondition of the command
is applied to compare the SUT with the stored model of the
testSequence. If it is false, then the test failed. Otherwise,
the execution continues and if the loop is finished, then the
postconditions of all commands were satisfied and a pass-
verdict is returned.
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Algorithm 3 Incident specification Spec.
Input:

SUT class for the connection to the SUT,
Model class

1: function initialActual
2: return new SUT() � create new SUT instance
3: end function
4: function initialModel
5: return new Model()
6: end function
7: cmds ← {new IncidentCreateTask(), new IncidentEditTask(),

new IncidentCloseTask()}
8: function next(model)
9: return Gen.Elements(cmds) � chose one element
10: end function

4.2 Example of model-based testing with FsCheck

In this subsection, we show how FsCheck can be applied
for model-based testing. A simple example of an incident
manager taken from our industrial case study shall serve to
demonstrate how the necessary interface implementations
have to be realised.
FsCheck modelling In order to use FsCheck for model-based
testing, we need a specification class that implements an
ICommandGenerator interface and contains the following
elements:

– SUT definition (which is called Actual by FsCheck)
– Model definition
– Initial state of the SUT and the model
– Generator for the next command given the current state
of the model

– Commands combining preconditions, postconditions and
the transition execution semantics of the SUT and the
model

Details about the structure of such specificationswere already
presented in Sect. 4.1. Nowwe give amore concrete example
for FsCheck on an object-oriented level. Algorithm3outlines
an example specification. In order to implement the interface
for FsCheck, we need the mentioned elements. The class of
the SUT is basically a wrapper that provides methods for the
execution of all tasks and a method to retrieve the current
state of one incident object of the SUT. An incident object is
an element of the application domain. For example, it could
be a bug report. It has a number of attributes (form data),
which are stored in the database. In this example, we assume
that the attributes are set statically in the wrapper class of the
SUT. In Sect. 6, we will see, how form data can be generated
automatically for these attributes.

Figure 4 illustrates the state machine of one incident
object. Initially, the machine is in a global state. The Inci-
dentCreateTask (abbreviated as Create) creates and opens a
new incident object, which can be edited and closed with the
corresponding tasks. The transitions are labelled as follows:
input i , an optional guard g/assignment operations op, and

Global

Submitted

Closed

Create/ , SubmittedParentFolder:=TestFolder
Description:=”TestDesc”
...

Edit/ , SubmittedParentFolder:=TestFolder1
Description:=”TestDesc1”
...

Close/ , ClosedComment:=”Finished”
...

Fig. 4 EFSM of the incident manager

Algorithm 4 IncidentCreateTask command.
1: function pre(model)
2: return True
3: end function
4: function post(sut,model)
5: return sut.State = model.State
6: end function
7: function runModel(model)
8: model.doStep("IncidentCreateTask")
9: return model
10: end function
11: function runActual(sut)
12: sut.doStep("IncidentCreateTask")
13: return sut
14: end function
15: function toString
16: return "IncidentCreateTask"
17: end function

an output o. The assignment operations of this EFSM assign
values to the attribute variables, and the output indicates the
target state of a transition. The initial global state has a special
meaning: tasks of the global state, i.e. IncidentCreateTask,
are globally enabled in all states. Hence, it is possible in
every state to create new incident objects. However, to sim-
plify the discussion, we assume that the state machine only
represents a currently opened incident object.Generally, in an
object-oriented system comprising several objects, we need
functionality to switch between active objects. This function-
ality is discussed in Sect. 5.2.

The initial states of the model and SUT are set by creating
new objects (Algorithm 3: Lines 2 and 5). The generator in
the next function selects one element of a command set ran-
domly, which can be accomplished with the defaultElements
generator of FsCheck (Line 9).

In the standard PBT approach, all command classes need
to be defined manually as shown in Algorithm 4. The classes
need to define how the transitions should be executed on the
model and SUT and what postcondition should hold after
the execution. In this simple example, the execution of the
model only changes the state, later we will also see how we
handle form data. For example, the state-changing function
of an IncidentCreateTask is defined as follows:
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model.doStep(“IncidentCreateTask′′)
=df model.s := “Submitted′′

Note that in contrast to the previous abstract definition,
the postcondition here checks whether the state of the SUT
matches the state of the model. Moreover, a toStringmethod
can be used to display various information of the command
and optionally a precondition can be defined. The classes for
the IncidentEditTask and the IncidentCloseTask command
are similar to this class and are, therefore, omitted.

For a large model with many transitions, it is not practical
that all commands have a separate class. Therefore, it makes
sense to implement this definition in a more generic way for
all possible transitions and to automate the process as far as
possible.
Command generation and execution The tool FsCheck gen-
erates test cases according to Algorithm 1with the difference
that the specification is provided in an object-oriented style
as shown in Algorithm 3. After a test case is generated, it is
executed on the SUT and the state of the SUT is compared
with the stored model state after each command execution as
explained in Algorithm 2.

In order to start testing in FsCheck, the specification has
to be converted into a property. This is achieved with the
toProperty() method of FsCheck. The property can then be
tested by calling the QuickCheck() method or also with the
help of unit testing frameworks:

new Spec( ) . toProperty ( ) .QuickCheck( ) ;

By default, 100 test cases will be generated and executed, but
this number can be configured. Listing 2 shows two example
sequences that were produced by FsCheck for the incident
specification. It can be seen that the sequences have quite
different lengths, because FsCheck generates them randomly
with a variety of lengths. Moreover, FsCheck classifies the
sequences according to their lengths, which can be seen in the
last line of the listing. These classifications can be helpful to
find out that a certain generator only considers trivial cases.
Each of these generated tasks in the command sequences
requires form data for the attributes, which also needs to
be generated. Listing 3 shows example form data for some
attributes that was generated randomly for the IncidentCre-
ateTask. Note that this randomly generated strings form a
kind of robustness test in order to check that the SUT can
process non-standard input.

5 Application-specific extensions to the
method

In this section, we present some application-specific
extensions, which were needed for the web-service appli-
cation that we evaluated. We show the translation of

0:
[IncidentCreateTask ; IncidentCloseTask; IncidentCreateTask ;
IncidentEditTask ; IncidentCreateTask ; IncidentEditTask]

1:
[IncidentCreateTask ; IncidentEditTask ; IncidentEditTask ;
IncidentCloseTask; IncidentCreateTask ; IncidentEditTask ;
IncidentCloseTask; IncidentCreateTask ; IncidentCreateTask ;
IncidentEditTask ; IncidentCreateTask ; IncidentCloseTask;
IncidentCreateTask ; IncidentEditTask ; IncidentCreateTask ;
IncidentEditTask ; IncidentCloseTask; IncidentCreateTask ;
IncidentEditTask ; IncidentCloseTask; IncidentCreateTask ;
IncidentCreateTask ; IncidentEditTask ; IncidentCloseTask;
IncidentCreateTask ; IncidentEditTask ; IncidentEditTask ;
IncidentEditTask ; IncidentCloseTask; IncidentCreateTask ;
IncidentEditTask ; IncidentCreateTask ; IncidentCreateTask ;
IncidentCloseTask; IncidentCreateTask ; IncidentCreateTask ;
IncidentEditTask ; IncidentEditTask ; IncidentCreateTask ;
IncidentEditTask ; IncidentCloseTask; IncidentCreateTask ;
IncidentEditTask ; IncidentCloseTask; IncidentCreateTask ;
IncidentCreateTask ; IncidentCloseTask; IncidentCreateTask ;
IncidentCreateTask]
Ok, passed 2 tests , 50

Listing 2 Generated command sequences

business-rule models into EFSMs, and we demonstrate how
we introduced functionality to switch between application
objects and REMs.

5.1 Translating business-rule models into EFSMs

In the following, we show how we translate our business-
rule models into EFSMs. In order to do this, we introduce
a function translate which takes an REM as described in
Sect. 2.2 as input and converts it into an EFSM. Figure 5
illustrates this process. It can be seen that the translate func-
tion is a composition of several sub-functions that convert the
individual parts of the REM. First, we translate the states of
the REM by applying the helper function names_of , which
returns the name of all elements of a set of tasks, states or
attributes. The name is a unique identifier for each element of
these sets. The same helper function is used to translate the
attributes, tasks and states to variable, input and output sets.
The initial state of the EFSM is set to the constant “Global”.
The translation of the transitions is more complex and is per-
formed with the buildTrans function. For this translation, we
take the states, the tasks and the attributes of the REM as
arguments, because we need their fields possibleTasks and
possibleNextStates to form the transitions of the EFSM: the
states of the REM form the source states, the tasks that are
enabled in these states (possibleTasks) represent the inputs,
and their possible next states define the target states. Note,
there can bemultiple possible next states for one task in a spe-
cific state. In reality, one of these states is selected by the user,
which represents an additional external input. For example,
in some REMs an AdminEdit task can be performed, where
a user can select the next state of an object, like Created,

IncidentCreateTask:
−− ParentFolder = IncidentTestFolder1
−− Description = /
B−cfkMNn3−−>eA−sb!−−R−9/{@bXzF−−#o4∗LB]SY3−−r i−!−p−x−f
−− CommitNote = HC−−Gz_p;
. . .

Listing 3 Generated form data for a task
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translate : REM → EFSM

translate(rem(attributes, states, tasks)) =df (names of (states), ”Global”,

names of (attributes),names of (tasks),names of (states), buildTrans(states, tasks, attributes))

buildTrans : AllStates × AllTasks × AllAttributes → Transition set

buildTrans(states, tasks, attributes) =df {(s, i , true, op, s′) | ∃ state(sname, possibleTasks) ∈ states . (s = sname ∧
∃ task(tname, tattributes,nextStates) ∈ tasks . (tname ∈ possibleTasks ∧ s′ ∈ nextStates ∧
i = tname ++ optionalSuffix(nextStates, s′) ∧
op = (a1 := v1 , . . . , an := vn , output) ∧ ai ∈ tattributes ∧ (ai , vi) ∈ translate(attributes) ∧ output = s′))}

translate : AllAttributes → (V ariable × Generator) set

translate(attributes) =df {(id, gen) | attr(id, type) ∈ attributes ∧ gen = Gen(type) ∨
attr(id, type, par) ∈ attributes ∧ gen = Gen(type, par)}

names of : AllTasks | AllStates | AllAttributes → Name

names of (xs) =df {x .name | x ∈ xs}

optionalSuffix : Name ∗ ×Name → Name

optionalSuffix(possibleNextStates,nextState) =df

{
”” if card(possibleNextStates) = 1
nextState if card(possibleNextStates) > 1

Fig. 5 Translation of a rule-engine model to an EFSM by translating the attributes, tasks and states of the rule-engine model to the 6-tuple
representing an EFSM

Available or Deleted, explicitly from a drop-down menu.
Since this selected state forms part of the input, we add the
name of the state to the task name to form the input. The
function optionalSuffix appends (++) the next state s′ to the
input (task name), if more than one possible next state exists
(cardinality > 1). In the following, we skip this detail in
order to simplify our graphical representations. Furthermore,
we translate the required attributes of the tasks in a separate
function, which returns a set of pairs of variables and genera-
tors (id, gen) for the types of the attributes and their optional
parameter. These pairs and an output assignment are used to
form the operation sequences of the transition.

5.2 Switching between REM objects

In this subsection, we explain how we extended our models
to enable the switching betweenmultiple application objects.
Our business-rule models only consider the behaviour of
an object of a specific type and not the behaviour of a
set of objects. Our application includes a number of tran-
sitions that create new application objects, and a user can
switch between these objects before a task is started. Our
original implementation only considered the currently active
object, which is automatically changed when a new object
is created. In order to also support the switch functionality,
we extended our models. We changed the original variable
set V of the EFSM to V = Vattr ∪ activeObj ∪ stateMap,
where Vattr : Obj.Id → (Variable → Val) are the variables
for our attributes. They are now represented as maps, so
that different values can be stored for the different objects.
The activeObj is a variable that marks the currently opened

object and it contains an identifier and a state. The variable
stateMap : Obj.Id → State was added to map object identi-
fiers to object states in order to keep track of the current states
of all objects. Moreover, we added additional transitions for
selecting an object. These transitions are only enabled when
there are at least two objects available, and they are chosen
randomly in the same way as other transitions. The decision,
which object should be selected, is also performed by a gen-
erator. Figure 6 illustrates the select functionality with the
additional transitions, which is repented as a hierarchical
state machine [13]. Note that transitions that create objects
are always active, i.e. they are enabled in all states. Hence, in
the following display of EFSMs, we skip their source state.

In the sameway aswe added transitions to switch between
objects of an REM, we also added transitions to switch
between different REMs within a module. Figure 7 demon-
strates how a switch between multiple REMs of the Test
OrderManager can be accomplished with SelectREM transi-
tions. In this example, we have three EFSMs for the different
REMs of this module, which are explained in more detail in
Sect. 7.2. Each EFSM in this figure also has the select func-
tionality to switch between objects of the REM as shown
in Fig. 6. On top of the switch of REMs, also a switch of
modules is possible as demonstrated in Fig. 8. We did not
implement the switch functionality at this level yet, because
we wanted to test the modules separately, but it would be
straight forward and very similar to the switch functionality
of REMs within a module. In this figure, we have three mod-
ules: Test Order Manager, Test Equipment Manager and Test
Factory Scheduler. The first twomodules are bothmodels we
used for case studies in Sect. 7. The Test Factory Scheduler
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Submitted

IncidentCreateTask

IncidentEditTask

Closed

IncidentCloseTask

Submitted

IncidentCreateTask

IncidentEditTask

Closed

IncidentCloseTask

...

Select(O2)

activeO := O2

Select(O1)
activeO := O1

IncidentCreateTask

stateMap[O3.Id] := Submitted
activeO := O3

Fig. 6 Switching between objects of the incident object class
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Fig. 7 Switching between rule-engine models inside the Test Order Manager module. For details about the EFSMs see Figs. 10, 11 and 12

module is for scheduling of test orders on the test beds. It
can automatically consider availability of resources like test
beds and equipment. Test orders can be assigned according
to priorities and to meet certain deadlines.

6 Architecture and implementation

In this section, we discuss the architecture and the relevant
implementation details of our test case generator.

6.1 Singleton rule-enginemodels

As explained in Sect. 1, we parse the business-rule models
fromXMLfiles and translate them into anEFSM. It should be
noted that our model representation does not strictly follow
the EFSM definition, because we used optimised data struc-
tures for the application of FsCheck. However, the semantics
of our model combined with FsCheck corresponds to an
EFSM. Hence, while the translation to EFSM (in Fig. 5)
provides the abstract syntax and the formal semantics of our
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Fig. 8 Switching between modules: Test Order Manager (TOM), Test
Factory Scheduler (TFS), Test Equipment Manager (TEM)

models, now we focus on the concrete model implementa-
tion in the object-oriented context of FsCheck. Our model
is encoded as an object tree, i.e. an abstract syntax tree that
serves as input to FsCheck as part of the Spec shown in Defi-
nition 4. The class diagram for this object structure is shown
in Fig. 9. It can be seen that the model consists of an attribute

dictionary (i.e. a map), an initial state, a current state, a list
of states and a dictionary of tasks. The transition relation is
represented by a class called Task that contains hash sets for
the possible source and target states of a task, a name and a
flag, which indicates that the state should not change after
the execution of the task. Furthermore, the class includes a
dictionary for the required attributes. The attributes represent
the form data of a web-service operation. All attributes have
a common base class, which has fields like name and data
type. The derived classes for specific data types extend this
base class by adding possible constraints and a custom gen-
erator for the data type that respects these constraints. For
example, an integer attribute class can have constraints for
the minimum andmaximum value and the generator chooses
a number between these boundaries or an arbitrary number
if no constraints are given. We have implemented attribute
classes for simple data types, like enumerations, doubles,
dates and times, butwealso supportmore complexdata types:

– Reference attributes a reference to another object of the
SUT can also be an attribute for a task. The possible
options for this object are given by a query, which rep-
resents a search string for the database. The interface for

Fig. 9 Class diagram for a model, which is parsed from XML and serves as input to FsCheck as part of the Spec
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Algorithm 5 Attribute data generation.
Input:

Attributes: an array of attribute instances
Output:

attributeData: a generator for maps (Attribute.Name �→ Val)
1: function GenerateData(Attributes)
2: for each attr ∈ Attributes do
3: genArray.Add(attr .Generator()) � fill with Attr. Gen.
4: end for
5: return Gen.Sequence(genArray).Select(Values → (

6: for i ∈ {1, ..., length_of (Attributes)} do -
7: attributeData[Attributes[i].Name] ← Values[i]
8: end for
9: return attributeData))
10: end function

the SUT provides amethod to get results for a valid query
and an element generator chooses one of the results ran-
domly. This generator was already explained in Sect. 4.2.

– Object attributes an object attribute can group together
multiple attributes in a struct or a list. The generator
for this type recursively calls the generators of included
types, which can be object attributes again.

– Attachment attributes some tasks require files of certain
file types. The generator for this attribute chooses one of
the possible file types and generates a random file name.
The generation of the actual file is added to the wrapper
class of the SUT, because the file should also be deleted
after the test execution.

– Stringattributes a string attributemay include restrictions
like a minimum/maximum length or a regular expres-
sion. In order to generate strings that match these regular
expressions, we apply a .NET port of the Xeger library.4

This library can generate text thatmatches a given regular
expression.

The object representation of the model is also used for the
interface specifications for FsCheck. For example, precondi-
tions for the restriction of the tasks are automatically created
by the model class. The generator for the next command also
includes information of the model to generate commands
with possible next states and attribute data.

Algorithm 5 shows how attribute data can be generated.
First, an array of generators is created by iterating over the
attributes and adding the generators to the array. This array is
then given to a sequence generator as input, which creates an
array of values for all the generators in the array (Line 5). In
order to store them in a map, we use the select function of the
generator. This function takes an anonymous function, which
takes the values as input and returns an object that should
be created by the generator. It can be applied to convert a
generator of certain type A to a generator of a different type
B by processing the generating values of the first generator.

4 https://code.google.com/archive/p/xeger

Algorithm 6 Next: generates a Cmd for a given model.
Input:

model: model instance that incorporates the state
Output:

gen: a generator for commands
1: function spec.next(model)
2: ts ← model.getPossibleTasks() � possible tasks
3: return Gen.Elements(ts).selectMany(t →
4: Gen.Elements(t.PossibleNextStates()).selectMany(s →
5: GenerateData(t.requiredAttributes).select(data →
6: return new DynamicCmd(t, data, s)))
7: end function

Hence, the select function has the following signature:

GenA.select : (A → B) → GenB

In our case, we build a map generator from a sequence gen-
erator in order to enable to generation of maps with attribute
names as keys and the data as values (Lines 6 to 9). This
attribute data generation is required for the command gen-
eration, which is shown in Algorithm 6. First, an array of
possible tasks is created in the model class, which consid-
ers the preconditions for this creation (Line 2). An element
generator is used to choose one of these tasks, and with the
selectMany functionwe process the chosen task (Line 3). The
selectMany function is similar to the select function. It can be
applied to a generator and requires an anonymous function
as argument. This anonymous function takes a value of the
generator as input and has to return a new generator.

GenA.selectMany : (A → GenB) → GenB

Therefore, selectMany makes it possible to nest generators
and also to pass the generated value to the inside generator.

A chosen task can lead to multiple next states; hence, we
also choose a next state with an element generator (Line 4).
Then, the attribute data generation of Algorithm 5 is applied.
With the generated data, we create a DynamicCommand
object which takes the task, the model, the attribute data and
the next state as arguments for the constructor (Line 6).

The outline of the DynamicCommand class is shown in
Algorithm 7. This generic command class can handle the
execution of all tasks of the parsed model. The class has the
task, themodel, attribute data and the next state as constructor

Algorithm 7 DynamicCmd: generic Cmd definition.
Input: t : task instance, data :map (Attribute.Name �→ generated value), s : nextState
1: function post(sut, model)
2: return sut.State = model.State
3: end function
4: function runModel(model)
5: model.doStep(t, s);
6: return model
7: end function
8: function runActual(sut)
9: sut.DefaultTask(t, data, s);
10: return sut
11: end function
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arguments and as fields. They are required for the execution
of the transition. Running a transition on themodel is realised
with a function of the model class (Line 5). The execution
on the SUT in runActual calls the wrapper class of the SUT
(Line 9). This wrapper class uses reflection to call the actual
methods on the SUT, and it also sets the attributes. In the
postcondition, we check whether the after-state of the model
is equal to the after-state of the SUT. Note that our SUT
allows an explicit observation of the state. This information
can be accessed via the wrapper class of the SUT, which
allowed us to easily compare the state of the model and the
SUT in the postcondition. In other SUTs, this information
might not be accessible, e.g. only the output might be com-
parable.

7 Evaluation

Our approachwas developed for aweb-service application as
discussed in Sect. 2. This system is a composition of various
modules. We performed an evaluation of two representative
modules of the application, the Test Order Manager and the
Test Equipment Manager. Moreover, we also tested other
small modules like the Incident Manager, which was shown
in the example of Sect. 4.2, but the major part was the Test
Order Manager. The goal of the evaluation was to analyse
the applicability and bug-finding ability of our method for
industrial use cases. The human effort of the evaluation was
primarily the implementation of the parsing process of the
business-rule models and the connection to the SUT. The
human effort for the testing process itself was insignificant,
due to the high automation. We found several issues in the
systems under test that are listed in the following sections.

7.1 Settings

We performed our experiments in a virtual machine with
Windows Server 2008, 4 GB RAM and one CPU on a Mac-
book Pro (late 2013 version) with 8 GB RAM and a 2.6 GHz
Intel Core i5. The system was running TFMS 1.7, and we
applied FsCheck 2.4 as PBT tool.

First, we ran the default test settings of FsCheck, which
produces 100 test cases with an average length of 51. When
an issue has been found, we repeated the whole test process
until no more issues were detected.

Additionally, we performed test runs with an increasing
number of test cases and a fixed length of ten in order to
evaluate the coverage on the models. This ensured that all
relevant parts of the SUT were covered. Furthermore, this
coverage analysis helped in regression testing. When fixing
a detected issue, it gave us confidence that the randomly
regenerated test sequences were covering the affected parts
of the SUT. The results of this evaluation are presented in the
following sections.

7.2 Case study test order manager

The Test Order Manager module controls individual work
steps and preparations for automotive test orders and corre-
sponding templates. A test order is a composition of multiple
processes that are necessary for a test sequence at an automo-
tive test field. It consists of both organisational and technical
processes, which are defined in templates. Organisational
processes, e.g. accepting a test order, are defined in a Busi-
ness Process Template, and a Test Order Template defines
technical processes, like preparing a test cell on the test bed.
For a Test Order we need to select both, a Business Process

Created

ToCreate

Duplicate
AdminEdit

EditCreated

InWork

MakeReady AdminEdit

Executed

AdminEdit

Finished
AdminEdit

Cancelled

AdminEdit

CancelInCreated

Deleted
AdminEdit

Invalid

Invalidate Duplicate Reject AdminEdit

AdminEditEditStandardWorkInWork

AdminEdit

AdminEdit

AdminEditCancelInStandardWorkInWork

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEditEditStandardWorkExecuted

Finish AdminEdit

AdminEdit CancelInStandardWorkExecuted

AdminEdit

DuplicateAdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit CancelInFinished

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

Activate

CancelInInvalid

Fig. 10 EFSM for test orders

123



B. K. Aichernig, R. Schumi

Created

TotCreate

Available

TotCreate TotPropagate AdminEditChangeState

AdminEdit ChangeState

Invalid

AdminEdit

Deleted

AdminEdit ChangeState

AdminEdit ChangeState

AdminEditChangeState

AdminEdit

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit

AdminEditChangeState

Fig. 11 EFSM for Test Order Templates

Created

BptCreate

Available

BptCreate AdminEditEditChangeState

AdminEdit Edit ChangeState

Invalid

AdminEdit

Deleted

AdminEdit ChangeState

AdminEdit ChangeState

AdminEditChangeState

AdminEdit

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit

AdminEditChangeState

Fig. 12 EFSM for Business Process Templates

Template and a Test Order Template. Test Orders, Business
Process Templates and Test Order Templates can be man-
aged individually and they have separate REMs as shown in
Fig. 7. A state machine of a test order is shown in Fig. 10.
(The REMs of Business Process Templates and Test Order
Templates are similar, but they have less states and transi-
tions. They are illustrated in Figs. 11 and 12.) The figure
displays only states and transitions, because there are too
many attributes to show them. It can be seen that the model
contains a number of states for the workflow, respectively,
life cycle of a test order.

Table 1 displays the size of the models within the Test
Order Manager module. It shows the number of states, tasks,
transitions and attributes. It can be seen that the number
of possible transitions is high. Therefore, our automated

Table 1 Number of states, tasks, transitions and attributes of the REMs
within the Test Order Manager

Model States Tasks Transitions Attributes

Test Order 8 16 49 15

Business Process Templates 5 4 25 58

Test Order Templates 5 4 24 53

Test Order Manager 18 24 98 126

approach makes sense, because otherwise the test of all these
transitions would be impractical, especially, since the transi-
tions are not simple actions in this case study. Each transition
represents the opening of a page, entering data for form fields
and saving the page. One example page of anAdminEdit task
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Fig. 13 TFMS form for the AdminEdit task

is shown in Fig. 13. This page is part of the graphical user
interface of a client application that connects to web services
on a server. It contains a number of form fields and tables
that require generated data.

For the case study, AVL provided us a test framework
that was specifically developed for the SUT and performs
the communication with the web services on the server. It
basically represents an abstraction of the graphical user inter-
face and is intended to facilitate the testing effort. A tester
should not need to know any web-service details in order
to run tests. Hence, the framework offers functions, which
perform web-service requests in the background, in order to
execute the required steps of the test cases. The framework
is written in C# and has interfaces for modules that provide
functions for login/logout, executing tasks, opening domain
objects, retrieving data and so on. We call these functions,
e.g. to start tasks (representing the opening of forms), to set
attributes (of form data) and to save forms.

The case study revealed the following problems and bugs:

1. There was a bug in the original testing framework that
was provided by our industrial partner. The expected state
after a task execution was sometimes wrong, because in
some cases an old version of the object was used by the
testing framework.

2. Another issue we detected concerns our test case genera-
tion method. In some rare cases, the business models do
not contain enough information. For example, there were
reference attributes that could not be changed to a differ-
ent subtype after an object was created. The query for
these attributes needed an additional restriction for the
subtype. This information was correctly implemented in
the code, but is missing in the rule-engine model. Hence,

Table 2 Average number of
commands needed for finding
the issues of the Test Order
Manager
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Fig. 14 Test OrderManager: transition coverage for increasing number
of test cases (with test cases of length ten)

the tool reported a bug that in factwas not a bug. It is rather
a limitation of the approach of relying on the business-
rulemodels as primary source for the test case generation.

The following bugs were found in hidden tasks that were not
enabled in the user interface. These tasks remained in the
business-rule models, and they would cause problems when
they were enabled again. Therefore, we also tested them.

3. There were tasks that first resulted in an exception, which
stated that certain attributes are missing. However, when
the attributes were set, it resulted in an exception that said
that the attributes are not enabled.

4. There was a problem with a task that had a next state in
the model, which was not permitted by the SUT. Further-
more, the error message of the SUT was wrong in this
case. It should list possible next states. However, the list
did not contain states, but tasks.

Table 2 presents the average number of commands that were
needed to find the issues. The averagewas computed over five
test runs. Note that for the first issue no data is available, as
the bug in the testing framework was fixed in an early state
of the evaluation. The data show that Issue 3 is especially
hard to find as it requires on average of more than 23 input
commands until its detection.

We monitored the coverage of our tests on the model in
order to obtain confidence that we tested enough. The states
and tasks of the model were covered with a small number of
tests and are, therefore, omitted. The transition coverage for
an increasing number of test cases is illustrated in Fig. 14.
The test case length is fixed to ten, and the coverage is given
as the average percentage of the transitions that are visited
during 100 test runswith the same number of samples. Due to
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Fig. 15 Test Order Manager: transition-pair coverage for increasing
number of test cases (with test cases of length ten)

the high number of transitions,we need about 4,000 test cases
in order to obtain an average transition coverage that is close
to 100%. We performed the same evaluation for transition-
pair coverage, which is also called 1-switch coverage after
Chow [7]. For this coverage criterion, we evaluate howmany
sequences of two consecutive transitions are observable with
our test cases. The results are shown in Fig. 15. Transition-
pair coverage requires even more test cases, e.g. 5,000 test
cases only produce an average transition-pair coverage of
75%.

7.3 Case study test equipment manager

Similar to theTestOrderManager,we performed a case study
for the Test Equipment Manager module. The main func-
tion of this module is the administration of all equipment
that is relevant for the test field, like test beds, measurement
devices, sensors, actuators and various input/outputmodules.
All these test equipment can be created, edited, calibrated and
maintained with the Test Equipment Manager. A hierarchy
of test equipment types is used to classify the test equipment.
Test configurations, which are compositions of different test
equipment, can alsobe administrated, and also the connection
of devices via channels can be controlled with this module.

Figure 16 illustrates the main REMs and the complexity
of the Test EquipmentManager. It can be seen that the EFSM
for test equipment has many transitions for maintenance and
administration purposes. Most of the state names are self-
explanatory. The state Invalid is for an object that was copied
and has to be adapted.Mounted is a state that means that the
equipment was installed in the test field. The EFSM for test
equipment types is smaller but similar, because it does not
contain maintenance operations. Details about the behaviour
of the REMs are omitted, because they are too specific for the
SUT and not relevant for this work. The size of the module
and its REMs is summarised in Table 3, which shows the
number of states, task, transitions and attributes. In contrast
to the Test Order Manager, we only have two REMs and the
module is not as complex.

We found a number of issues which are listed below. It
should be noted that the case study was performed with test
rule-engine files, which are not used by actual customers

and which were not inspected as intensively as productive
rule-engine files. However, if productive rule engines would
contain these kinds of issues, then our tests could also find
them.The following two issues couldbe foundwith strings by
utilising our string generators, which support the generation
of strings with regular expressions.

1. Inconsistency regarding the use of tab characters in
names could be found. It was never planned that the
object names should support tabs. On some occasions,
these characters were replaced with blanks, but not con-
sistently. Blanks were still saved in the database and only
replaced, when they were sent to the graphical user inter-
face. Therefore, two entries could be created that were
indistinguishable, because both a name containing a tab
and a blank were presented in the same way by the SUT.

2. Another problem found was that the regular expressions
for several names in our REMs were insufficient. We
assume that these regular expressions were designed to
prevent certain special characters, and no blanks should
be allowed at the end and at the beginning. However, the
regular expressions were written so that they allowed all
non-white space characters at the beginning and at the
end of the string, even characters that are not allowed
in the middle of the string. We could observe this issue
when we tested the copy functionality, which duplicates
an object and appends an underline and a number to its
name. When certain special characters were at the end of
the string, then the name was not valid any more, after a
copy operation. This was, because the special character
moved from the end to the middle of the string, where
they were not allowed due to the regular expressions.

Further issues could be found concerning misconfigurations
in the REMs and unsupported functionality of the provided
test framework.

3. An issue was found with required attributes. In a partic-
ular task, an attribute was required, but it could not be
edited, because it was not enabled for this task. There-
fore, it was not possible to complete this task, except the
user returned to a previous task and edited the attribute
there.

4. We found a task that was not supported by the test
framework. The task could be triggered with the test
framework, but resulted in an exception. In the graph-
ical user interface, the task could be executed normally.
Hence, we found a task that was not completely imple-
mented in the test framework and could not be tested
automatically, because without support of the test frame-
work only a manual test via the graphical user interface
was possible.
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Fig. 16 EFSM for the rule-engine models of the Test Equipment Manager module

Table 3 Number of states,
tasks, transitions and attributes
of the REMs of the Test
Equipment Manager

Model States Tasks Transitions Attributes

Test equipment type 5 10 21 43

Test equipment 7 13 39 23

Test equipment manager 12 23 60 66

Table 4 illustrates the average number of commands thatwere
needed to find the issues. The numbers were computed in the
same way as described for the Test Order Manager mod-
ule in Sect. 7.2. The first issue was particularly hard to find.
The reason is that the generator for strings does not generate
a tab character very often, because it is only one of many
options and the same string with a blank was also generated
very rarely. We also monitored the average transition and
transition-pair coverage for an increasing test case number,
as already shown for the Test Order Manager module. The
results are shown in Figs. 17 and 18. Due to the lower com-
plexity of this module, only about 150 test cases are needed
to reach a transition coverage that is close to 100% and about
2.500 test cases for transition-pair coverage.

Table 4 Average number of
commands needed for finding
the issues of the Test Equipment
Manager

Issue Number of Cmds
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Fig. 17 Test Equipment Manager: transition coverage for increasing
number of test cases (with test cases of length ten)
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Fig. 18 Test Equipment Manager: transition-pair coverage for increas-
ing number of test cases (with test cases of length ten)

7.4 Further result

Another bug was not directly found with our test cases, but
during the extensions of our models with the select function-
ality as described in Sect. 5.2. In order to implement this
functionality, we had to evaluate the behaviour of the SUT,
because it is not described in the rule-engine models. During
this evaluation, we could observe a bug that occurred when
we tried to open a window for a module while a task was exe-
cuted in an already open window. In this case, the window
crashed and it was not possible to open a newwindow for the
module until it was terminated via the task manager. Note,
this bug was not directly found with our automated method,
but was discovered by the authors during the model design.
However, in other model-based testing approaches, it is also
often the case that bugs are found in this phase. Hence, find-
ing such bugs can be seen as a positive by-product of applying
model-based testing in general.

8 Discussion

8.1 Limitations and threads to validity

The evaluation demonstrated that our method of using
business-rule models for PBT is able to find bugs in the real
system. Moreover, we showed that our randomly generated
test cases are able to achieve a high transition coverage with
an acceptable number of tests. A limitation of random testing
is that certain coverage criteria cannot be guaranteed, and so
important aspects of the SUT might not be tested. Hence, a
more targeted test case generation strategy might be able to
find more bugs. However, the random generation was espe-
cially helpful for the creation of complex form data, which
was required for our SUT and it was able to cover most of
the model with few tests. Hence, we did not evaluate other
generation strategies. It should be noted that also the number
of test cases is important for random testing. Depending on
the size of the model, it is crucial to generate enough test
cases in order to achieve an acceptable transition coverage.

Another limitation of our approach is that we rely on
business rules as test models and oracles. In an ideal imple-

mentation, we could only test whether the business rules are
interpreted correctly. However, for our SUT, we saw that
there are a number of deviations of the SUT from the busi-
ness rules. In other applications, this might not be the case.
Furthermore, it should be noted that we are only able to find
bugs that are caused from a deviation of the SUT from the
business rules. A manually crafted model might be able to
find more bugs due to a better oracle, but it is expensive to
create a model manually.

A limitation of relying on the business rules can also be
that the business rulesmight not contain enough information,
e.g. not all data constraints that are present in the SUT might
also be encoded in the business-rule models. In such cases,
a manual intervention might be needed. This was already
mentioned in Issue 2 of the Test Order Manager case study
in Sect. 7.2.

An external thread to the validity of our method is that
the random generation of a PBT tool might not be ran-
dom enough. For example, there can be problems when the
random generation is based on the system time or when mul-
tiple threads share a common random generator. In order to
eliminate this thread, we analysed our generated command
sequences for suspicious patterns and we made sure that the
randomgeneration functionalitywas implemented according
to common practice.

An internal thread to the validity of our evaluation might
be the research bias, which can come in different shapes. (1)
We might have selected an SUT that has particular faults in
order to support our approach. However, we did not select the
SUT for our evaluation. It was given to us by our industrial
partner AVL, and this was done before we had a particular
testing method in mind. Hence, we had no influence over
the choice of the SUT. (2) We could have found issues that
are no real problems of the SUT. The fact that we had to
present our findings to AVL and also that they had to confirm
our found issues before we were allowed to publish them
dissolves this thread. (3) We could have targeted our testing
method towards specific bugs that were present in the SUT.
This would limit the type of faults that can be found, but we
did not know the bugs of the SUT beforehand. They were
revealed by our evaluation. Hence, it was not possible for us
to target our testing method towards specific known bugs of
the SUT.

Another internal thread to the validity is thatweonly tested
our method with a specific system. One could argue that a
case study is not enough to evaluate the applicability or gener-
ality of ourmethod.However,wedid evaluate twomodules of
one big web-service application. These modules have differ-
ent functionality and can be used independently. Therefore,
we think that the evaluation of two modules is sufficiently
representative for this application domain.

123



Property-based testing of web services by deriving properties from business-rule models

Algorithm 8 Command generation with frequencies.
Input:

model: model instance that incorporates the state
Output:

gen: a generator for commands
1: function spec.next(model)
2: for each t ∈ model.getPossibleTasksWithWeight() do
3: wv.add((t.Weight,Gen.Constant(t))) � fill array with
4: end for � weight and generator pairs
5: return Gen.Frequencies(wv).selectMany(t → . . .)

6: end function

8.2 Future work

A nice feature, which is also supported by FsCheck, is the
command generation with different frequencies. This fea-
ture makes it possible to test certain problematic tasks more
frequently and also to simulate user behaviour. Usually com-
mands are generated randomly with a uniform distribution,
but it is also possible to generate commands according to
certain probability distributions, which can be specified by
the probability mass function, respectively, weights for the
tasks.

Algorithm 8 shows how this can be done. We iterate over
the possible tasks and fill thewv arraywithweight and gener-
ator pairs. In this case, the generator is a constant generator,
which simply generates a task instance. With the FsCheck
generator Gen.Frequency, one task is selected according to
the weights.

Gen.Frequency : P(R>0 × Gen) → Distr(Gen)

The remaining part of the command generation is the same
as in Algorithm 6 and is therefore omitted. Note that we did
not apply this generation method with frequencies for the
evaluation, because we had no data for the probabilities of
tasks. However, we plan to utilise this feature in the future in
order to simulate typical user behaviour.

Additional case studies would also be an option for future
work. In order to analyse the generality of our method, it
would make sense to test further applications that are driven
by rule engines. Moreover, a comparison with other testing
methods, like manual unit testing, would be an interesting
option. This might help to assess the bug-finding perfor-
mance of our approach.

Another potential topic for future work would be fuzzing.
With our current method, we only test the behaviour of the
SUT that is allowed by the business rules. However, it would
also be important to test behaviour that is outside the scope of
the business rules, i.e. invalid behaviour. This could be done
by specifying generators that generate data that is not allowed
by the business rules, e.g. tasks that are not enabled in a spe-
cific state, or form data that does notmeet certain restrictions.
By generating invalid data, we could check whether the error

handling works as expected and also whether the business
rules are applied correctly.

9 Conclusion

We have developed an automatic test case generation
approach for business-rule models of a web-service appli-
cation. The approach is based on property-based testing and
written in C# with the tool FsCheck.

First, we presented our rule engine-drivenweb application
under test. We introduced property-based testing, formalised
its underlying concepts and algorithms and illustrated the tool
FsCheck. Model-based testing with FsCheck was demon-
strated with a small example of an incident management
system. Then, we presented a formalisation of the transla-
tion of business-rule models to EFSMs. Next, we discussed
how our approach works in detail. It takes XML files with
the business-rule models as input and converts them into an
EFSM in the form of an object representation that is used for
FsCheck specifications and as model.

FsCheck can automatically derive command sequences
from a specification, and it executes them directly on the
SUT. Our approach also includes attribute data generation
for simple and complex data types like objects, references or
files. The attributes support a variety of constraints, which
are also encoded in the XML business-rule models.

We evaluated our approach in two industrial case studies,
whichwere applied to aweb-service application fromAVL, a
testfactory management suite. The generated test cases were
analysed by measuring their transition and transition-pair
coverage.We found eight issues thatwere confirmed byAVL.
This demonstrates that the approach is effective in finding
bugs. The issues concerned the system-under-test, the test-
ing framework and the business-rule models. The fact that
not all bugs are due to the system-under-test is well known
in the area of automated testing.

Onemaywonder about themissing redundancywhen gen-
erating the test models from the business rules. When a rule
engine would be implemented optimally, then our approach
would only test the interpreter of the business-rule mod-
els. However, in practice the programmers often change the
source code without considering the rules. Hence, it makes
sense to verify that the SUT still conforms to themodel. Espe-
cially for custom rule-engine implementations and evolving
applications, it is important to test this conformance. There-
fore, we have developed an automated approach that verifies
this conformance efficiently.

In future, we plan to apply these test cases in load testing,
where the question of redundancy is irrelevant.
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