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1 Introduction

Let A and B be self-adjoint operators in a separable Hilbert space H and assume that
the m-th powers of their resolvents differ by a trace class operator,

[
(B − z IH)−m − (A − z IH)−m] ∈ S1(H), z ∈ ρ(A) ∩ ρ(B), (1.1)

for some odd integer m ∈ N. It is known that in this case there exists a real-valued
function ξ ∈ L1

loc(R) such that
∫
R

|ξ(λ)|(1+|λ|)−(m+1)dλ < ∞ and the trace formula

trH
(
ϕ(B) − ϕ(A)

) =
∫

R

ϕ′(λ) ξ(λ) dλ (1.2)

holds for all suitable smooth functions ϕ : R → C such that [ϕ(B)−ϕ(A)] ∈ S1(H).
The function ξ in (1.2) is called a spectral shift function of the pair {A, B}. Note that
for ϕ(λ) = (λ − z)−m one has [ϕ(B) − ϕ(A)] ∈ S1(H) according to (1.1) and the
trace formula (1.2) takes the special form

trH
(
(B − z IH)−m − (A − z IH)−m) = −m

∫

R

ξ(λ) dλ

(λ − z)m+1 .

Historically the trace formula (1.2) was first proposed and verified on a formal
level by Lifshitz for the case that [B − A] is a finite-rank operator in [51] (see also
[52]), and shortly afterwards in [44] Krein proved (1.2) rigorously in the more general
case [B − A] ∈ S1(H) for all C1-functions ϕ with derivatives in the Wiener class.
Furthermore, in [44] it was shown how the spectral shift function ξ can be computed
with the help of the perturbation determinant corresponding to the pair {A, B}. For
pairs of unitary operators and thus via Cayley transforms for the case m = 1 in (1.1)
the spectral shift function and the trace formula were obtained later by Krein in [45].
Afterwards in [43] the more general case m > 1 in (1.1) for self-adjoint operators
A and B with ρ(A) ∩ ρ(B) ∩ R �= ∅ was discussed by Koplienko, and for odd
integers m in (1.1) and arbitrary self-adjoint operators A and B see [74] by Yafaev
or [73, Chapter 8, §11] and [76, Chapter 0, Theorem 9.4]. We also mention that the
spectral shift function is closely connected with the scattering matrix via the famous
Birman–Krein formula from [11,12]. For more details on the history, development and
multifaceted applications of the spectral shift function in mathematical analysis we
refer the reader to the survey papers [13,16,17], the standardmonographs [73,76], and,
for instance, to [14,19,24,26,27,31,46,47,67,70] and the more recent contributions
[1,25,30,39,40,42,48,55,56,64–66,68,75].

The main objective of the present paper is to prove a representation formula for
the spectral shift function in terms of an abstract Titchmarsh–Weyl m-function of two
self-adjoint operators satisfying the condition (1.1), and to apply this result to different
self-adjoint realizations of second-order elliptic PDEs and Schrödinger operators with
compactly supported potentials. In these applications the abstract Titchmarsh–Weyl
m-function will turn out to be the energy dependent Neumann-to-Dirichlet map or
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Spectral shift functions and Dirichlet-to-Neumann maps 1257

Dirichlet-to-Neumann map associated to the elliptic differential expression and the
Schrödinger operators on an interior and exterior domain, respectively.

More precisely, assume that A and B are self-adjoint operators in a separableHilbert
space H and consider the underlying closed symmetric operator

S f := A f = B f, dom(S) := {
f ∈ dom(A) ∩ dom(B)

∣∣ A f = B f
}
,

which for convenience we assume is densely defined. We emphasize that neither A
nor B needs to be semibounded in our approach. However, we first impose an implicit
sign condition on the perturbation by assuming

(A − μ0 IH)−1 ≥ (B − μ0 IH)−1 (1.3)

for some μ0 ∈ ρ(A) ∩ ρ(B) ∩ R; in the semibounded case the condition (1.3) is
equivalent to A ≤ B interpreted in the sense of the corresponding quadratic forms.
We then make use of the concept of quasi boundary triples in extension theory of
symmetric operators from [2,3] and construct an operator T such that T = S∗ and
two boundarymappings�0, �1 : dom(T ) → G, where G is an auxiliary Hilbert space,
such that

A = T � ker(�0) and B = T � ker(�1); (1.4)

see Proposition 2.4 and Sect. 2 for more details. To such a quasi boundary triple
{G, �0, �1} one associates the γ -field and Weyl function (or abstract Titchmarsh–
Weyl m-function) M which are defined by

γ (z)�0 fz = fz and M(z)�0 fz = �1 fz, fz ∈ ker(T − z IH), z ∈ ρ(A),

respectively. Very roughly speaking the values M(z), z ∈ ρ(A), of the function M map
abstractDirichlet boundary values to abstractNeumann boundary values, or vice versa,
and hence the Weyl function M associated to a quasi boundary triple can be viewed as
an abstract analog of the (energy parameter dependent) Dirichlet-to-Neumann map.
The resolvents of A and B are related with the γ -field andWeyl function via the useful
Krein-type formula

(B − z IH)−1 − (A − z IH)−1 = −γ (z)M(z)−1γ (z)∗, z ∈ ρ(A) ∩ ρ(B).

In our main result, Theorem 4.1, in the abstract part of this paper we provide sufficient
Sp-type conditions on the γ -field and Weyl function of the quasi boundary triple
{G, �0, �1} such that (1.1) is satisfied with m = 2k + 1 and conclude that for any
orthonormal basis (ϕ j ) j∈J in G (with J ⊆ N an appropriate index set), the function

ξ(λ) =
∑

j∈J

lim
ε↓0 π−1(Im

(
log

(
M(λ + iε)

))
ϕ j , ϕ j

)
G for a.e. λ ∈ R, (1.5)
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1258 J. Behrndt et al.

is a spectral shift function for the pair {A, B} such that ξ(λ) = 0 in an open neighbor-
hood of μ0. In particular, the trace formula

trH
(
(B − z IH)−(2k+1) − (A − z IH)−(2k+1)) = −(2k + 1)

∫

R

ξ(λ) dλ

(λ − z)2k+2

is valid for all z ∈ ρ(A) ∩ ρ(B). Furthermore, if (1.1) is satisfied with m = 1 then
according to Corollary 4.2 the imaginary part of the logarithm of z �→ M(z) is a trace
class valued Nevanlinna (or Riesz–Herglotz) function on the open upper half-plane
C+ (and hence admits nontangential limits for a.e. λ ∈ R from C+ in the trace class
topology), and the spectral shift function in (1.5) has the form

ξ(λ) = lim
ε↓0 π−1 trG

(
Im

(
log

(
M(λ + iε)

)))
for a.e. λ ∈ R. (1.6)

Since z �→ log
(
M(z)

)
is aNevanlinna function it follows that the values of the spectral

shift function ξ in (1.5) and (1.6) are nonnegative for a.e. λ ∈ R; this is rooted in the
sign condition (1.3). In a second step we weaken the sign condition (1.3) and extend
our representation of the spectral shift function to more general perturbations in the
end of Sect. 4. We point out that the key difficulty in the proof of (1.5) and (1.6)
is to ensure the existence of the limits on the right hand side of (1.5) and the trace
class property of the function Im

(
log

(
M

))
in the case k = 0, respectively, which are

indispensable for (1.5) and (1.6). These problems are investigated separately in Sect. 3
on the logarithm of operator-valued Nevanlinna functions, where special attention is
paid to the analytic continuation by reflection with respect to open subsets of the real
line. We also mention that for the special case where (1.1) is a rank one or finite-rank
operator and m = 1, our representation for the spectral shift function coincides with
the one in [7,49]. Furthermore, for m = 1 in (1.1) a formula for the spectral shift
function via a perturbation determinant involving boundary parameters and the Weyl
function in the context of ordinary boundary triples was shown recently in [56] (see
also [55]). We remark that our abstract result can also be formulated and remains valid
in the special situation that the quasi boundary triple {G, �0, �1} is a generalized or
ordinary boundary triple in the sense of [18,21–23,32].

Ourmain reason to provide the general result in Sect. 4 for the spectral shift function
in terms of the abstract notion of quasi boundary triples and their Weyl functions is its
convenient applicability to various PDE situations, see also [2–6,8] for other related
applications of quasi boundary triples in PDE problems. In Sect. 5 we consider a
formally symmetric uniformly elliptic second-order partial differential expression L
with smooth coefficients on a bounded or unbounded domain in R

n , n ≥ 2, with
compact boundary, and two self-adjoint realizations Aβ0 and Aβ1 of L subject to
Robin boundary conditions βpγD f = γN f , where γD and γN denote the Dirichlet
and Neumann trace operators, and βp ∈ C1(∂�), p = 0, 1, are real-valued functions.
It then turns out that the Robin realizations Aβ0 and Aβ1 satisfy

[
(Aβ1 − z IL2(�))

−(2k+1) − (Aβ0 − z IL2(�))
−(2k+1)] ∈ S1

(
L2(�)

)
(1.7)
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Spectral shift functions and Dirichlet-to-Neumann maps 1259

for all k ∈ N0, k ≥ (n − 3)/4, and z ∈ ρ(Aβ0) ∩ ρ(Aβ1), and for any orthonormal
basis (ϕ j ) j∈J in L2(∂�), the function

ξ(λ) =
∑

j∈J

lim
ε↓0 π−1

((
Im

(
log(M1(λ + iε)) − log(M0(λ + iε))

))
ϕ j , ϕ j

)

L2(∂�)

for a.e. λ ∈ R, (1.8)

is a spectral shift function for the pair {Aβ0 , Aβ1}, where

Mp(z) = (β − βp)
−1(βpN (z) − IL2(∂�)

)(
βN (z) − IL2(∂�)

)−1
, z ∈ C\R,

β ∈ R is such that βp(x) < β for all x ∈ ∂�, and N (z) denotes the (z-dependent)
Neumann-to-Dirichlet map that assigns Neumann boundary values of solutions fz ∈
H2(�) of L fz = z fz , z ∈ C\R, onto their Dirichlet boundary values. We note that
the trace class property (1.7) was shown in [4,34] for the case k = 0 and in [6] for
k ≥ 1. Moreover, in the case k = 0, that is, n = 2 or n = 3, it follows from (1.6) that
the spectral shift function in (1.8) has the form

ξ(λ)= lim
ε↓0 π−1 trL2(∂�)

(
Im

(
log(M1(λ + iε)) − log(M0(λ + iε))

))
for a.e. λ ∈ R.

In our second example, presented in Sect. 6, we consider a Schrödinger operator
B = −
 + V with a compactly supported potential V ∈ L∞(Rn). Here we split the
Euclidean space Rn and the Schrödinger operator via a multi-dimensional Glazman
decomposition and consider the orthogonal sum BD = B+ ⊕ C of the Dirichlet
realizations of −
 + V in L2(B+) and L2(B−), where B+ is a sufficiently large
ball which contains supp (V ) and B− := R

n\B+. Similarly, the unperturbed operator
A = −
 is decoupled and compared with the orthogonal sum AD = A+ ⊕ C of
the Dirichlet realizations of −
 in L2(B+) and L2(B−). Our abstract result applies
to the pairs {B, BD} and {A, AD}, whenever k > (n − 2)/4, n ∈ N, n ≥ 2, and
yields an explicit formula for their spectral shift functions ξB and ξA in terms of the
(z-dependent) Dirichlet-to-Neumann maps associated to −
 and −
+ V on B+ and
B−. Since the spectra of theDirichlet realizations A+ = −
 and B+ = −
+V on the
bounded domain B+ are both discrete and bounded from below, the difference of their
eigenvalue counting functions is a spectral shift function ξ+ for the pair {A+, B+},
and hence also for the pair {AD, BD}. Then it follows that the function

ξ(λ) = ξA(λ) − ξB(λ) + ξ+(λ) for a.e. λ ∈ R,

is a spectral shift function for the original pair {A, B} (cf. Theorem 6.1). We also
mention that the trace class property of the resolvent differences of A and AD , and B
and BD goes back to Birman [9] and Grubb [33], and that similar decoupling methods
are often used in scattering theory, see, for instance, [20] or [71] for a slighty more
abstract and general framework.

The applications in Sects. 5 and 6 serve as typical examples for the abstract for-
malism and results in Sect. 4. In this context we mention that one may compare in a
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1260 J. Behrndt et al.

similar form as in Sect. 5 the Dirichlet realization with the Neumann, or other self-
adjoint Robin realizations of an elliptic partial differential expression, and that in
principle also higher-order differential expressions with smooth coefficients could be
considered. We refer the reader to [28,29,35–37,54,57,58,63] for some recent related
contributions in this area.

Finally, we briefly summarize the basic notation used in this paper: Let G, H, H,
etc., be separable complex Hilbert spaces, (·, ·)H the scalar product in H (linear in
the first factor), and IH the identity operator in H. If T is a linear operator mapping
(a subspace of ) a Hilbert space into another, dom(T ) denotes the domain and ran(T )

is the range of T . The closure of a closable operator S is denoted by S. The spectrum
and resolvent set of a closed linear operator in H will be denoted by σ(·) and ρ(·),
respectively. The Banach space of bounded linear operators inH is denoted by L(H);
in the context of two Hilbert spaces,H j , j = 1, 2, we use the analogous abbreviation
L(H1,H2). The p-th Schatten–vonNeumann ideal consists of compact operators with
singular values in l p, p > 0, and is denoted bySp(H) andSp(H1,H2). For� ⊆ R

n

nonempty, n ∈ N, we suppress the n-dimensional Lebesgue measure dn x and use the
shorthand notation L2(�) := L2(�; dn x); similarly, if ∂� is sufficiently regular we
write L2(∂�) := L2(∂�; dn−1σ), with dn−1σ the surface measure on ∂�. We also
abbreviate C± := {z ∈ C | Im(z) ≷ 0} and N0 = N ∪ {0}.

2 Quasi boundary triples and their Weyl functions

In this section we recall the concept of quasi boundary triples and their Weyl functions
from extension theory of symmetric operators. We shall make use of these notions
in Sect. 4 and formulate our main abstract result Theorem 4.1 in terms of the Weyl
function of a quasi boundary triple. In Sects. 5 and 6 quasi boundary triples and their
Weyl functions are used to parametrize self-adjoint Schrödinger operators and self-
adjoint elliptic differential operators with suitable boundary conditions. We refer to
[2,3] for more details on quasi boundary triples and to [4–6,8] for some applications;
for the related notions of generalized and ordinary boundary triples see [18,21–23,32,
69].

Throughout this section let H be a separable Hilbert space and let S be a densely
defined closed symmetric operator in H.

Definition 2.1 Let T ⊂ S∗ be a linear operator in H such that T = S∗. A triple
{G, �0, �1} is said to be a quasi boundary triple for T ⊂ S∗ if G is a Hilbert space and
�0, �1 : dom(T ) → G are linear mappings such that the following conditions (i)–(iii)
are satisfied:

(i) The abstract Green’s identity

(T f, g)H − ( f, T g)H = (�1 f, �0g)G − (�0 f, �1g)G

holds for all f, g ∈ dom(T ).
(ii) The range of the map (�0, �1)

� : dom(T ) → G × G is dense.
(iii) The operator A0 := T � ker(�0) is self-adjoint in H.
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Spectral shift functions and Dirichlet-to-Neumann maps 1261

The next theorem from [2,3] is useful in the applications in Sects. 5 and 6; it contains
a sufficient condition for a triple {G, �0, �1} to be a quasi boundary triple.

Theorem 2.2 Let H and G be separable Hilbert spaces and let T be a linear operator
in H. Assume that �0, �1 : dom(T ) → G are linear mappings such that the following
conditions (i)–(iii) hold:

(i) The abstract Green’s identity

(T f, g)H − ( f, T g)H = (�1 f, �0g)G − (�0 f, �1g)G

holds for all f, g ∈ dom(T ).
(ii) The range of (�0, �1)

� : dom(T ) → G × G is dense and ker(�0) ∩ ker(�1) is
dense in H.

(iii) T � ker(�0) is an extension of a self-adjoint operator A0.

Then

S := T �
(
ker(�0) ∩ ker(�1)

)

is a densely defined closed symmetric operator in H such that T = S∗ holds and the
triple {G, �0, �1} is a quasi boundary triple for S∗ with A0 = T � ker(�0).

Next, we recall the definition of the γ -field γ and Weyl function M associated to a
quasi boundary triple, which is formally the same as in [22,23] for the case of ordinary
or generalized boundary triples. Let {G, �0, �1} be a quasi boundary triple for T ⊂ S∗
with A0 = T � ker(�0) and note that the direct sum decomposition

dom(T ) = dom(A0) +̇ ker(T − z IH) = ker(�0) +̇ ker(T − z IH) (2.1)

of dom(T ) holds for all z ∈ ρ(A0). Hence the mapping �0 � ker(T − z IH) is injective
for all z ∈ ρ(A0) and its range coincides with ran(�0).

Definition 2.3 Let T ⊂ S∗ be a linear operator in H such that T = S∗ and let
{G, �0, �1} be a quasi boundary triple for T ⊂ S∗ with A0 = T � ker(�0). The
γ -field γ and the Weyl function M corresponding to {G, �0, �1} are operator-valued
functions on ρ(A0) which are defined by

z �→ γ (z) := (
�0 � ker(T − z IH)

)−1 and z �→ M(z) := �1
(
�0 � ker(T − z IH)

)−1
.

Various properties of the γ -field andWeyl function were provided in [2,3], see also
[18,21–23,69] for the special cases of ordinary and generalized boundary triples. We
briefly review some items which are important for our purposes. Note first that the
values γ (z), z ∈ ρ(A0), of the γ -field are operators defined on the dense subspace
ran(�0) ⊂ G which map onto ker(T − z IH) ⊂ H. The operators γ (z), z ∈ ρ(A0), are
bounded and admit continuous extensions γ (z) ∈ L(G,H). For the adjoint operators
γ (z)∗ ∈ L(H,G), z ∈ ρ(A0), it follows that

γ (z)∗ = �1(A0 − z IH)−1, z ∈ ρ(A0), (2.2)
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1262 J. Behrndt et al.

and, in particular, ran(γ (z)∗) = ran(�1 � dom(A0)) does not depend on z ∈ ρ(A0).
It is also important to note that (ran(γ (z)∗))⊥ = ker(γ (z)) = {0} and hence

ran(γ (z)∗) = G, z ∈ ρ(A0). (2.3)

In the same way as for ordinary boundary triples one verifies

γ (z)ϕ = (
IH+(z−z0)(A0−z IH)−1)γ (z0)ϕ, z, z0 ∈ ρ(A0), ϕ ∈ ran(�0), (2.4)

and therefore z �→ γ (z)ϕ is holomorphic on ρ(A0) for all ϕ ∈ ran(�0). The relation
(2.4) extends by continuity to

γ (z) = (
IH + (z − z0)(A0 − z IH)−1)γ (z0) ∈ L(G,H), z, z0 ∈ ρ(A0), (2.5)

and it follows that z �→ γ (z) is a holomorphic L(G,H)-valued operator function.
According to [6, Lemma 2.4] the identities

dk

dzk
γ (z) = k! (A0 − z IH)−kγ (z),

dk

dzk
γ (z)∗ = k! γ (z)∗(A0 − z IH)−k, (2.6)

hold for all k ∈ N0 and z ∈ ρ(A0).
The values M(z), z ∈ ρ(A0), of theWeyl function M associated to a quasi boundary

triple are operators in G and it follows from Definition 2.3 that

dom(M(z)) = ran(�0) and ran(M(z)) ⊂ ran(�1)

hold for all z ∈ ρ(A0). In particular, the operators M(z), z ∈ ρ(A0), are densely
defined in G. With the help of the abstract Green’s identity one concludes that for
z, z0 ∈ ρ(A0) and ϕ,ψ ∈ ran(�0) the Weyl function and the γ -field satisfy

(M(z)ϕ, ψ)G − (ϕ, M(z0)ψ)G = (z − z0)
(
γ (z)ϕ, γ (z0)ψ

)
G (2.7)

and hence M(z) ⊂ M(z)∗ and the operators M(z) are closable for all z ∈ ρ(A0).
From (2.7) it also follows that the Weyl function and the γ -field are connected via

M(z)ϕ − M(z0)
∗ϕ = (z − z0)γ (z0)

∗γ (z)ϕ, z, z0 ∈ ρ(A0), ϕ ∈ ran(�0). (2.8)

From (2.8) and (2.4) one obtains

Im(M(z))ϕ = Im(z) γ (z)∗γ (z)ϕ, z ∈ ρ(A0), ϕ ∈ ran(�0), (2.9)

and

M(z)ϕ = Re(M(z0))ϕ

+ γ (z0)
∗((z − Re(z0)) + (z − z0)(z − z0)(A0 − z IH)−1)γ (z0)ϕ (2.10)
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for all z, z0 ∈ ρ(A0) and ϕ ∈ ran(�0). One observes that z �→ M(z)ϕ is holomorphic
on ρ(A0) for all ϕ ∈ ran(�0) and by (2.9) the imaginary part of M(z) is a bounded
operator in G which admits a bounded continuation to

Im(M(z)) = Im(z) γ (z)∗γ (z) ∈ L(G). (2.11)

Furthermore, the derivatives dk

dzk M(z), k ∈ N, of theWeyl function are densely defined
bounded operators in G and according to [6, Lemma 2.4] one has

dk

dzk
M(z) = k! γ (z)∗(A0 − z IH)−(k−1)γ (z), k ∈ N, z ∈ ρ(A0).

If the values M(z) are densely defined bounded operators for some, and hence for all
z ∈ ρ(A0) then

dk

dzk
M(z) = k! γ (z)∗(A0 − z IH)−(k−1)γ (z), k ∈ N, z ∈ ρ(A0). (2.12)

The next result will be used in the formulation and proof of our abstract repre-
sentation formula for the spectral shift function in Sect. 4. The existence of a quasi
boundary triple follows from [8, Proposition 2.9(i)] and the Krein-type resolvent for-
mula in (2.14) is a special case of [3, Corollary 6.17] or [5, Corollary 3.9].

Proposition 2.4 Let A and B be self-adjoint operators inH and assume that the closed
symmetric operator S = A ∩ B is densely defined. Then the closure of the operator

T = S∗ � (dom(A) + dom(B))

coincides with S∗ and there exists a quasi boundary triple {G, �0, �1} for T ⊂ S∗
such that

A = T � ker(�0) and B = T � ker(�1). (2.13)

Furthermore, if γ and M are the corresponding γ -field and Weyl function then

(B − z IH)−1 − (A − z IH)−1 = −γ (z)M(z)−1γ (z)∗, z ∈ ρ(A) ∩ ρ(B). (2.14)

3 Logarithms of operator-valued Nevanlinna functions

In this section we study the logarithm of operator-valued Nevanlinna (or Nevanlinna–
Herglotz, resp., Riesz–Herglotz) functions. Here we shall recall some of the results
formulated in [26, Section 2] which go back to [10,60–62], and slightly extend and
reformulate these in a form convenient for our subsequent purposes.

We first recall the integral representation of the logarithm that corresponds to the
cut along the negative imaginary axis,

log(z) = −i
∫ ∞

0

(
1

z + iλ
− 1

1 + iλ

)
dλ, z ∈ C, z �= −iλ, λ ≥ 0. (3.1)
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Next, let G be a separable Hilbert space and let K ∈ L(G) be a bounded operator such
that Im(K ) ≥ 0 and 0 ⊂ ρ(K ). We use

log(K ) := −i
∫ ∞

0

[
(K + iλIG)−1 − (1 + iλ)−1 IG

]
dλ (3.2)

as the definition of the logarithm of the operator K . Then log(K ) ∈ L(G) by [26,
Lemma 2.6] and in the special case that K ∈ L(G) is self-adjoint and 0 ∈ ρ(K ), it
follows from [26, Lemma 2.7] that

Im(log(K )) = π EK ((−∞, 0)), (3.3)

where EK (·) is the spectral measure of K . In particular, if K ∈ L(G) is self-adjoint
and 0 ∈ ρ(K ) then σ(K ) ⊂ (0,∞) if and only if log(K ) is a self-adjoint operator.

In the next lemma we show that besides log(K ) also log(K ∗) is well-defined via
(3.2) when K is a dissipative operator with spectrum off the imaginary axis (cf. [26,
Lemmas 2.6, 2.7]).

Lemma 3.1 Let K ∈ L(G) be a dissipative operator such that iλ ∈ ρ(K ) for all
λ ≥ 0, and define

log(K ∗) := −i
∫ ∞

0

[
(K ∗ + iλIG)−1 − (1 + iλ)−1 IG

]
dλ. (3.4)

Then log(K ∗) ∈ L(G).

Proof From σ(K ∗) = {z ∈ C | z ∈ σ(K )} and the assumption iλ ∈ ρ(K ) for λ ≥ 0
it is clear that −iλ ∈ ρ(K ∗) for λ ≥ 0. Since K is dissipative it follows that K ∗ is
accretive, that is, Im(K ∗) ≤ 0. For δ > 0 one estimates

‖ log(K ∗)‖L(G) ≤
∫ δ

0

[∥∥(K ∗ + iλIG)−1
∥∥L(G)

+ 1
]

dλ

+
∫ ∞

δ

∥∥(K ∗ + iλIG)−1
∥∥L(G)

(‖K‖L(G) + 1
)
λ−1 dλ.

(3.5)

For 0 < λ <
∥∥(K ∗)−1

∥∥−1
L(G)

one has

∥∥(K ∗ + iλIG)−1
∥∥L(G)

≤
∥∥(K ∗)−1

∥∥L(G)

1 − λ
∥∥(K ∗)−1

∥∥L(G)

,

and with the choice δ = (
2
∥∥(K ∗)−1

∥∥L(G)

)−1 it follows that the first integral in (3.5) is
bounded. In order to show that the second integral in (3.5) is also bounded it suffices
to show that

∥∥(K ∗ + iλIG)−1
∥∥L(G)

≤ 1

λ − ‖K ∗‖L(G)

, λ > ‖K ∗‖L(G). (3.6)
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In fact, since Im(K ∗ + i‖K ∗‖L(G) IG) ≥ 0 one estimates for λ > ‖K ∗‖L(G),

0 ≤ (λ − ‖K ∗‖L(G))‖ f ‖2G = Im
(
i(λ − ‖K ∗‖L(G)) f, f

)
G

≤ Im
(
(iλ − i‖K ∗‖L(G)) f, f

)
G + Im

(
(K ∗ + i‖K ∗‖L(G) IG) f, f

)
G

= Im
(
(K ∗ + iλIG) f, f

)
G ≤ ‖(K ∗ + iλIG) f ‖G‖ f ‖G

(3.7)

and for f �= 0 this yields

0 ≤ (λ − ‖K ∗‖L(G))‖ f ‖G ≤ ‖(K ∗ + iλIG) f ‖G . (3.8)

Since −iλ ∈ ρ(K ∗) there exists g ∈ G such that f = (K ∗ + iλIG)−1g and then (3.8)
has the form

∥
∥(K ∗ + iλIG)−1g

∥
∥G ≤ 1

λ − ‖K ∗‖L(G)

‖g‖G, λ > ‖K ∗‖L(G).

This implies (3.6), and hence the second integral in the estimate (3.5) is finite. Thus,
log(K ∗) in (3.4) is a bounded operator in G. ��

We recall that a function N : C+ → L(G) is an operator-valued Nevanlinna (or
Riesz–Herglotz) function if N is holomorphic and Im(N (z)) ≥ 0 holds for all z ∈ C+.
An L(G)-valued Nevanlinna function is extended onto C− by setting

N (z) := N (z)∗, z ∈ C−. (3.9)

We shall say that aNevanlinna function N admits an analytic continuation by reflection
with respect to some open subset I ⊂ R if N can be continued analytically from C+
onto an open set O ⊂ C which contains I such that the values of the continuation in
O ∩ C− coincide with the values of N in (3.9) there.

Example 3.2 If
√

z is fixed for C\[0,∞) by Im(
√

z) > 0 and by
√

z ≥ 0 for z ∈
[0,∞) thenC+ � z �→ √

z is a (scalar )Nevanlinna function which admits an analytic
continuation by reflection with respect to (−∞, 0), but it does not admit an analytic
continuation by reflection with respect to any open subinterval of [0,∞).

An operator-valued Nevanlinna function admits a minimal operator representation
via the resolvent of a self-adjoint operator or relation in an auxiliary or larger Hilbert
space (see, e.g., [10,38,50,60]). More precisely, if N : C+ → L(G) is a Nevanlinna
function and z0 ∈ C+ is fixed then there exists a Hilbert space K, a self-adjoint
operator or self-adjoint relation L in K and an operator R ∈ L(G,K) (depending on
the choice of z0) such that

N (z) = Re(N (z0))+(z −Re(z0))R∗ R +(z − z0)(z − z0)R∗(L − z IK)−1R (3.10)

holds for z ∈ C+. If N satisfies the condition

lim
y↑+∞ y−1(N (iy)h, h)G = 0 for all h ∈ G, (3.11)
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then L in (3.10) is a self-adjoint operator in K; cf. [50, Corollary 2.5]. The represen-
tation (3.10) also holds for z ∈ C− when N is extended onto C− via (3.9). Note that
the model can be chosen minimal, that is, the minimality condition

K = clsp
{
(IK + (z − z0)(L − z IK)−1)Rh

∣
∣ z ∈ C\R, h ∈ G}

is satisfied, in which case the resolvent set ρ(L) of L coincides with the maximal
domain of analyticity of the function N . In particular, in this case N admits an analytic
continuation by reflectionwith respect to an open subset I ⊂ R if and only if I ⊂ ρ(L),
and the open subset ρ(L) ∩ R is maximal with this property.

Next, assume that N is an L(G)-valued Nevanlinna function and suppose that
N (z)−1 ∈ L(G) for some, and hence (by [26, Lemma 2.3]) for all z ∈ C\R. Then we
define for z ∈ C+ the logarithm log(N (z)) in accordance with (3.2) by

log(N (z)) := −i
∫ ∞

0

[
(N (z) + iλIG)−1 − (1 + iλ)−1 IG

]
dλ, (3.12)

and extend the function log(N ) onto C− by reflection,

log(N (z)) := (
log(N (z))

)∗
, z ∈ C− (3.13)

(cf. (3.9)). By [26, Lemma 2.8] the function z �→ log(N (z)) is also an L(G)-valued
Nevanlinna function and satisfies

0 ≤ Im(log(N (z))) ≤ π IG, z ∈ C+. (3.14)

The following theorem is a variant and slight extension of [26, Theorem 2.10], the
new and important feature here is that we provide a sufficient condition in terms of
the function N such that log(N ) admits an analytic continuation by reflection with
respect to some real interval and a corresponding integral representation there.

Theorem 3.3 Let N : C\R → L(G) be a Nevanlinna function and assume that
N (z)−1 ∈ L(G) for some, and hence for all z ∈ C\R. Then there exists a weakly
Lebesgue measurable operator-valued function λ �→ �(λ) ∈ L(G) on R such that

�(λ) = �(λ)∗ and 0 ≤ �(λ) ≤ IG for a.e. λ ∈ R, (3.15)

and the Nevanlinna function log(N ) : C\R → L(G) in (3.12)–(3.13) admits an
integral representation of the form

log(N (z)) = C +
∫

R

(
1

λ − z
− λ

1 + λ2

)
�(λ) dλ, (3.16)

where C = Re(log(N (i))) ∈ L(G) is a self-adjoint operator and the integral is
understood in the weak sense.

If, in addition, N admits an analytic continuation by reflection with respect to an
open interval I ⊂ R such that σ(N (z)) ⊂ (ε,∞) for some ε > 0 and all z ∈ I , then
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also log(N ) admits an analytic continuation by reflection with respect to I , �(λ) = 0
for a.e. λ ∈ I , and (3.16) remains valid for z ∈ I .

Proof We make use of the representation (3.10) applied to the Nevanlinna function
log(N ) with z0 = i . Then there exists a Hilbert space K and R ∈ L(G,K) such that

log(N (z)) = C + z R∗ R + (1 + z2)R∗(L − z IK)−1R, z ∈ C\R, (3.17)

where C = Re(log(N (i))) ∈ L(G) is a self-adjoint operator. For h ∈ G it follows
from (3.17) and (3.14) that

lim
y→+∞

1

y
Re

(
log((N (iy))h, h)G)

) = 0 = lim
y→+∞

1

y
Im

(
log((N (iy))h, h)G)

)
,

so that (3.11) holds for the function log(N ). Hence L in (3.17) is a self-adjoint operator
inK (cf. [26, Lemma 2.9]).We can assume that themodel is chosenminimal and hence
ρ(L) coincides with the maximal domain of analyticity of the Nevanlinna function
log(N ).

In order to prove (3.15) and (3.16) one can argue in the same way as in the proof
of [26, Theorem 2.10]. Let λ �→ EL(λ) be the spectral function of L such that
limλ↓−∞(EL(λ)h, h)G = 0. Then (3.17) yields

(
log(N (z))h, h

)
G = (Ch, h)G+

∫

R

(
1

λ − z
− λ

1 + λ2

)
(1+λ2) d

(
R∗EL(λ)Rh, h

)
G

for h ∈ G, z ∈ C\R, and (3.14) and the Stieltjes inversion formula imply that the
measures

dωh(·) = (1 + λ2)d
(
R∗EL(·)Rh, h

)
G (3.18)

are absolutely continuous with respect to the Lebesgue measure dλ and there exist
measurable functions ξh with 0 ≤ ξh(λ) ≤ ‖h‖2G for a.e. λ ∈ R such that dωh(λ) =
ξh(λ) dλ. Hence there exists a weakly Lebesgue measurable function λ �→ �(λ) such
that

ξh(λ) = (�(λ)h, h)G and 0 ≤ �(λ) ≤ IG,

proving (3.15) and (3.16).
Next, assume that N admits an analytic continuation by reflection with respect to

an open interval I ⊂ R such that σ(N (z)) ⊂ (ε,∞) for some ε > 0 and all z ∈ I .
Fix some z0 ∈ I and an open ball Bz0 ⊂ C centered at z0 such that N is analytic on
Bz0 . Since σ(N (z0)) ⊂ (ε,∞) we can assume that Bz0 was chosen such that

σ(N (z)) ⊂ {z ∈ C | ε/2 < Re(z), 0 ≤ Im(z) < ε}, z ∈ Bz0 ∩ C+,

and hence the operators N (z), z ∈ Bz0 ∩ C+, satisfy the assumptions in Lemma 3.1.
Therefore, the operators

log(N (z)∗) := −i
∫ ∞

0

[
(N (z)∗ + iλIG)−1 − (1 + iλ)−1 IG

]
dλ, z ∈ Bz0 ∩ C+,
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are well-defined, and since N (z) = N (z)∗, it follows that

log(N (z)) = −i
∫ ∞

0

[
(N (z) + iλIG)−1 − (1 + iλ)−1 IG

]
dλ, z ∈ Bz0 ∩ C−,

are well-defined, bounded operators in G. Furthermore, Lemma 3.1 also ensures that
for z ∈ Bz0 ∩ R the operators

log(N (z)) := −i
∫ ∞

0

[
(N (z) + iλIG)−1 − (1 + iλ)−1 IG

]
dλ, z ∈ Bz0 ∩ R,

are well-defined, bounded operators inG. Thus for all z ∈ Bz0 , the operators log(N (z))
arewell-definedvia (3.12). It then follows from (3.12) that the function z �→ log(N (z))
is analytic on Bz0 (cf. [26, Proof of Lemma 2.8]).

We shall now also make use of the logarithm

ln(z) =
∫ 0

−∞

(
1

λ − z
− λ

1 + λ2

)
dλ, z ∈ C\(−∞, 0], (3.19)

which corresponds to the cut along the negative real axis. Since

σ(N (z)) ⊂ {z ∈ C | ε/2 < Re(z), −ε < Im(z) < ε}, z ∈ Bz0 ,

it follows that

ln(N (z)) =
∫ 0

−∞
[
(λIG − N (z))−1 − λ(1 + λ2)−1 IG

]
dλ, z ∈ Bz0 , (3.20)

are well-defined operators and the function z �→ ln(N (z)) is analytic on Bz0 . In
addition, (3.20) yields

(
ln(N (z))

)∗ = ln(N (z)∗), z ∈ Bz0 . (3.21)

As log(z) = ln(z) (see (3.1)) for all z > 0 and N (z) is self-adjoint for z ∈ I it follows
from the spectral theorem that

log(N (z)) = ln(N (z)), z ∈ I,

and hence log(N (z)) = ln(N (z)), z ∈ Bz0 , by analyticity. Therefore, (3.21) and
N (z)∗ = N (z) yield

(
log(N (z))

)∗ = (
ln(N (z))

)∗ = ln(N (z)∗) = ln(N (z)) = log(N (z)), z ∈ Bz0 .

It follows that z �→ log(N (z)) is analytic on Bz0 and the continuation of log(N ) onto
Bz0 ∩ C− coincides with the extension of log(N ) onto C− defined by

log(N (z)) = (
log N (z)

)∗
, z ∈ C−,
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(cf. (3.9)). This reasoning applies to all ν ∈ I and hence we have shown that log(N )

admits an analytic continuation by reflection with respect to I .
Since the operator model for log(N ) is minimal the interval I belongs to ρ(L) and

the representation (3.17) remains valid for z ∈ ρ(L). It follows that the measures
dωh(·), h ∈ G, in (3.18) have no support in I and hence their Radon–Nikodym
deriatives satisfy ξh(λ) = 0 for a.e. λ ∈ I . It follows that (�(λ)h, h)G = 0 for
a.e. λ ∈ I and all h ∈ G. Since �(λ) ≥ 0 we conclude �(λ) = 0 for a.e. λ ∈ I . ��

In the next proposition we provide a sufficient condition such that the values of
the function � are trace class operators and we express the traces of �(λ) in terms of
certain weak limits of the imaginary part of log(N ).

Proposition 3.4 Let N : C\R → L(G) be a Nevanlinna function such that N (z)−1 ∈
L(G) for some, and hence for all z ∈ C\R, and assume that N admits an analytic
continuation by reflection with respect to an open interval I ⊂ R such that σ(N (ζ )) ⊂
(ε,∞) for some ε > 0 and all ζ ∈ I . Consider

log(N (z)) = C +
∫

R

(
1

λ − z
− λ

1 + λ2

)
�(λ) dλ, (3.22)

for z ∈ (C\R) ∪ I with �(λ) = �(λ)∗ and 0 ≤ �(λ) ≤ IG for a.e. λ ∈ R as in
(3.15), and assume, in addition, that for some k ∈ N0 and some ζ ∈ I ,

d2k+1

dζ 2k+1 log(N (ζ )) ∈ S1(G). (3.23)

Then 0 ≤ �(λ) ∈ S1(G) for a.e. λ ∈ R, and

trG(�(λ)) =
∑

j∈J

lim
ε↓0

1

π

(
Im(log(N (λ + iε)))ϕ j , ϕ j

)
G (3.24)

holds for any orthonormal basis (ϕ j ) j∈J in G (J ⊆ N an appropriate index set ) and
for a.e. λ ∈ R. Furthermore, if (3.23) holds for some ζ ∈ I and k = 0, that is,

d

dζ
log(N (ζ )) ∈ S1(G), (3.25)

then Im(log(N (z))) ∈ S1(G) for all z ∈ C\R, the limit

Im
(
log(N (λ + i0))

) := lim
ε↓0 Im

(
log(N (λ + iε))

) ∈ S1(G)

exists for a.e. λ ∈ R in the norm of S1(G), and

trG(�(λ)) = 1

π
trG

(
Im(log(N (λ + i0)))

)
for a.e. λ ∈ R. (3.26)
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Proof The assumption (3.23) together with the integral representation (3.22) yields

d2k+1

dζ 2k+1 log(N (ζ ))

= (2k + 1)!
∫

R

1

(λ − ζ )2k+2 �(λ) dλ ∈ S1(G), k ∈ N0, ζ ∈ I. (3.27)

Since �(λ) ≥ 0 by (3.15) and (λ − ζ )−2k−2 ≥ 0 for all λ ∈ R, ζ ∈ I , it follows
together with the assumption (3.23) that the integral in (3.27) is a nonnegative trace
class operator. Similarly, as in [26, Proof of Theorem 2.10], themonotone convergence
theorem yields �(λ) ∈ S1(G) for a.e. λ ∈ R. For ε > 0 it follows from the integral
representation (3.22) that

(
Im(log(N (λ + iε)))h, h

)
G =

∫

R

ε

|λ′ − λ|2 + ε2
(�(λ′)h, h)G dλ′ (3.28)

holds for all h ∈ G and all λ ∈ R, and therefore the Stietljes inversion formula yields

lim
ε↓0

1

π

(
Im(log(N (λ + iε)))h, h

)
G = (�(λ)h, h)G for a.e. λ ∈ R. (3.29)

Let (ϕ j ) j∈J be an orthonormal basis in G. Then

lim
ε↓0

1

π

(
Im(log(N (λ + iε)))ϕ j , ϕ j

)
G = (�(λ)ϕ j , ϕ j )G (3.30)

holds for all λ ∈ R\A j , where A j ⊂ R, j ∈ J , is a set of Lebesgue measure zero.
The countable unionA := ∪ j∈JA j is also a set of Lebesgue measure zero and for all
λ ∈ R\A and all ϕ j one has (3.30). Taking into acount that 0 ≤ �(λ) ∈ S1(G) for
a.e. λ ∈ R this implies

∑

j∈J

lim
ε↓0

1

π

(
Im(log(N (λ + iε)))ϕ j , ϕ j

)
G =

∑

j∈J

(�(λ)ϕ j , ϕ j )G = trG(�(λ))

for a.e. λ ∈ R, that is, (3.24) holds.
In the special case that (3.23) holds with k = 0 the formula (3.27) has the form

d

dζ
log(N (ζ )) =

∫

R

1

(λ − ζ )2
�(λ) dλ ∈ S1(G), ζ ∈ I.

Since 0 ≤ �(λ) ∈ S1(G) for a.e. λ ∈ R we conclude

Im(log(N (z))) =
∫

R

Im(z)

|λ − z|2 �(λ) dλ ∈ S1(G) (3.31)
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for all z ∈ C\R. The last assertion on the existence of the limit Im(log(N (λ+ i0))) for
a.e. λ ∈ R in S1(G) is an immediate consequence of (3.31) and well-known results
in [10,60,61] (cf. [26, Theorem 2.2(iii)]). ��

The following lemma will be useful in the proof of our main result, Theorem 4.1,
in the next section; it also provides a sufficient condition for the assumption (3.23) in
Proposition 3.4.

Lemma 3.5 Let N : C\R → L(G) be a Nevanlinna function such that N (z)−1 ∈
L(G) for some, and hence for all z ∈ C\R. Let � ∈ N and assume that

d j

dz j
N (z) ∈ S l

j
(G), j = 1, . . . , �, (3.32)

holds for all z ∈ C\R. Then

d�

dz�
log(N (z)) ∈ S1(G) and

d�−1

dz�−1

(
N (z)−1 d

dz
N (z)

)
∈ S1(G) (3.33)

and

trG
(

d�−1

dz�−1

(
N (z)−1 d

dz
N (z)

))
= trG

(
d�

dz�
log(N (z))

)
(3.34)

hold for all z ∈ C\R.
Furthermore, if N admits an analytic continuation by reflection with respect to an

open interval I ⊂ R such that σ(N (z)) ⊂ (ε,∞) for some ε > 0 and all z ∈ I , and
(3.32) is satisfied for z ∈ I , then also the assertions (3.33) and (3.34) are valid for all
z ∈ I .

Proof We prove Lemma 3.5 for the case � = 1 and leave the induction step to the
reader. Assume that

d

dz
N (z) ∈ S1(G) (3.35)

holds for z ∈ C+ (the proof works also for z ∈ I if N admits an analytic continuation
by reflection with respect to I and σ(N (z)) ⊂ (ε,∞) holds for some ε > 0 and
all z ∈ I ). One notes that N (z)−1 ∈ L(G) implies the second assertion in (3.33)
for � = 1. In addition, one observes that log(N (z)) is well-defined and analytic for
z ∈ C+ according to (3.12) and Theorem 3.3. Since 0 ∈ ρ(N (z)) and

∥∥(N (z) + iλIG)−1
∥∥L(G)

≤ λ−1, λ > 0 (3.36)

(cf. the proof of Lemma 3.1 and [26, Proof of Lemma 2.6 (i)]), it follows by the
dominated convergence theorem that

d

dz

(
log(N (z))ϕ, ψ

)
G

= i
∫ ∞

0

(
(N (z) + iλIG)−1

(
d

dz
N (z)

)
(N (z) + iλIG)−1ϕ,ψ

)

G
dλ
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holds for all ϕ,ψ ∈ G and all z ∈ C+, and hence

d

dz
log(N (z))

= i
∫ ∞

0
(N (z) + iλIG)−1

(
d

dz
N (z)

)
(N (z) + iλIG)−1 dλ, z ∈ C+. (3.37)

The assumption (3.35) yields

(N (z) + iλIG)−1
(

d

dz
N (z)

)
(N (z) + iλIG)−1 ∈ S1(G), λ ≥ 0.

From (3.36) and the properties of the trace class norm ‖ · ‖S1(G) one gets

∥∥∥∥(N (z) + iλIG)−1
(

d

dz
N (z)

)
(N (z) + iλIG)−1

∥∥∥∥
S1(G)

≤ 1

λ2

∥∥∥∥
d

dz
N (z)

∥∥∥∥
S1(G)

,

λ > 0, and hence the integral in (3.37) exists in trace class norm, that is, the first
assertion in (3.33) holds for � = 1. In order to prove (3.34) for � = 1 we use (3.37)
and cyclicity of the trace (i.e., trG(C D) = trG(DC) whenever C, D ∈ L(G) such that
C D, DC ∈ S1(G)) and obtain

trG
(

d

dz
log(N (z))

)
= trG

(
i
∫ ∞

0
(N (z) + iλIG)−1

(
d

dz
N (z)

)
(N (z) + iλIG)−1 dλ

)

= i
∫ ∞

0
trG

(
(N (z) + iλIG)−2 d

dz
N (z)

)
dλ

=
∫ ∞

0
trG

(
− d

dλ
(N (z) + iλIG)−1 d

dz
N (z)

)
dλ

= −
∫ ∞

0

d

dλ
trG

(
(N (z) + iλIG)−1 d

dz
N (z)

)
dλ

= trG
(

N (z)−1 d

dz
N (z)

)
.

Here we have used limλ→+∞ trG
(
(N (z) + iλIG)−1 d

dz N (z)
) = 0 in the last step,

which follows from

∥∥
∥∥(N (z) + iλIG)−1 d

dz
N (z)

∥∥
∥∥
S1(G)

≤ 1

λ

∥∥
∥∥

d

dz
N (z)

∥∥
∥∥
S1(G)

, λ > 0.

��
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4 A representation of the spectral shift function in terms of the Weyl
function

Let A and B be self-adjoint operators in a separable Hilbert space H and assume that
the closed symmetric operator S = A ∩ B, that is,

S f = A f = B f, dom(S) = {
f ∈ dom(A) ∩ dom(B) | A f = B f

}
, (4.1)

is densely defined. According to Proposition 2.4 we can choose a quasi boundary triple
{G, �0, �1} with γ -field γ and Weyl function M such that

A = T � ker(�0) and B = T � ker(�1), (4.2)

and

(B − z IH)−1 − (A − z IH)−1 = −γ (z)M(z)−1γ (z)∗, z ∈ ρ(A) ∩ ρ(B). (4.3)

In the next theorem we find an explicit expression for a spectral shift function of
the pair {A, B} in terms of the Weyl function M , see [49, Theorem 1] for the case that
the difference of (the first powers of) the resolvents A and B is a rank one operator,
[7, Theorem 4.1] for the finite-rank case, and [56, Theorem 3.4 and Remark 3.5] for
a different representation via a perturbation determinant involving the Weyl function
and boundary parameters of an ordinary boundary triple. In the present situation of
infinite dimensional perturbations and differences of higher powers of resolvents a
much more careful analysis is necessary, in particular, the properties of the logarithm
of operator-valued Nevanlinna functions discussed in Sect. 3 will play an essential
role. In Theorem 4.1 an implicit sign condition on the perturbation is imposed via
the resolvents which leads to a nonnegative spectral shift function; this condition will
be weakend afterwards (cf. (4.25) and (4.29)). In the special case that A and B are
semibounded operators the sign condition (4.4) is equivalent to the inequality tA ≤ tB

of the semibounded closed quadratic forms tA and tB corresponding to A and B. In
order to ensure that for some k ∈ N0 the difference of the 2k + 1th-powers of the
resolvents of A and B is a trace class operator a set ofSp-conditions on the γ -field and
the Weyl function are imposed. In the applications in Sects. 5 and 6 these conditions
are satisfied.

Theorem 4.1 Let A and B be self-adjoint operators in a separable Hilbert space H
and assume that for some ζ0 ∈ ρ(A) ∩ ρ(B) ∩ R the sign condition

(A − ζ0 IH)−1 ≥ (B − ζ0 IH)−1 (4.4)

holds. Let the closed symmetric operator S = A ∩ B in (4.1) be densely defined and
let {G, �0, �1} be a quasi boundary triple with γ -field γ and Weyl function M such
that (4.2), and hence also (4.3), hold. Assume that M(z1), M(z2)−1 are bounded (not
necessarily everywhere defined ) operators in G for some z1, z2 ∈ ρ(A) ∩ ρ(B) and
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that for some k ∈ N0, all p, q ∈ N0, and all z ∈ ρ(A) ∩ ρ(B),

(
d p

dz p
γ (z)

)
dq

dzq

(
M(z)−1γ (z)∗

) ∈ S1(H), p + q = 2k, (4.5)

(
dq

dzq

(
M(z)−1γ (z)∗

)) d p

dz p
γ (z) ∈ S1(G), p + q = 2k, (4.6)

and
d j

dz j
M(z) ∈ S(2k+1)/j (G), j = 1, . . . , 2k + 1. (4.7)

Then the following assertions (i) and (ii) hold:

(i) The difference of the 2k +1th-powers of the resolvents of A and B is a trace class
operator, that is,

[
(B − z IH)−(2k+1) − (A − z IH)−(2k+1)] ∈ S1(H) (4.8)

holds for all z ∈ ρ(A) ∩ ρ(B).
(ii) For any orthonormal basis (ϕ j ) j∈J in G the function

ξ(λ) =
∑

j∈J

lim
ε↓0 π−1(Im

(
log

(
M(λ + iε)

))
ϕ j , ϕ j

)
G for a.e. λ ∈ R, (4.9)

is a spectral shift function for the pair {A, B} such that ξ(λ) = 0 in an open neigh-
borhood of ζ0; the function ξ does not depend on the choice of the orthonormal
basis (ϕ j ) j∈J . In particular, the trace formula

trH
(
(B − z IH)−(2k+1) − (A − z IH)−(2k+1)) = −(2k + 1)

∫

R

ξ(λ) dλ

(λ − z)2k+2

is valid for all z ∈ ρ(A) ∩ ρ(B).

Proof Step 1 In this step we show that the Nevanlinna function z �→ M(z) satisfies the
assumptions of Theorem 3.3 and admits an analytic continuation by reflection with
respect to an open interval Iζ0 ⊂ R, such that σ

(
M(z)

) ⊂ (ε,∞) for some ε > 0
and all z ∈ Iζ0 , where Iζ0 ⊂ ρ(A) ∩ ρ(B) is a suitable small open interval in R with
ζ0 ∈ Iζ0 . Hence by Theorem 3.3 there exists a weakly Lebesgue measurable operator
function λ �→ �(λ) ∈ L(G) on R such that

�(λ) = �(λ)∗ and 0 ≤ �(λ) ≤ IG for a.e. λ ∈ R, (4.10)

and the Nevanlinna function log
(
M

)
admits an integral representation of the form

log
(
M(z)

) = Re
(
log(M(i)

)) +
∫

R

(
1

λ − z
− λ

1 + λ2

)
�(λ) dλ, (4.11)

valid for all z ∈ (C\R) ∪ Iζ0 , and �(λ) = 0 for a.e. λ ∈ Iζ0 .
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First, it follows from (2.8) and the assumption that M(z1) is bounded for some
z1 ∈ ρ(A) that M(z) is bounded for all z ∈ ρ(A) and hence the closures are bounded
operators defined on G, that is,

M(z) ∈ L(G), z ∈ ρ(A), and Im
(
M(z)

) ≥ 0, z ∈ C+, (4.12)

by (2.11). Since−M−1 is theWeyl function corresponding to the quasi boundary triple
{G, �1,−�0}, where B = T � ker(�1) is self-adjoint according to (4.2), it follows
from the assumption that M(z2)−1 is bounded for some z2 ∈ ρ(B) that M(z)−1 is
bounded for all z ∈ ρ(A) ∩ ρ(B), that is,

M(z)−1 ∈ L(G) for all z ∈ ρ(A) ∩ ρ(B). (4.13)

Therefore, taking into account (4.12) and (4.13), it follows that the logarithm z �→
log(M(z)) ∈ L(G) is well-defined by

log
(
M(z)

) := −i
∫ ∞

0

[(
M(z) + iλIG

)−1 − (1+ iλ)−1 IG
]

dλ, z ∈ C+, (4.14)

and
log

(
M(z)

) := (
log

(
M(z)

))∗
, z ∈ C−; (4.15)

see (3.12)–(3.13) in Sect. 3 and [26, Lemma 2.6]. We claim that the function M has
the property

σ
(
M(z)

) ⊂ (ε,∞) (4.16)

for some ε > 0 and all z ∈ Iζ0 , where Iζ0 is a suitable small open interval in R with
ζ0 ∈ Iζ0 . In fact, due to (4.3) and the sign condition (4.4), one has

0 ≤ (
(A − ζ0 IH)−1 f − (B − ζ0 IH)−1 f, f

)
H

= (
M(ζ0)

−1γ (ζ0)
∗ f, γ (ζ0)

∗ f
)
G, f ∈ H,

and since ran(γ (ζ0)
∗) is dense in G (see (2.3)), it follows that the bounded operator

M(ζ0)
−1 is nonnegative. The same is true for M(ζ0) and the closure M(ζ0), and from

(4.13) one concludes σ
(
M(ζ0)

) ⊂ (ε,∞) for some ε > 0. Since ζ0 ∈ ρ(A) ∩ ρ(B)

the Nevanlinna function M admits an analytic continuation by reflection with respect
to a real neighborhood of ζ0, and it follows that (4.16) holds for all λ in a sufficiently
small interval Iζ0 ⊂ ρ(A) ∩ ρ(B) ∩ R with ζ0 ∈ Iζ0 .

Step 2 In this step we show that for z ∈ (C\R) ∪ Iζ0 , the trace class property (4.8)
holds, and that

trH
(
(B − z IH)−(2k+1) − (A − z IH)−(2k+1)) = trG

( −1

(2k)!
d2k+1

dz2k+1 log
(
M(z)

))
.

(4.17)
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In fact, for z ∈ (C\R) ∪ Iζ0 one computes

(B − z IH)−(2k+1) − (A − z IH)−(2k+1)

= 1

(2k)!
d2k

dz2k

(
(B − z IH)−1 − (A − z IH)−1)

= −1

(2k)!
d2k

dz2k

(
γ (z)M(z)−1γ (z)∗

) = −1

(2k)!
d2k

dz2k

(
γ (z)M(z)−1γ (z)∗

)

= −1

(2k)!
∑

p+q=2k
p,q�0

(
2k
p

)(
d p

dz p
γ (z)

)
dq

dzq

(
M(z)−1γ (z)∗

)
,

and by assumption (4.5) each summand is a trace class operator; in the last step
the product rule for holomorphic operator functions was applied, see, e.g. [6, (2.6)].
This proves (4.8). Furthermore, making use of both assumptions (4.5) and (4.6), the
cyclicity of the trace (see, e.g., [72, Theorem 7.11(b)]), and

d

dz
M(z) = γ (z)∗γ (z), z ∈ ρ(A), (4.18)

one obtains

trH
(
(B − z IH)−(2k+1) − (A − z IH)−(2k+1))

= −1

(2k)!
∑

p+q=2k
p,q�0

(
2k
p

)
trH

((
d p

dz p
γ (z)

)
dq

dzq

(
M(z)−1γ (z)∗

))

= −1

(2k)!
∑

p+q=2k
p,q�0

(
2k
p

)
trG

((
dq

dzq

(
M(z)−1γ (z)∗

)) d p

dz p
γ (z)

)

= trG
( −1

(2k)!
d2k

dz2k

(
M(z)−1γ (z)∗γ (z)

))

= trG
( −1

(2k)!
d2k

dz2k

(
M(z)−1 d

dz
M(z)

))
.

Noting that assumption (4.7) and Lemma 3.5 with � = 2k + 1 imply

d2k+1

dz2k+1 log
(
M(z)

) ∈ S1(G), (4.19)

and that

trG
(

d2k

dz2k

(
M(z)−1 d

dz
M(z)

))
= trG

(
d2k+1

dz2k+1 log
(
M(z)

))
, (4.20)

one concludes the trace formula (4.17).
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Step 3 Now we complete the proof of Theorem 4.1. Since (4.19) is valid for all
z ∈ Iζ0 the assumption (3.23) in Proposition 3.4 is satisfied. It then follows from
Proposition 3.4 that 0 ≤ �(λ) ∈ S1(G) for a.e. λ ∈ R and

trG(�(λ)) =
∑

j∈J

lim
ε↓0 π−1(Im

(
log

(
M(λ + iε)

))
ϕ j , ϕ j

)
G (4.21)

holds for any orthonormal basis (ϕ j ) j∈J in G and for a.e. λ ∈ R. Furthermore, from
(4.11) one obtains

d2k+1

dz2k+1 log
(
M(z)

) = (2k + 1)!
∫

R

1

(λ − z)2k+2 �(λ) dλ, z ∈ (C\R) ∪ Iζ0 ,

and hence

trH
(
(B − z IH)−(2k+1) − (A − z IH)−(2k+1)) = −(2k + 1)

∫

R

trG(�(λ)) dλ

(λ − z)2k+2 (4.22)

for all z ∈ (C\R) ∪ Iζ0 by (4.17). It also follows from (4.22) that

∫

R

trG(�(λ)) dλ

(1 + |λ|)2k+2 < ∞ (4.23)

holds and together with (4.21)–(4.23) we conclude that the function

ξ(λ) := trG(�(λ)) =
∑

j∈J

lim
ε↓0 π−1(Im

(
log

(
M(λ + iε)

))
ϕ j , ϕ j

)
G for a.e. λ ∈ R

in (4.9) is a spectral shift function for the pair {A, B}. Next, since

trG(�(λ)) =
∑

j∈J

(�(λ)ϕ j , ϕ j )G

does not depend on the choice of the orthonormal basis (ϕ j ) j∈J , it follows that the
function ξ does not depend on the choice of the orthonormal basis (cf. Proposition 3.4).
Finally, since �(λ) = 0 for a.e. λ ∈ Iζ0 by Theorem 3.3 it follows that ξ(λ) = 0 for
a.e. λ ∈ Iζ0 . ��

In the special case k = 0 Theorem 4.1 can be slightly improved. Here the essential
feature is that Proposition 3.4 can be applied under the assumption (3.25), so that the
limit Im(log(M(λ + i0))) exists in S1(G) for a.e. λ ∈ R.

Corollary 4.2 Let A and B be self-adjoint operators in a separable Hilbert space H
and assume that for some ζ0 ∈ ρ(A) ∩ ρ(B) ∩ R the sign condition

(A − ζ0 IH)−1 ≥ (B − ζ0 IH)−1
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holds. Assume that the closed symmetric operator S = A∩B in (4.1) is densely defined
and let {G, �0, �1} be a quasi boundary triple with γ -field γ and Weyl function M
such that (4.2), and hence also (4.3), hold. Assume that M(z1), M(z2)−1 are bounded
(not necessarily everywhere defined ) operators in G for some z1, z2 ∈ ρ(A) and that
γ (z0) ∈ S2(G,H) for some z0 ∈ ρ(A). Then the following assertions (i)–(iii) hold:

(i) The difference of the resolvents of A and B is a trace class operator, that is,

[
(B − z IH)−1 − (A − z IH)−1] ∈ S1(H)

holds for all z ∈ ρ(A) ∩ ρ(B).
(ii) Im

(
log

(
M(z)

)) ∈ S1(G) for all z ∈ C\R and the limit

Im
(
log

(
M(λ + i0)

)) := lim
ε↓0 Im

(
log

(
M(λ + iε)

))

exists for a.e. λ ∈ R in S1(G).
(iii) The function

ξ(λ) = π−1 trG
(
Im

(
log

(
M(λ + i0)

)))
for a.e. λ ∈ R, (4.24)

is a spectral shift function for the pair {A, B} such that ξ(λ) = 0 in an open
neighborhood of ζ0 and the trace formula

trH
(
(B − z IH)−1 − (A − z IH)−1) = −

∫

R

ξ(λ) dλ

(λ − z)2

is valid for all z ∈ ρ(A) ∩ ρ(B).

Proof The assumption γ (z0) ∈ S2(G,H) for some z0 ∈ ρ(A) implies γ (z) ∈
S2(G,H) for all z ∈ ρ(A) by (2.5) and hence also γ (z)∗ ∈ S2(H,G) for all z ∈ ρ(A).
Since M(z)−1 is bounded for all z ∈ ρ(A) ∩ ρ(B) (see (2.8)), conditions (4.5)–(4.6)
in Theorem 4.1 are satisfied for k = 0 and all z ∈ ρ(A) ∩ ρ(B). Furthermore,

d

dz
M(z) = γ (z)∗γ (z) ∈ S1(G)

by (2.12) and hence (4.7) holds for k = 0. In particular, by Lemma 3.5 we have

d

dz
log

(
M(z)

) ∈ S1(G).

In Step 3 of the proof of Theorem 4.1 we can now apply Proposition 3.4 under the
assumption (3.25), so that (3.26) holds with N (λ + i0) replaced by M(λ + i0). Now
the assertions (i)–(iii) in Corollary 4.2 follow from Theorem 4.1 and Proposition 3.4.

��
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In the next stepwe replace the sign condition (4.4) in the assumptions inTheorem4.1
by some weaker comparability condition. Again, let A and B be self-adjoint operators
in a separable Hilbert space H and assume that there exists a self-adjoint operator C
in H such that

(C − ζA IH)−1 ≥ (A − ζA IH)−1 and (C − ζB IH)−1 ≥ (B − ζB IH)−1 (4.25)

for some ζA ∈ ρ(A) ∩ ρ(C) ∩ R and some ζB ∈ ρ(B) ∩ ρ(C) ∩ R, respectively.
Assume that the closed symmetric operators SA = A ∩ C and SB = B ∩ C are both
densely defined and choose quasi boundary triples {GA, �A

0 , �A
1 } and {GB, �B

0 , �B
1 }

with γ -fields γA, γB and Weyl functions MA, MB for

TA = S∗
A �

(
dom(A) + dom(C)

)
and TB = S∗

B �
(
dom(B) + dom(C)

)

such that
C = TA � ker(�A

0 ) = TB � ker(�B
0 ), (4.26)

and
A = TA � ker(�A

1 ) and B = TB � ker(�B
1 ), (4.27)

(cf. Proposition 2.4). Next, assume that for some k ∈ N0, the conditions in Theo-
rem 4.1 are satisfied for the γ -fields γA, γB and the Weyl functions MA, MB . Then
the difference of the 2k + 1-th powers of the resolvents of A and C , and B and C
are trace class operators, and for orthonormal bases (ϕ j ) j∈J in GA and (ψ�)�∈L in GB

(J, L ⊆ N appropriate index sets),

ξA(λ) =
∑

j∈J

lim
ε↓0 π−1(Im

(
log

(
MA(λ + iε)

))
ϕ j , ϕ j

)
GA

for a.e. λ ∈ R,

ξB(λ) =
∑

�∈L

lim
ε↓0 π−1(Im

(
log

(
MB(λ + iε)

))
ψ�,ψ�

)
GB

for a.e. λ ∈ R,
(4.28)

are spectral shift functions for the pairs {C, A} and {C, B}, respectively. It follows for
z ∈ ρ(A) ∩ ρ(B) ∩ ρ(C) that

trH
(
(B − z IH)−(2k+1) − (A − z IH)−(2k+1)) = −(2k + 1)

∫

R

[ξB(λ) − ξA(λ)] dλ

(λ − z)2k+2

and
∫
R

|ξB (λ)−ξA(λ)| dλ

(1+|λ|)2m+2 < ∞. Therefore,

ξ(λ) = ξB(λ) − ξA(λ) for a.e. λ ∈ R, (4.29)

is a spectral shift function for the pair {A, B}, and in the special case where GA =
GB := G and (ϕ j ) j∈J is an orthonormal basis in G, one infers that

ξ(λ) =
∑

j∈J

lim
ε↓0 π−1

((
Im

(
log

(
MB(λ + iε)

) − log
(
MA(λ + iε)

))
ϕ j , ϕ j

)

G

for a.e. λ ∈ R. (4.30)
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We emphasize that in contrast to the spectral shift function in Theorem 4.1, the spectral
shift function ξ in (4.29) and (4.30) is not necessarily nonnegative.

5 Elliptic differential operators with Robin boundary conditions

In this section we consider a uniformly elliptic formally symmetric second-order
differential expression L on a bounded or unbounded domain in R

n with compact
boundary, and we determine a spectral shift function for a pair {Aβ0 , Aβ1} consisting
of two self-adjoint Robin-realizations of L. We shall assume throughout this section
that the following hypothesis holds.

Hypothesis 5.1 Let n ∈ N, n ≥ 2, and � ⊆ R
n be nonempty and open such that

its boundary ∂� is nonempty, C∞-smooth, and compact. Consider the differential
expression

L = −
n∑

j,k=1

(
∂

∂x j

(
a jk

∂

∂xk

))
+ a (5.1)

on �, where the real-valued coefficients a jk ∈ C∞(�) satisfy a jk(x) = akj (x) for
all x ∈ � and j, k = 1, . . . , n, their first partial derivatives are bounded in �,
and a ∈ C∞(�) is a real-valued, bounded, measurable function. Furthermore, it is
assumed that L is uniformly elliptic on �, that is, for some C > 0,

n∑

j,k=1

a jk(x)ξ jξk ≥ C
n∑

k=1

ξ2k (5.2)

holds for all ξ = (ξ1, . . . , ξn)� ∈ R
n and x ∈ �.

We briefly recall the definition and some mapping properties of the Dirichlet and
(oblique) Neumann trace maps associated with the differential expression L. For a
function f ∈ C∞(�) we denote its trace by γD f = f |∂� and we set

γν f =
n∑

j,k=1

a jkn j
∂ f

∂xk

∣∣∣
∂�

, f ∈ C∞(�),

where n(x) = (n1(x), . . . , nn(x))� is the unit normal vector at x ∈ ∂� pointing out
of the domain �. Let C∞

0 (�) := {h|� | h ∈ C∞
0 (Rn)} and recall that the mapping

C∞
0 (�) � f �→ {γD f, γν f } can be extended to a continuous surjective mapping

H2(�) � f �→ {γD f, γν f } ∈ H3/2(∂�) × H1/2(∂�), (5.3)

and that Green’s second identity

(L f, g)L2(�) − ( f,Lg)L2(�) = (γD f, γνg)L2(∂�) − (γν f, γDg)L2(∂�) (5.4)
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is valid for all f, g ∈ H2(�); cf. [53]. We will also use the fact that

γD f ∈ Hk−1/2(∂�) for all f ∈ Hk(�), k ∈ N. (5.5)

The following lemma is a variant of [5, Lemma 4.7]; it will be useful for the Sp-
estimates in this and the next section.

Lemma 5.2 Let � ⊆ R
n be as in Hypothesis 5.1, let X ∈ L(

L2(�), Ht (∂�)
)
, and

assume that ran(X) ⊆ Hs(∂�) for some s > t ≥ 0. Then X is compact and

X ∈ Sr
(
L2(�), Ht (∂�)

)
for all r > (n − 1)/(s − t).

Assume that β0 ∈ C1(∂�) and β1 ∈ C1(∂�) are real-valued functions. For p =
0, 1 we consider the elliptic differential operators in L2(�),

Aβp f = L f, dom(Aβp ) = {
f ∈ H2(�)

∣∣ βpγD f = γν f
}
, (5.6)

which correspond to the densely defined, closed, semibounded quadratic forms

aβp [ f, g] =
n∑

j,k=1

(
a jk

∂ f

∂xk
,

∂g

∂x j

)

L2(�)

+(a f, g)L2(�)−(βpγD f, γDg)L2(∂�) (5.7)

defined on H1(�) × H1(�). Both operators Aβ0 and Aβ1 are self-adjoint in L2(�)

and semibounded from below. For β ∈ R we shall also make use of the self-adjoint
Robin realization

Aβ f = L f, dom(Aβ) = {
f ∈ H2(�)

∣∣ βγD f = γν f
}
, (5.8)

which corresponds to the densely defined, closed, semibounded quadratic form

aβ [ f, g] =
n∑

j,k=1

(
a jk

∂ f

∂xk
,

∂g

∂x j

)

L2(�)

+ (a f, g)L2(�) − (βγD f, γDg)L2(∂�) (5.9)

on H1(�) × H1(�).
Next, we define the Neumann-to-Dirichlet map associated toL as a densely defined

operator in L2(∂�). First one notes that for β0 = 0 in (5.6) (or β = 0 in (5.8)) one
obtains

AN := A0 = Aβ0 , (5.10)

where AN denotes the self-adjoint Neumann realization of L in L2(�). One recalls
that for ϕ ∈ H1/2(∂�) and z ∈ ρ(AN ), the boundary value problem

L fz = z fz, γν fz = ϕ, (5.11)
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admits a unique solution fz ∈ H2(�); this follows, for instance, from (5.3) and
z ∈ ρ(AN ). The corresponding solution operator is denoted by

Pν(z) : L2(∂�) → L2(�), ϕ �→ fz, (5.12)

and it is clear that dom(Pν(z)) = H1/2(∂�) and ran(Pν(z)) ⊆ H2(�). For z ∈ ρ(AN )

the Neumann-to-Dirichlet map associated to L is defined as

N (z) : L2(∂�) → L2(∂�), ϕ �→ γD Pν(z)ϕ; (5.13)

it maps the (oblique) Neumann boundary values γν fz of solutions fz ∈ H2(�) of
(5.11) onto the Dirichlet boundary values γD fz . It follows from the properties of the
trace maps that

dom(N (z)) = H1/2(∂�) and ran(N (z)) ⊆ H3/2(∂�). (5.14)

In the next theorem a spectral shift function for the pair {Aβ0 , Aβ1} is expressed in
terms of the limits of the Neumann-to-Dirichlet map N (z) and the functions β0 and
β1 in the boundary conditions of the Robin realizations Aβ0 and Aβ1 . We mention that
the trace class condition for the difference of the 2k + 1-th powers of the resolvents
was shown for k = 0 in [4,34] and for k ∈ N in [6].

Theorem 5.3 Assume Hypothesis 5.1, let Aβ0 and Aβ1 be the self-adjoint Robin real-
izations of L in L2(�) in (5.6), let β ∈ R such that βp(x) < β for all x ∈ ∂� and
p = 0, 1 and let Aβ be the self-adjoint Robin realizations of L in (5.8). Furthermore,
let

Mp(z) = (β−βp)
−1(βpN (z)−IL2(∂�)

)(
βN (z)−IL2(∂�)

)−1
, z ∈ C\R, j = 1, 2,

where N (z) denotes the closure in L2(∂�) of the Neumann-to-Dirichlet map associ-
ated with L in (5.13). Then the following assertions (i) and (i i) hold for k ∈ N0 such
that k ≥ (n − 3)/4:

(i) The difference of the 2k + 1th-powers of the resolvents of Aβ0 and Aβ1 is a trace
class operator, that is,

[
(Aβ1 − z IL2(�))

−(2k+1) − (Aβ0 − z IL2(�))
−(2k+1)] ∈ S1

(
L2(�)

)

holds for all z ∈ ρ(Aβ0) ∩ ρ(Aβ1).
(ii) For any orthonormal basis (ϕ j ) j∈J in L2(∂�) the function

ξ(λ) =
∑

j∈J

lim
ε↓0 π−1

((
Im

(
log(M1(λ + iε)) − log(M0(λ + iε))

))
ϕ j , ϕ j

)

L2(∂�)

for a.e. λ ∈ R, is a spectral shift function for the pair {Aβ0 , Aβ1} such that
ξ(λ) = 0 for λ < min(σ (Aβ)) and the trace formula
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trL2(�)

(
(Aβ1 − z IL2(�))

−(2k+1) − (Aβ0 − z IL2(�))
−(2k+1)) = −(2k + 1)

∫

R

ξ(λ) dλ

(λ − z)2k+2

is valid for all z ∈ ρ(Aβ0) ∩ ρ(Aβ1).

Proof The proof of Theorem 5.3 consists of three steps. In the first step we construct
a suitable quasi boundary triple such that the self-adjoint operators Aβ and Aβ1 cor-
respond to the kernels of the boundary mappings �0 and �1, and in the second and
third step we show that the pair {Aβ, Aβ1} and the γ -field and Weyl function satisfy
the assumptions in Theorem 4.1. The same reasoning applies to the pair {Aβ, Aβ0},
and hence Theorem 4.1 can be applied to both pairs {Aβ, Aβ1} and {Aβ, Aβ0}, which
together with the considerations at the end of Sect. 4 yield the assertions in Theo-
rem 5.3.

Step 1 The basic techniques in this step have been used in a similar framework, for
instance, in [2,3,5,8]. We consider the closed symmetric operator S = Aβ ∩ Aβ1 ,
which is given by

S f = L f, dom(S) = {
f ∈ H2(�)

∣∣ γD f = γν f = 0
}
, (5.15)

where we have used that β − β1(x) �= 0 for all x ∈ ∂�. In this step we check that the
operator

T f = L f, dom(T ) = H2(�), (5.16)

satisfies T = S∗ and that
{

L2(∂�), �0, �1
}
, where

�0 f = βγD f − γν f, �1 f = (β − β1)
−1(β1γD f − γν f

)
, f ∈ dom(T ), (5.17)

is a quasi boundary triple for T ⊂ S∗ such that

Aβ = T � ker(�0) and Aβ1 = T � ker(�1), (5.18)

and for all z ∈ ρ(Aβ) ∩ ρ(AN ), where AN is the self-adjoint Neumann realization in
(5.10), the corresponding γ -field γ and Weyl function M in L2(∂�) are given by

γ (z) = Pν(z)
(
βN (z) − IL2(∂�)

)−1
, dom(γ (z)) = H1/2(∂�), (5.19)

and

M(z) = (β − β1)
−1(β1N (z) − IL2(∂�)

)(
βN (z) − IL2(∂�)

)−1
,

dom(M(z)) = H1/2(∂�).
(5.20)
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We will use Theorem 2.2 for this purpose. For f, g ∈ dom(T ) = H2(�) one
obtains with the help of Green’s identity (5.4),

(�1 f, �0g)L2(∂�) − (�0 f, �1g)L2(∂�)

= (
(β − β1)

−1(β1γD f − γν f ), βγDg − γνg
)

L2(∂�)

− (
βγD f − γν f, (β − β1)

−1(β1γDg − γνg)
)

L2(∂�)

= (
γD f, γνg

)
L2(∂�)

− (
γν f, γDg

)
L2(∂�)

= (L f, g)L2(�) − ( f,Lg)L2(�)

= (T f, g)L2(�) − ( f, T g)L2(�),

and hence condition (i) in Theorem 2.2 holds. Since

(
�0 f
�1 f

)
=

(
β −IL2(∂�)

β1(β − β1)
−1 −(β − β1)

−1

) (
γD f
γν f

)
, f ∈ dom(T ), (5.21)

and the 2 × 2 operator matrix in (5.21) is an isomorphism in L2(∂�) × L2(∂�), it
follows from (5.3) that ran(�0, �1)

� is dense in L2(∂�)×L2(∂�). It is easy to see that
ker(�0)∩ker(�1) is dense in L2(�). Moreover, (5.18) is clear from the definition of T
and the boundary maps in (5.17). Hence also conditions (i i) and (i i i) in Theorem 2.2
are satisfied, and from (5.15)–(5.17) one obtains S = T � (ker(�0) ∩ ker(�1)). Thus
Theorem 2.2 yields T = S∗ and that {L2(∂�), �0, �1} is a quasi boundary triple for
S∗ such that (5.18) holds.

It remains to show the explicit form of the corresponding γ -field andWeyl function
M in (5.19) and (5.20), respectively. First of all it follows from (5.3) and the definition
of �0 in (5.17) that

H1/2(∂�) = ran(�0) = dom(γ (z)) = dom(M(z)), z ∈ ρ(Aβ).

One notes that for z ∈ ρ(AN ) and fz ∈ ker(T − z IL2(�)) one hasN (z)γν fz = γD fz

according to (5.13), and hence

(
βN (z) − IL2(∂�)

)
γν fz = βγD fz − γν fz = �0 fz, (5.22)

and

(β−β1)
−1(β1N (z)−IL2(∂�)

)
γν fz = (β−β1)

−1(β1γD fz−γν fz
) = �1 fz, (5.23)

by (5.17). The relation (5.22) also shows that ker(βN (z) − IL2(∂�)) = {0} for z ∈
ρ(Aβ) ∩ ρ(AN ) and hence

γν fz = (
βN (z) − IL2(∂�)

)−1
�0 fz . (5.24)
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From this and (5.12) it follows that the γ -field corresponding to {L2(∂�), �0, �1} has
the form (5.19). One also concludes from (5.24) and (5.23) that

(β − β1)
−1(β1N (z) − IL2(∂�)

)(
βN (z) − IL2(∂�)

)−1
�0 fz = �1 fz

holds for all fz ∈ ker(T − z IL2(�)) and z ∈ ρ(Aβ) ∩ ρ(AN ). Thus the Weyl function
corresponding to the quasi boundary triple {L2(∂�), �0, �1} has the form (5.20).

Step 2 In this step we verify that the pair {Aβ, Aβ1} satisfies the sign condition (4.4)
and that the values of Weyl function and its inverse are bounded operators; see the
assumptions of Theorem 4.1.

The assumption β > β1(x) shows that the semibounded quadratic forms aβ and
aβ1 in (5.7) and (5.9) corresponding to Aβ and Aβ1 satisfy the inequality aβ ≤ aβ1 .
Hence min(σ (Aβ)) ≤ min(σ (Aβ1)) and for ζ < min(σ (Aβ)) the forms aβ − ζ and
aβ1 − ζ are both nonnegative, satisfy the inequality aβ − ζ ≤ aβ1 − ζ , and hence the
resolvents of the corresponding nonnegative self-adjoint operators Aβ − ζ IL2(�) and
Aβ1 − ζ IL2(�) satisfy the inequality

(
Aβ − ζ IL2(�)

)−1 ≥ (
Aβ1 − ζ IL2(�)

)−1
, ζ < min(σ (Aβ))

(see, e.g., [41, Chapter VI, § 2.6] or [15, Chapter 10, §2-Theorem 6]). Thus the sign
condition (4.4) in the assumptions of Theorem 4.1 holds.

Next we prove that

M(z1) = (β − β1)
−1(β1N (z1) − IL2(∂�)

)(
βN (z1) − IL2(∂�)

)−1
,

M(z2)
−1 = (

βN (z2) − IL2(∂�)

)(
β1N (z2) − IL2(∂�)

)−1
(β − β1),

(5.25)

are boundedoperators for some z1, z2 ∈ C\R.According to [5, Lemma4.4] the closure
N (z), z ∈ C\R, of theNeumann-to-Dirichlet map in (5.13) in L2(∂�) is compact, and
hence βN (z)− IL2(∂�) and β1N (z)− IL2(∂�) are densely defined bounded operators
in L2(∂�), and for z ∈ C\R their closures are

[
βN (z) − IL2(∂�)

] ∈ L(
L2(∂�)

)
and

[
β1N (z) − IL2(∂�)

] ∈ L(
L2(∂�)

)
.

(5.26)
In order to see that

Q(z) := (
βN (z) − IL2(∂�)

)−1 and Q1(z) := (
β1N (z) − IL2(∂�)

)−1

are bounded for z ∈ C\Rwe argue in a similar way as in the proof of [5, Lemma 4.4]:
First, one notes thatN (z) ⊆ N (z)∗, z ∈ C\R, holds by (5.4), and this yields that also
Q(z) ⊆ Q(z)∗, z ∈ C\R. Hence the operator Q(z) is closable in L2(∂�). Moreover,
as Q(z) is defined on H1/2(∂�) and maps into H1/2(∂�), it follows that Q(z) is a
closed operator in H1/2(∂�), and hence

Q(z) : H1/2(∂�) → H1/2(∂�), ϕ �→ Q(z)ϕ, (5.27)
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is bounded. Therefore, the dual operator

Q(z)′ : H−1/2(∂�) → H−1/2(∂�), ψ �→ Q(z)′ψ, (5.28)

where (Q(z)′ψ)(ϕ) = ψ(Q(z)ϕ), ϕ ∈ H1/2(∂�), is also bounded. One verifies that
Q(z)′ is an extension of Q(z) and hence by interpolation and (5.27) and (5.28), the
restriction

Q(z)′ �L2(∂�): L2(∂�) → L2(∂�), φ �→ Q(z)′φ,

of Q(z)′ onto L2(∂�) is a bounded operator in L2(∂�) and an extension of Q(z).
Hence for all z ∈ C\R the operator Q(z) is bounded in L2(∂�) and its closure is

Q(z) = (
βN (z) − IL2(∂�)

)−1 ∈ L(
L2(∂�)

)
, z ∈ C\R. (5.29)

The same reasoning with Q(z) replaced by Q1(z) shows that for all z ∈ C\R the
operator Q1(z) is bounded in L2(∂�) and

Q1(z) = (
β1N (z) − IL2(∂�)

)−1 ∈ L(
L2(∂�)

)
, z ∈ C\R. (5.30)

Next, it follows that M(z1) and M(z2)−1 in (5.25) are bounded in L2(∂�) for z1, z2 ∈
C\R and the closure of M(z) is given by

M(z) = (β − β1)
−1(β1N (z) − IL2(∂�)

)(
βN (z) − IL2(∂�)

)−1 (5.31)

by (5.26) and (5.29).One notes that M(z) = M1(z) in the formulation of Theorem5.3.

Step 3 In this step we verify that the γ -field and Weyl function corresponding to the
quasi boundary triple

{
L2(∂�), �0, �1

}
in Step 1 satisfy the Sp-conditions in the

assumptions of Theorem 4.1 for dimensions n ∈ N, n ≥ 2, and k ≥ (n − 3)/4, that
is, we verify for all p, q ∈ N0 and all z ∈ ρ(Aβ) ∩ ρ(Aβ1) the conditions

γ (z)
(p)(

M(z)−1γ (z)∗
)(q) ∈ S1

(
L2(�)

)
, p + q = 2k, (5.32)

(
M(z)−1γ (z)∗

)(q)
γ (z)

(p) ∈ S1
(
L2(∂�)

)
, p + q = 2k, (5.33)

and
d j

dz j
M(z) ∈ S(2k+1)/j

(
L2(∂�)

)
, j = 1, . . . , 2k + 1. (5.34)

In the following we shall often use the smoothing property

(
Aβ − z IL2(�)

)−1
f ∈ Hk+2(�) for all f ∈ Hk(�), k ∈ N0, (5.35)
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of the resolvent of Aβ , which follows, for instance, from [59, Theorem 4.18]. One
notes that (2.2) and the definition of the boundary map �1 in (5.17) yield

γ (z)∗ f = �1
(

Aβ − z IL2(�)

)−1
f

= (β − β1)
−1(βγD − γν + (β1 − β)γD

) (
Aβ − z IL2(�)

)−1
f

= (β − β1)
−1(βγD − γν)

(
Aβ − z IL2(�)

)−1
f − γD

(
Aβ − z IL2(�)

)−1
f

= −γD
(

Aβ − z IL2(�)

)−1
f

(5.36)
for all z ∈ ρ(Aβ) and f ∈ L2(�). Here we have used in the last step that

g = (
Aβ − z IL2(�)

)−1
f ∈ dom(Aβ)

satisfies the boundary condition βγDg − γνg = 0. It follows from (2.6) and (5.36)
that

(
γ (z)∗

)(q) = q! γ (z)∗
(

Aβ − z IL2(�)

)−q = −q! γD
(

Aβ − z IL2(�)

)−(q+1)
,

and hence, ran((γ (z)∗)(q)) ⊂ H2q+3/2(∂�) by (5.35) and (5.5). From Lemma 5.2
with s = 2q + (3/2) and t = 0 one concludes that

(
γ (z)∗

)(q) ∈ Sr
(
L2(�), L2(∂�)

)
, r > (n − 1)/[2q + (3/2)], (5.37)

for all z ∈ ρ(Aβ), q ∈ N0, and hence by (2.6) also

γ (z)
(p) ∈ Sr

(
L2(∂�), L2(�)

)
, r > (n − 1)/[2p + (3/2)], (5.38)

for all z ∈ ρ(Aβ), p ∈ N0. Furthermore,

d j

dz j
M(z) = j ! γ (z)∗

(
Aβ − z IL2(�)

)−( j−1)
γ (z), j ∈ N, (5.39)

by (2.12) and with the help of (5.36) it follows in the same way as in (5.37) that

γ (z)∗
(

Aβ − z IL2(�)

)−( j−1) = −γD
(

Aβ − z IL2(�)

)− j ∈ Sx
(
L2(�), L2(∂�)

)

for x > (n − 1)/[2 j − (1/2)]. Moreover, γ (z) ∈ Sy(L2(∂�), L2(�)) for y >

2(n − 1)/3 by (5.38) and hence it follows from (5.39) and the well-known property
P Q ∈ Sw for P ∈ Sx , Q ∈ Sy , and x−1 + y−1 = w−1, that

d j

dz j
M(z) ∈ Sw

(
L2(∂�

)
, w > (n − 1)/(2 j + 1), z ∈ ρ(Aβ), j ∈ N.

(5.40)
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One observes that

d

dz
M(z)

−1 = −M(z)
−1

(
d

dz
M(z)

)
M(z)

−1
, z ∈ ρ(Aβ) ∩ ρ(Aβ1),

that M(z)
−1

is bounded, and by (5.40) that also

d j

dz j
M(z)

−1 ∈ Sw

(
L2(∂�)

)
, w > (n − 1)/(2 j + 1),

z ∈ ρ(Aβ) ∩ ρ(Aβ1), j ∈ N; (5.41)

we leave the formal induction step to the reader. Therefore,

(
M(z)−1γ (z)∗

)(q) = (
M(z)

−1
γ (z)∗

)(q) =
∑

p+m=q
p,m�0

(
q
p

) (
M(z)

−1)(p)(
γ (z)∗

)(m)

= M(z)
−1(

γ (z)∗
)(q) +

∑

p+m=q
p>0,m≥0

(
q
p

)
(
M(z)

−1)(p)(
γ (z)∗

)(m)
,

and one has M(z)
−1

(γ (z)∗)(q) ∈ Sr
(
L2(�), L2(∂�)

)
for r > (n − 1)/[2q + (3/2)]

by (5.37) and each summand (and hence also the finite sum) on the right-hand side is in
Sr

(
L2(�), L2(∂�)

)
for r > (n −1)/[2p +1+2m + (3/2)] = (n −1)/[2q + (5/2)],

which follows from (5.41) and (5.38). Hence one has

(
M(z)−1γ (z)∗

)(q) ∈ Sr
(
L2(�), L2(∂�)

)
(5.42)

for r > (n − 1)/[2q + (3/2)] and z ∈ ρ(Aβ) ∩ ρ(Aβ1). From (5.38) and (5.42) one
then concludes that

γ (z)
(p)(

M(z)−1γ (z)∗
)(q) ∈ Sr

(
L2(�)

)

for r > (n − 1)/[2(p + q) + 3] = (n − 1)/(4k + 3) and since k ≥ (n − 3)/4, one
has 1 > (n − 1)/(4k + 3), that is, the trace class condition (5.32) is satisfied. The
same argument shows that (5.33) is satisfied. Finally, (5.34) follows from (5.40) and
the fact that k ≥ (n − 3)/4 implies

2k + 1

j
≥ n − 1

2 j
>

n − 1

2 j + 1
, j = 1, . . . , 2k + 1.

Hence the assumptions in Theorem 4.1 are satisfied with S in (5.15), the quasi
boundary triple in (5.17) and the corresponding γ -field and Weyl function in (5.19)
and (5.20), respectively. Now Theorem 4.1 yields assertion (i) in Theorem 5.3 with
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Aβ0 replaced by Aβ and for any orthonormal basis (ϕ j ) j∈J in L2(∂�) the function

ξ1(λ) =
∑

j∈J

lim
ε↓0 π−1(Im

(
log(M1(λ + iε))

)
ϕ j , ϕ j

)
L2(∂�)

for a.e. λ ∈ R,

is a spectral shift function for the pair {Aβ, Aβ1} such that ξ1(λ) = 0 for λ <

min(σ (Aβ)) ≤ min(σ (Aβ1)) and the trace formula

trL2(�)

(
(Aβ1 − z IL2(�))

−(2k+1) − (Aβ − z IL2(�))
−(2k+1)

)
= −(2k + 1)

∫

R

ξ1(λ) dλ

(λ − z)2k+2

is valid for all z ∈ ρ(Aβ) ∩ ρ(Aβ1).
The same construction as above with β1 replaced by β0 yields an analogous repre-

sentation for a spectral shift function ξ0 of the pair {Aβ, Aβ0}. Finally it follows from
the considerations in the end of Sect. 4 (see (4.29)) that

ξ(λ) = ξ1(λ) − ξ0(λ)

=
∑

j∈J

lim
ε↓0 π−1

((
Im

(
log(M1(λ + iε)) − log(M0(λ + iε))

))
ϕ j , ϕ j

)

L2(∂�)

for a.e. λ ∈ R is a spectral shift function for the pair {Aβ0 , Aβ1} such that ξ(λ) = 0 for
λ < min(σ (Aβ)) ≤ min(σ (Aβp )), p = 0, 1.This completes the proof ofTheorem5.3.

��
In space dimensions n = 2 and n = 3 one can choose k = 0 in Theorem 5.3, and

hence the resolvent difference of Aβ1 and Aβ0 is a trace class operator. In this situation
Corollary 4.2 leads to the following slightly stronger statement.

Corollary 5.4 Let the assumptions be as in Theorem 5.3 and suppose that n = 2 or
n = 3. Then the following assertions (i)–(i i i) hold:

(i) The difference of the resolvents of Aβ1 and Aβ0 is a trace class operator, that is,

[
(Aβ1 − z IL2(�))

−1 − (Aβ0 − z IL2(�))
−1] ∈ S1

(
L2(�)

)

holds for all z ∈ ρ(Aβ1) ∩ ρ(Aβ0).
(ii) Im(log(Mp(z))) ∈ S1(L2(∂�)) for all z ∈ C\R and p = 0, 1, and the limit

Im
(
log(Mp(λ + i0))

) := lim
ε↓0 Im

(
log(Mp(λ + iε))

)

exists for a.e. λ ∈ R and p = 0, 1 in S1(L2(∂�)).
(iii) The function

ξ(λ) = π−1 trL2(∂�)

(
Im

(
log(M1(λ+i0))− log(M0(λ+i0))

))
for a.e. λ ∈ R,
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is a spectral shift function for the pair {Aβ0 , Aβ1} such that ξ(λ) = 0 for λ <

min(σ (Aβ)) and the trace formula

trL2(�)

(
(Aβ1 − z IL2(�))

−1 − (Aβ0 − z IL2(�))
−1) = −(2k + 1)

∫

R

ξ(λ) dλ

(λ − z)2

is valid for all z ∈ ρ(Aβ0) ∩ ρ(Aβ1).

6 Schrödinger operators with compactly supported potentials

In this section we determine a spectral shift function for the self-adjoint operators
{−
,−
 + V } in L2(Rn), n ∈ N, n ≥ 2, where it is assumed that V ∈ L∞(Rn) is a
compactly supported real-valued function. Thus we consider the self-adjoint operators

A = −
, B = −
 + V, dom(A) = dom(B) = H2(Rn), (6.1)

in L2(Rn), and we fix an open ball B+ ⊂ R
n such that supp (V ) ⊂ B+. The n − 1

dimensional sphere ∂B+ is denoted by S. We shall also make use of the self-adjoint
Dirichlet realizations

A+ = −
, B+ = −
+V, dom(A+) = dom(B+) = H2(B+)∩H1
0 (B+), (6.2)

of −
 and −
 + V in L2(B+). Their spectra are discrete and bounded from below.
The eigenvalue counting functions are denoted by N ( · , A+) and N ( · , B+), respec-
tively; recall that N (λ, A+) and N (λ, B+) stand for the total number of eigenvalues
(multiplicities counted) of A+ and B+ in (−∞, λ), λ ∈ R.

The main ingredient in the proof of Theorem 6.1 below is a decoupling technique
for the operators A and B, where artificial Dirichlet boundary conditions on the sphere
S will be imposed. We shall use the extension of the L2(S) scalar product onto the
dual pair H1/2(S) × H−1/2(S) via

〈ϕ,ψ〉 = (
ıϕ, ı̃−1ψ

)
L2(S)

, ϕ ∈ H1/2(S), ψ ∈ H−1/2(S), (6.3)

where ı is a uniformly positive self-adjoint operator in L2(S) defined on the dense
subspace H1/2(S) (and in the following ι is regarded as an isomorphism from H1/2(S)

onto L2(S)), and ı̃−1 is the extension of ı−1 to an isomorphism from H−1/2(S) onto
L2(S). A typical and convenient choice for ı is (−
S + IL2(S))

1/4, where −
S
is the Laplace–Beltrami operator on the sphere S; for other choices see also
[8, Remark 5.3].

Since 〈·, ·〉 in (6.3) is an extension of the L2(S) scalar product, Green’s identity
can also be written in the form

(−
 f+, g+)L2(B+) − ( f+,−
g+)L2(B+) = 〈γ +
D f+, γ +

N g+〉 − 〈γ +
N f+, γ +

D g+〉
(6.4)
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for f+, g+ ∈ H2(B+). Here γ +
D and γ +

N denote the Dirichlet and Neumann trace
operators in (5.3) (with � and ∂� replaced by B+ and S, respectively). Let B− :=
R

n\B+ and let γ −
D and γ −

N be the Dirichlet and Neumann trace operators on B−; the
normal vector in the definition of γ −

N is pointing in the outward direction of B− and
hence opposite to the normal of B+. Besides (6.4) we also have the corresponding
Green’s identity on B−, that is,

(−
 f−, g−)L2(B−) − ( f−,−
g−)L2(B−) = 〈γ −
D f−, γ −

N g−〉 − 〈γ −
N f−, γ −

D g−〉
(6.5)

holds for all f−, g− ∈ H2(B−).
Next we define Dirichlet-to-Neumann maps associated to −
 and −
 + V on

B+ and −
 on B− as operators from H1/2(S) to H−1/2(S). First, we recall that
for z /∈ σ(A+) and ϕ ∈ H1/2(S) there exists a unique solution fz ∈ H1(B+) of
the boundary value problem −
 fz = z fz , γ +

D fz = ϕ. The corresponding solution
operator is P+(z) : H1/2(S) → H1(B+), ϕ �→ fz , and for z /∈ σ(A+), the Dirichlet-
to-Neumann map D+(z) associated to −
 in B+ is defined by

D+(z) : H1/2(S) → H−1/2(S), ϕ �→ γ +
N P+(z)ϕ.

Similarly, for ζ /∈ σ(B+) and ψ ∈ H1/2(S), there exists a unique solution gζ ∈
H1(B+) of the boundary value problem (−
 + V )gζ = ζgζ , γ +

D gζ = ψ . The
corresponding solution operator is PV+ (ζ ) : H1/2(S) → H1(B+), ψ �→ gζ , and for
ζ /∈ σ(B+) the Dirichlet-to-Neumann map DV+(ζ ) associated to −
 + V in B+ is
defined by

DV+(ζ ) : H1/2(S) → H−1/2(S), ψ �→ γ +
N PV+ (ζ )ψ.

Furthermore, for ζ ′ /∈ [0,∞) and ξ ∈ H1/2(S) there exists a unique solution hζ ′ ∈
H1(B−) of the boundary value problem −
hζ ′ = ζ ′hζ ′ , γ −

D hζ ′ = ξ . As above the
solution operator is P−(ζ ′) : H1/2(S) → H1(B−), ξ �→ hζ ′ , and for ζ ′ /∈ [0,∞),
the Dirichlet-to-Neumann map D−(ζ ′) associated to −
 in B− is defined by

D−(ζ ′) : H1/2(S) → H−1/2(S), ξ �→ γ −
N P−(ζ ′)ξ.

One recalls that the Dirichlet-to-Neumann mapsD+(z),DV+(ζ ), andD−(ζ ′) above
are bounded operators from H1/2(S) to H−1/2(S). Moreover, for z ∈ C\R, each of
the Dirichlet-to-Neumann maps is boundedly invertible and the same is true for the
sums

D+(z) + D−(z) : H1/2(S) → H−1/2(S), z ∈ C\R,

DV+(z) + D−(z) : H1/2(S) → H−1/2(S), z ∈ C\R.

Hence, the operators

N(z) = ı
(D+(z) + D−(z)

)−1
ı̃ : L2(S) → L2(S), z ∈ C\R,

NV (z) = ı
(DV+(z) + D−(z)

)−1
ı̃ : L2(S) → L2(S), z ∈ C\R,

(6.6)
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are everywhere defined and bounded in L2(S).
In the next theorem we obtain a representation for a spectral shift function for

{A, B} in (6.1) via a decoupling technique and Theorem 4.1. The considerations in
the beginning of Step 1 of the proof of Theorem 6.1 are similar as in [8, Section 5.2]
and hence some details are omitted.

Theorem 6.1 Let n ∈ N, n ≥ 2, and k ∈ N, k > (n − 2)/4, and suppose that
V ∈ L∞(Rn) is real-valued with support in the open ball B+. In addition, let N(z)
andNV (z) be as in (6.6), and denote the eigenvalue counting functions of the Dirichlet
operators A+ and B+ in L2(B+) by N ( · , A+) and N ( · , B+), respectively. Then the
following assertions (i) and (i i) hold:

(i) The difference of the 2k +1th-powers of the resolvents of A and B is a trace class
operator, that is,

[(
B − z IL2(Rn)

)−(2k+1) − (
A − z IL2(Rn)

)−(2k+1)
]

∈ S1
(
L2(Rn)

)

holds for all z ∈ ρ(B) = ρ(A) ∩ ρ(B).
(ii) For any orthonormal basis (ϕ j ) j∈J in L2(S) the function

ξ(λ) =
∑

j∈J

lim
ε↓0 π−1

((
Im

(
log(N(λ + iε)) − log(NV (λ + iε))

))
ϕ j , ϕ j

)

L2(S)

+ N (λ, B+) − N (λ, A+) for a.e. λ ∈ R,

is a spectral shift function for the pair {A, B} such that ξ(λ) = 0 for λ <

min(σ (B)) ≤ 0 and the trace formula

trL2(Rn)

((
B − z IL2(Rn)

)−(2k+1) − (
A − z IL2(Rn)

)−(2k+1)
)

= −(2k + 1)
∫

R

ξ(λ) dλ

(λ − z)2k+2

is valid for all z ∈ ρ(B) = ρ(A) ∩ ρ(B).

Proof Besides the self-adjoint operators A = −
 and B = −
 + V in (6.1), and the
Dirichlet realizations A+ = −
 and B+ = −
 + V in L2(B+) in (6.2) we shall also
make use of the Dirichlet realization A− of −
 in L2(B−) given by

A− = −
, dom(A−) = H2(B−) ∩ H1
0 (B−), (6.7)

as well as the orthogonal sums in L2(Rn) = L2(B+) ⊕ L2(B−),

AD :=
(

A+ 0
0 A−

)
and BD :=

(
B+ 0
0 A−

)
,

dom(AD) = dom(BD) = (
H2(B+) ∩ H1

0 (B+)
) × (

H2(B−) ∩ H1
0 (B−)

)
.

(6.8)
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For any orthonormal basis (ϕ j ) j∈J in L2(S) we shall first prove the representation

ξA(λ) =
∑

j∈J

lim
ε↓0 π−1(Im

(
log(N(λ + iε))

)
ϕ j , ϕ j

)
L2(S)

(6.9)

for a spectral shift function ξA of the pair {A, AD} and the representation

ξB(λ) =
∑

j∈J

lim
ε↓0 π−1(Im

(
log(NV (λ + iε))

)
ϕ j , ϕ j

)
L2(S)

(6.10)

for a spectral shift function ξB of the pair {B, BD}.
Step 1 In this step we consider the operators B and BD as self-adjoint extensions of
the closed symmetric S = B ∩ BD , which is given by

S = −
 + V, dom(S) = {
f ∈ H2(Rn)

∣∣ γ +
D f+ = 0 = γ −

D f−
}
. (6.11)

Furthermore, consider the operator

T = −
 + V, dom(T ) =
{

f =
(

f+
f−

)
∈ H2(B+) × H2(B−)

∣∣
∣∣ γ

+
D f+ = γ −

D f−
}

,

and set γD f := γ +
D f+ = γ −

D f− for f ∈ dom(T ). It is easy to see with the help of
Theorem 2.2, (6.4)–(6.5) and (5.3) that {L2(S), �0, �1}, where

�0 f = ı̃−1(γ +
N f+ + γ −

N f−) and �1 f = ıγD f, f ∈ dom(T ), (6.12)

is a quasi boundary triple for T ⊂ S∗ and B = T � ker(�0) and BD = T � ker(�1)

hold (cf. the proof of [8, Theorem 5.1]). The corresponding Weyl function is

M(z)ϕ = ı
(DV+(z) + D−(z)

)−1
ı̃ϕ = NV (z)ϕ (6.13)

for all z ∈ ρ(B)∩ρ(BD) and ϕ ∈ ran(�0). Furthermore, the proof of [8, Theorem 5.1]
shows that M(z) and M(z)−1 are bounded for all z ∈ ρ(B) ∩ ρ(BD) and one has
M(z) = NV (z).

One observes that B corresponds to the densely defined, closed quadratic form

b[ f, g] = (∇ f,∇g)(L2(Rn))n + (V f, g)L2(Rn), dom(b) = H1(Rn),

and that BD corresponds to the densely defined closed quadratic form

bD[ f, g] = (∇ f,∇g)(L2(Rn))n + (V f, g)L2(Rn), dom(bD) = H1
0 (B+) × H1

0 (B−).

Since H1(Rn) ⊂ (H1
0 (B+) × H1

0 (B−)) this implies b ≤ bD and yields the sign
condition (B − ζ IL2(Rn))

−1 ≥ (BD − ζ IL2(Rn))
−1 in the assumptions of Theorem 4.1
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for all ζ < min(σ (B)) ≤ min(σ (BD)); see the beginning of Step 2 in the proof of
Theorem 5.3.

Next, we verify the Sp-conditions

γ (z)
(p)(

M(z)−1γ (z)∗
)(q) ∈ S1

(
L2(Rn)

)
, p + q = 2k, (6.14)

(
M(z)−1γ (z)∗

)(q)
γ (z)

(p) ∈ S1
(
L2(S)

)
, p + q = 2k, (6.15)

and
d j

dz j
M(z) ∈ S(2k+1)/j

(
L2(S)

)
, j = 1, . . . , 2k + 1, (6.16)

for all z ∈ ρ(B) ∩ ρ(BD) in the assumptions of Theorem 4.1. For this we use the
smoothing property

(
B − z IL2(Rn)

)−1
f ∈ H �+2

O (Rn) for all f ∈ H �
O(Rn) and � ∈ N0, (6.17)

where O is an open neighborhood of the sphere S in Rn such that supp (V ) ∩ O = ∅
and H �

O(Rn) = {
f ∈ L2(Rn)

∣∣ f �O∈ H �(O)
}
(cf. [5, Lemma 4.1(i)]).

It follows from (2.2) and the definition of �1 that

γ (z)∗ f = �1
(
B − z IL2(Rn)

)−1
f = ı γD

(
B − z IL2(Rn)

)−1
f (6.18)

and hence (2.6) yields

(
γ (z)∗

)(q) = q! γ (z)∗
(
B − z IL2(Rn)

)−q = q! ı γD
(
B − z IL2(Rn)

)−(q+1)
. (6.19)

Since
ran

(
γD

(
B − z IL2(Rn)

)−(q+1)
)

⊂ H2q+(3/2)(S)

by (6.17) and (5.5), and the operator γD(B − z IL2(Rn))
−(q+1) is bounded from L2(Rn)

into H1/2(S) it follows from Lemma 5.2 with s = 2q + (3/2) and t = 1/2 that

γD
(
B − z IL2(Rn)

)−(q+1) ∈ Sr
(
L2(Rn), H1/2(S)

)
. r > (n − 1)/(2q + 1),

As ı : H1/2(S) → L2(S) is an isomorphism one concludes from (6.19) that

(
γ (z)∗

)(q) ∈ Sr
(
L2(Rn), L2(S)

)
, r > (n − 1)/(2q + 1), (6.20)

for all z ∈ ρ(B) and q ∈ N0. From this it is also clear that

γ (z)
(p) ∈ Sr

(
L2(S), L2(Rn)

)
, r > (n − 1)/(2p + 1), (6.21)

for all z ∈ ρ(B) and p ∈ N0. Furthermore,

d j

dz j
M(z) = j ! γ (z)∗

(
B − z IL2(Rn)

)−( j−1)
γ (z), j ∈ N, (6.22)
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by (2.12), and using (6.18) one obtains with the arguments above that

γ (z)∗
(
B − z IL2(Rn)

)−( j−1) = ıγD
(
B − z IL2(Rn)

)− j ∈ Sr
(
L2(Rn), L2(S)

)

for r > (n − 1)/(2 j − 1), z ∈ ρ(B), and j ∈ N. Together with (6.21) for p = 0 one
finds that (6.22) satisfies

d j

dz j
M(z) ∈ Sr

(
L2(S)

)
, r > (n − 1)/(2 j), (6.23)

for all z ∈ ρ(B) and j ∈ N. The same arguments as in Step 3 of the proof Theorem 5.3
show that

d j

dz j
M(z)

−1 ∈ Sr
(
L2(S)

)
, r > (n − 1)/(2 j), (6.24)

for all z ∈ ρ(B) ∩ ρ(BD) and j ∈ N. It follows from (6.20) and (6.24) that each
summand in the right-hand side in

(
M(z)−1γ (z)∗

)(q) =
∑

p+m=q
p,m≥0

(
q
p

) (
M(z)

−1)(p)(
γ (z)∗

)(m)

belongs toSr
(
L2(S), L2(Rn)

)
for r > (n−1)/(2q+1), and hence one infers together

with (6.21) that

γ (z)
(p)(

M(z)−1γ (z)∗
)(q) ∈ Sr

(
L2(Rn)

)

for r > (n − 1)/[2(p + q) + 2] = (n − 1)/(4k + 2), and since k > (n − 2)/4 by
assumption, one has 1 > (n − 1)/(4k + 2), implying the trace class condition (6.14).
The same argument shows that (6.15) is satisfied. Finally, (6.16) follows from (6.23)
and the fact that k > (n − 2)/4 implies

2k + 1

j
>

n

2 j
>

n − 1

2 j
, j = 1, . . . , 2k + 1.

Hence, the assumptions in Theorem 4.1 are satisfied with S in (6.11), the quasi
boundary triple in (6.12), and the corresponding Weyl function in (6.13). Thus, The-
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orem 4.1 yields assertion (i) with A replaced by BD and for any orthonormal basis
(ϕ j ) j∈J in L2(S) the function

ξB(λ) =
∑

j∈J

lim
ε↓0 π−1(Im

(
log(NV (λ + iε))

)
ϕ j , ϕ j

)
L2(S)

for a.e. λ ∈ R

in (6.10) is a spectral shift function for the pair {B, BD} and the trace formula

trL2(Rn)

((
BD − z IL2(Rn)

)−(2k+1) − (
B − z IL2(Rn)

)−(2k+1)
)

= −(2k + 1)
∫

R

ξB(λ) dλ

(λ − z)2k+2

(6.25)

is valid for all z ∈ ρ(B) ∩ ρ(BD).
Step 2 Now we complete the proof of Theorem 6.1. First, we note that the same

arguments as in Step 1 with V = 0 show that assertion (i) in Theorem 6.1 holds with
B replaced by AD and ξA in (6.9) is a spectral shift function for the pair {A, AD} such
that

trL2(Rn)

((
AD − z IL2(Rn)

)−(2k+1) − (
A − z IL2(Rn)

)−(2k+1)
)

= −(2k + 1)
∫

R

ξA(λ) dλ

(λ − z)2k+2

(6.26)

holds for all z ∈ C\[0,∞). The assumption k > (n − 2)/4 implies 2k + 1 > n/2 and
hence

(A+ − z IL2(B+))
−(2k+1) ∈ S1

(
L2(B+)

)
, z ∈ ρ(A+),

(B+ − ζ IL2(B+))
−(2k+1) ∈ S1

(
L2(B+)

)
, ζ ∈ ρ(B+),

(6.27)

by standard Weyl asymptotics. Furthermore, since the spectra of A+ and B+ are
discrete and bounded from below, it is well-known that

ξ+(λ) = N (λ, B+) − N (λ, A+), λ ∈ R, (6.28)

is a spectral shift function for the pair {A+, B+} (see, e.g., [16, (3.28)]). From (6.8) it
is clear that ξ+ is also a spectral shift function for the pair {AD, BD}. Since

[
(BD − z IL2(Rn))

−(2k+1) − (AD − z IL2(Rn))
−(2k+1)] ∈ S1

(
L2(Rn)

)

by (6.27) and (6.8) one concludes that

trL2(Rn)

(
(BD − z IL2(Rn))

−(2k+1) − (AD − z IL2(Rn))
−(2k+1)) = −(2k + 1)

∫

R

ξ+(λ) dλ

(λ − z)2k+2

(6.29)

for z ∈ ρ(AD) ∩ ρ(BD). Hence, ξ(λ) = ξA(λ) − ξB(λ) + ξ+(t) for a.e. λ ∈ R is a
spectral shift function for the pair {A, B}, and taking into account the specific form of
ξA, ξB , and ξ+, in (6.9), (6.10), and (6.28) and the trace formulas (6.25), (6.26), and
(6.29), the assertions in Theorem 6.1 follow. ��
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Remark 6.2 We note that the spectral shift function ξ in Theorem 6.1 is continuous for
λ > 0 since V ∈ L∞(Rn) is compactly supported (see, e.g., [76, Theorem 9.1.20]).
On the other hand the spectral shift function ξ+ of {A+, B+} is a step function and
hence the difference of the spectral shift functions ξA and ξB of the pairs {A, AD} and
{B, BD} cancel the discontinuities of ξ+ for λ > 0.
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