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3
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Abstract. The main objective of this paper is to systematically develop a
spectral and scattering theory for self-adjoint Schrödinger operators with
δ-interactions supported on closed curves in R

3. We provide bounds for
the number of negative eigenvalues depending on the geometry of the
curve, prove an isoperimetric inequality for the principal eigenvalue, de-
rive Schatten–von Neumann properties for the resolvent difference with
the free Laplacian, and establish an explicit representation for the scat-
tering matrix.

1. Introduction

Schrödinger operators with singular interactions supported on sets of Lebes-
gue measure zero were suggested in the physics literature as solvable models
in quantum mechanics in [11,37,45,48,60]. They appear, e.g., in the modeling
of zero-range interactions of quantum particles [21,22,51,52], in the theory
of photonic crystals [41], and in quantum few-body systems in strong mag-
netic fields [19]. The mathematical investigation of their spectral and scat-
tering properties attracted a lot of attention during the last decades. First
studies were mostly devoted to singular interactions supported on a discrete
set of points, see the monograph [4] and [34, Chapter 5]. Later on, singu-
lar interactions supported on more general curves, surfaces, and manifolds
gained much attention; there is an extensive literature on Schrödinger op-
erators with δ-interactions supported on manifolds of codimension one, see,
e.g, [5,9,15,17,26,29,34–36] and the references therein. Manifolds of higher
codimension were first treated in [16] in the very special case of an interac-
tion supported on a straight line in R

3. More general curves were considered
in [12,18,27,30–33,44,46,47,53,57,59].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-016-0532-3&domain=pdf
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In the present paper, we systematically develop a spectral and scatter-
ing theory for Schrödinger operators with singular interactions supported on
curves in the three-dimensional space. More specifically, for a compact, closed,
regular C2-curve Σ ⊂ R

3 we consider the self-adjoint Schrödinger operator
−ΔΣ,α in L2(R3), which corresponds to the formal differential expression

− Δ − 1
α

δ(· − Σ), (1.1)

where α ∈ R\{0} is the inverse strength of interaction. The mathematically
rigorous definition of −ΔΣ,α is more involved than in the case of, e.g., a curve
in R

2 or a hypersurface in R
3. For our purposes, an explicit characterization of

the domain and action of −ΔΣ,α is essential; here the key difficulty is to define
an appropriate generalized trace map for functions which are not sufficiently
regular; see Sect. 2 for the details. Our method is strongly inspired by [57]
and the abstract concept of boundary triples [7,8,20,23,24], and can also be
viewed as a special case of the more general approach in [53] (see Example 3.5
therein); cf. [18,30,33,59] for equivalent alternative definitions.

The main results of this paper deal with spectral and scattering properties
of −ΔΣ,α and extend and complement results in [18,25,27,28,31,44,57]. First,
we verify that the operator −ΔΣ,α is in fact self-adjoint; along with this, in
Theorem 3.1 we establish a Krein-type formula for the resolvent difference of
−ΔΣ,α and the free Laplacian −Δfree. Using this formula, we show that the
resolvent difference

(−ΔΣ,α − λ)−1 − (−Δfree − λ)−1, λ ∈ ρ(−ΔΣ,α) ∩ ρ(−Δfree), (1.2)

is compact; in particular, the essential spectrum of −ΔΣ,α equals [0,∞). More-
over, we provide a Birman–Schwinger principle for the negative eigenvalues of
−ΔΣ,α and employ this principle for a more detailed study of these eigenvalues.
In fact, in Theorem 3.3 we show that the negative spectrum is always finite
and we prove upper and lower estimates for the number of negative eigenval-
ues, depending on the (inverse) strength of interaction α and the geometry of
the curve; these results complement the estimates in [18,31,43,44]. In the case
that Σ is a circle, our estimates lead to an explicit formula for the number
of negative eigenvalues. As a further main result, in Theorem 3.6 we prove
that amongst all curves of a fixed length the principle eigenvalue of −ΔΣ,α is
maximized by the circle. With this result we give an affirmative answer to an
open problem formulated in [26, Section 7.8]. Our proof is inspired by related
considerations for δ-interactions supported on loops in the plane in [25,28].

Another group of results focuses on a more detailed comparison of −ΔΣ,α

with the free Laplacian. From a careful analysis of the operators involved in
the Krein-type resolvent formula, we obtain an asymptotic upper bound for
the singular values s1(λ) ≥ s2(λ) ≥ . . . of the resolvent difference (1.2) in
Theorem 3.2,

sk(λ) = O

(
1

k2 ln k

)
as k → +∞. (1.3)
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In particular, the resolvent difference in (1.2) belongs to the Schatten–von Neu-
mann class Sp for any p > 1/2; this improves the trace class estimate in [18]
and is in accordance with a previous observation in a periodic setting in [27,
Remark 4.1]. Note that, as a consequence of (1.3), the absolutely continuous
spectrum of −ΔΣ,α equals [0,∞) and the wave operators for the scattering
pair {−Δfree,−ΔΣ,α} exist and are complete. In Theorem 3.8, a representa-
tion of the associated scattering matrix is given in terms of an explicit operator
function which acts in L2(Σ); this complements earlier investigations in [18,
Section 3]. Its proof relies on an abstract approach developed recently in [10].

The paper is organized as follows. In Sect. 2, we discuss in detail the
mathematically rigorous definition of the operator −ΔΣ,α. Section 3 contains
all main results of this paper. Their proofs are carried out in the remainder
of this paper. In fact, Sect. 4 is preparatory and contains the analysis of the
Birman–Schwinger operator. The actual proofs of Theorems 3.1–3.8 are con-
tained in Sect. 5. In a short appendix, the notions of quasi boundary triples
and their Weyl functions from extension theory of symmetric operators are
reviewed and it is shown how the operators −Δfree and −ΔΣ,α fit into this
abstract scheme.

2. Definition of the Operator −ΔΣ,α

In this section, we define the operator −ΔΣ,α associated with the differential
expression (1.1) in L2(R3). On a formal level, we interpret the action of (1.1)
as

Aαu := −Δu − 1
α

u|Σ · δΣ. (2.1)

It will be shown that Aα gives rise to a self-adjoint operator in L2(R3). The key
difficulty in the definition of this operator is to specify a suitable domain. Note
that the Sobolev space H2(R3) is not a suitable domain as u|Σ · δΣ �∈ L2(R3)
for all those u ∈ H2(R3) which do not vanish identically on Σ. On the other
hand, any proper subspace of H2(R3) will turn out to be too small for −ΔΣ,α

to become self-adjoint in L2(R3). Thus, it is necessary to include suitable more
singular elements in the domain of the operator. This requires the definition
of a generalized trace u|Σ for functions u ∈ L2(R3) which are not sufficiently
regular.

Let us first fix some notation. We assume that Σ is a compact, closed,
regular C2-curve in R

3 of finite length L > 0 without self-intersections and that
σ : [0, L] → R

3 is a C2-parametrization of Σ with |σ̇(s)| = 1 for all s ∈ [0, L].
Occasionally, we identify σ with its L-periodic extension. For h ∈ L2(Σ), we
define the distribution hδΣ via

〈hδΣ, ϕ〉−2,2 =
∫

Σ

h(x)ϕ(x)dσ(x), ϕ ∈ H2(R3), (2.2)

where ϕ(x) is the evaluation of the continuous function ϕ at x ∈ Σ, 〈·, ·〉−2,2

denotes the duality between H−2(R3) and H2(R3), and dσ denotes integration
with respect to the arc length on Σ. It follows from the continuity of the
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restriction map H2(R3) � ϕ �→ ϕ|Σ ∈ L2(Σ) (see, e.g., [13, Theorem 24.3])
that hδΣ ∈ H−2(R3) and that h �→ hδΣ is a continuous mapping from L2(Σ)
to H−2(R3). We will often use that hδΣ ∈ L2(R3) if and only if h = 0.

For λ < 0, we define the bounded operator

γλ : L2(Σ) → L2(R3), h �→ γλh = (−Δ − λ)−1(hδΣ), (2.3)

where −Δ − λ is viewed as an isomorphism between L2(R3) and H−2(R3). In
the following lemma, a useful representation of γλ and the adjoint operator
γ∗

λ : L2(R3) → L2(Σ) is provided. We denote the self-adjoint Laplacian in
L2(R3) with domain H2(R3) by −Δfree.

Lemma 2.1. Let λ < 0. Then

(γλh)(x) =
∫

Σ

h(y)
e−

√
−λ|x−y|

4π|x − y| dσ(y) (2.4)

holds for almost all x ∈ R
3 and all h ∈ L2(Σ). Moreover,

γ∗
λu =

(
(−Δfree − λ)−1u

)
|Σ (2.5)

holds for all u ∈ L2(R3).

Proof. For h ∈ L2(Σ) and u ∈ L2(R3), we have

〈γλh, u〉L2(R3) =
〈
γλh, (−Δfree − λ)(−Δfree − λ)−1u

〉
L2(R3)

=
〈
(−Δ − λ)(γλh), (−Δ − λ)−1u

〉
−2,2

=
〈
hδΣ, (−Δ − λ)−1u

〉
−2,2

=
∫

Σ

h(y)((−Δfree − λ)−1u) (y)dσ(y)

=
∫
R3

∫
Σ

h(y)
e−

√
−λ|x−y|

4π|x − y| dσ(y)u(x)dx,

where we have used (2.2) and the integral representation of (−Δfree − λ)−1,
see, e.g., [54, (IX.30)]. This proves both (2.4) and (2.5). �

The identity (2.4) indicates that in general the trace of γλh on Σ does
not exist due to the singularity of the integral kernel. This motivates the
following regularization. Here and in the following, we denote by C0,1(Σ) the
space of all complex-valued Lipschitz continuous functions on Σ. Moreover, for
x = σ(s0) ∈ Σ and δ > 0 let

IΣ
δ (x) = {σ(s) : s ∈ (s0 − δ, s0 + δ)} (2.6)

be the open interval in Σ with center x and length 2δ. To define the trace of
γλh in a generalized sense, for λ ≤ 0, h ∈ C0,1(Σ) and x ∈ Σ, we set

(Bλh)(x) = lim
δ↘0

[∫
Σ\IΣ

δ (x)

h(y)
e−

√
−λ|x−y|

4π|x − y| dσ(y) + h(x)
ln δ

2π

]
; (2.7)

due to technical reasons the case λ = 0 is included here although γλ is defined
for λ < 0 only. It will be shown in Proposition 4.5 that Bλ is a well-defined,
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essentially self-adjoint operator in L2(Σ) for each λ ≤ 0 and that the domain
of its closure Bλ is independent of λ. Note that the basic idea in the definition
of Bλ is to remove the singularity of γλh on Σ. We remark that the limit in the
definition of Bλ can also be viewed as the finite part in the sense of Hadamard
of the first summand as δ↘0; cf. [49, Chapter 5]. A procedure of this type is
frequently employed to define hypersingular integral operators.

With the help of Bλ we can make the following definition.

Definition 2.2. Let λ < 0. For h ∈ dom Bλ, we define the generalized trace
(γλh)|Σ of γλh on Σ by

(γλh)|Σ = Bλh ∈ L2(Σ), h ∈ dom Bλ.

Accordingly, for a function u = uc + γλh with uc ∈ H2(R3) and h ∈ dom Bλ

we define its generalized trace u|Σ on Σ by

u|Σ = uc|Σ + (γλh)|Σ = uc|Σ + Bλh. (2.8)

Note that u|Σ is well defined. Indeed, the representation of u as a sum is
unique since γλh ∈ H2(R3) implies h = 0. Moreover, the definition of u|Σ is
independent of the choice of λ < 0; cf. Sect. 4.3.

Furthermore, note that the expression Aα in (2.1) is no longer formal,
but makes sense as we have defined the generalized trace u|Σ. Now we are able
to define the Schrödinger operator −ΔΣ,α corresponding to the differential
expression in (1.1) in a rigorous way.

Definition 2.3. For α ∈ R\{0}, the Schrödinger operator −ΔΣ,α in L2(R3)
with δ-interaction of strength 1

α supported on Σ is defined by

−ΔΣ,αu = Aαu = −Δu − 1
α

u|Σ · δΣ,

dom(−ΔΣ,α) =
{
u = uc + γλh : uc ∈ H2(R3), h ∈ dom Bλ, Aαu ∈ L2(R3)

}
,

where λ < 0 is arbitrary and the generalized trace u|Σ is defined in (2.8).

Observe that the operator −ΔΣ,α is well defined since dom Bλ and the
trace u|Σ do not depend on the choice of λ. Note also that for α = +∞, we
formally have

−ΔΣ,+∞u = −Δu, dom(−ΔΣ,+∞) = H2(R3),

so that the Schrödinger operator with δ-interaction of strength 0 on Σ coincides
with the free Laplacian −Δfree; this will be made precise in Theorem 3.1 (ii)
below.

Remark 2.4. The definition of −ΔΣ,α relies on the generalized trace in Defi-
nition 2.2 and, thus, on the operator Bλ. As mentioned above, the operator
Bλ is designed in such a way that the singularity of γλh on Σ is removed; this
is done here by the term ln δ

2π . However, an alternative choice ln δ
2π + c with an

arbitrary δ-independent constant c ∈ R can be made. This leads to a different
operator −ΔΣ,α, which can be transformed into the operator in Definition 2.3
by adding the same constant c to α. For instance, for c = − ln 2

2π one obtains
the family of operators considered in [59].
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Remark 2.5. For a function u = uc + γλh ∈ dom(−ΔΣ,α) with h ∈ C0,1(Σ),
we denote by û(s, δ), s ∈ [0, L), the mean value of u over a circle of a suffi-
ciently small radius δ > 0 centered at σ(s) and being orthogonal to Σ in σ(s).
According to [59, Remark 3] (see also [27,30]), the functions

h0(s) := 2π lim
δ↘0

û(s, δ)
ln(1/δ)

and h1(s) := lim
δ↘0

[
û(s, δ) − h0(s)

2π
ln
(

1
δ

)]

are well defined and continuous on Σ and the function u satisfies the following
boundary condition

h1(s) =
(

α +
ln 2
2π

)
h0(s).

In many-body physics with zero-range interactions, a boundary condition of
this type is known as Skorniakov–Ter-Martirosian condition; see [58] and also [21,
50].

3. Main Results

In this section, we present all main results of this paper. It will be shown that
−ΔΣ,α is self-adjoint and its spectral and scattering properties will be ana-
lyzed. This section is focused on the main statements and does not contain
their proofs; these are postponed to Sect. 5 below. In the following, we de-
note by σp(−ΔΣ,α), σess(−ΔΣ,α), and ρ(−ΔΣ,α) the point spectrum, essential
spectrum, and resolvent set of −ΔΣ,α, respectively.

In the first theorem, we check that −ΔΣ,α is a self-adjoint operator in
L2(R3), prove a Birman–Schwinger principle for its negative eigenvalues and
compare its resolvent to the resolvent of the free Laplacian −Δfree in a Krein-
type formula, which also implies that the difference of the resolvents is com-
pact.

Theorem 3.1. The Schrödinger operator −ΔΣ,α in Definition 2.3 is self-adjoint
in L2(R3). Moreover, the following assertions hold.

(i) For each λ < 0, the operator γλ is an isomorphism between ker(α − Bλ)
and ker(−ΔΣ,α − λ). In particular, for each λ < 0

λ ∈ σp(−ΔΣ,α) if and only if α ∈ σp(Bλ).

(ii) The set ρ(−ΔΣ,α) ∩ (−∞, 0) is nonempty and for each λ ∈ ρ(−ΔΣ,α) ∩
(−∞, 0), the resolvent formula

(−ΔΣ,α − λ)−1 = (−Δfree − λ)−1 + γλ

(
α − Bλ

)−1
γ∗

λ (3.1)

is valid. Furthermore, −ΔΣ,α converges to −Δfree in the norm resolvent
sense as α → +∞.

(iii) For each λ ∈ ρ(−ΔΣ,α) ∩ ρ(−Δfree), the resolvent difference

(−ΔΣ,α − λ)−1 − (−Δfree − λ)−1 (3.2)

is compact and, in particular, σess(−ΔΣ,α) = [0,∞).
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Next, we investigate the resolvent difference of −ΔΣ,α and the free Lapla-
cian in more detail.

Theorem 3.2. Let s1(λ) ≥ s2(λ) ≥ . . . be the singular values of the resolvent
difference of −ΔΣ,α and −Δfree in (3.2), counted with multiplicities. Then

sk(λ) = O

(
1

k2 ln k

)
as k → +∞.

In particular, (3.2) belongs to the Schatten–von Neumann ideal Sp(L2(R3))
for each p > 1/2.

The logarithmic factor in the estimate for the singular values in the above
theorem is related to the fact that the eigenvalues of Bλ behave asymptotically
as − ln k

2π , see Proposition 4.5 (iii).
In the following theorem, we show that the discrete spectrum of −ΔΣ,α

is always finite and give estimates for the number Nα of negative eigenvalues,
counted with multiplicities. Let R = L

2π and define the intervals

I−1 =
[
ln(4R)

2π
,+∞

)
, I0 =

[
ln(4R)

2π
− 1

π
,
ln(4R)

2π

)
,

and

Ir =

⎡
⎣ ln(4R)

2π
− 1

π

r+1∑
j=1

1
2j − 1

,
ln(4R)

2π
− 1

π

r∑
j=1

1
2j − 1

⎞
⎠ , r = 1, 2, . . . ,

which are disjoint and satisfy R =
⋃∞

r=−1 Ir. Moreover, set

dΣ =
∫ L

0

∫ L

0

∣∣∣∣ 1
4π|σ(t) − σ(s)| − 1

4π|τ(t) − τ(s)|

∣∣∣∣
2

dsdt ≥ 0, (3.3)

where σ is the parametrization of Σ fixed in the beginning of Sect. 2 and τ
denotes an arc length parametrization of a circle of radius R.

Theorem 3.3. Let α �= 0 and denote by Nα the number of negative eigenval-
ues of −ΔΣ,α, counted with multiplicities. If α − dΣ ≥ ln(4R)

2π then Nα = 0.
Otherwise,

2r + 1 ≤ Nα ≤ 2l + 1,

where r ≥ −1 and l ≥ 0 are such that α + dΣ ∈ Ir and α − dΣ ∈ Il. In
particular, Nα is finite and the operator −ΔΣ,α is bounded from below.

In the next corollary, the upper and lower bounds on the number Nα of
negative eigenvalues in Theorem 3.3 are made more explicit. This also leads
to an asymptotic bound Nα = e−2πα+O(1) as α → −∞. We mention that
a slightly better asymptotic bound was obtained in [31]. For convenience, we
make a very small technical restriction and consider the case α+dΣ < ln(4R)

2π − 1
π

only.



1312 J. Behrndt et al. Ann. Henri Poincaré

Corollary 3.4. Let α �= 0 be such that α + dΣ < ln(4R)
2π − 1

π and denote by
Nα the number of negative eigenvalues of −ΔΣ,α, counted with multiplicities.
Then the estimate

2Rc−1e−2πα−γ − 1 − 4(e
1
92 − 1) < Nα < 2Rce−2πα−γ + 1 (3.4)

holds, where γ ≈ 0.577216 is the Euler–Mascheroni constant and c := e2πdΣ .
In particular, Nα = e−2πα+O(1) as α → −∞.

In the case where Σ is a circle, we have dΣ = 0 and hence from Theo-
rem 3.3 and Corollary 3.4 we immediately obtain the following explicit expres-
sions for the number of negative eigenvalues. For a similar formula in a related
context see [44] (cf. also [18]).

Corollary 3.5. Let Σ be a circle of radius R in R
3, let α �= 0, and denote by

Nα the number of negative eigenvalues of −ΔΣ,α, counted with multiplicities.
If α ≥ ln(4R)

2π , then Nα = 0. Otherwise,

Nα = 2r + 1, where r ≥ 0 is such that α ∈ Ir.

If α < ln(4R)
2π − 1

π , then the estimate

|Nα − 2Re−2πα−γ | < 1 + 4(e
1
92 − 1)

holds.

Next, we investigate the behavior of the smallest eigenvalue of −ΔΣ,α

when varying Σ among all curves of a given length L. It turns out that circles
are the unique maximizers of the minimum of the spectrum σ(−ΔΣ,α) in the
case that negative eigenvalues exist. The analog of the following theorem for
curves in the two-dimensional space was shown in [25,28].

Theorem 3.6. Let T be a circle in R
3 of radius R = L

2π and assume that Σ is
not a circle. Let α < ln(4R)

2π . Then

min σ(−ΔΣ,α) < min σ(−ΔT ,α),

where −ΔT ,α denotes the Schrödinger operator with δ-interaction of strength
1
α supported on the circle T .

Finally, we regard the pair {−Δfree,−ΔΣ,α} as a scattering system con-
sisting of the unperturbed Laplacian −Δfree and the singularly perturbed op-
erator −ΔΣ,α. The following corollary is an immediate consequence of Theo-
rem 3.2 and the Birman–Krein theorem [14].

Corollary 3.7. The absolutely continuous spectrum of −ΔΣ,α is given by

σac(−ΔΣ,α) = [0,+∞).

Moreover, the wave operators for the scattering pair {−Δfree,−ΔΣ,α} exist and
are complete.
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In the next theorem, we express the scattering matrix of the scattering
system {−Δfree,−ΔΣ,α} in terms of the limits of a certain explicit operator
function, using a result in [10]; we refer to [6,42,55,61] and Appendix A for
more details on scattering theory. For our purposes, it is convenient to consider
the symmetric operator S in L2(R3) defined as

Su = −Δu, dom S =
{
u ∈ H2(R3) : u|Σ = 0

}
,

which turns out to be the intersection of the self-adjoint operators −Δfree and
−ΔΣ,α. Then S is a densely defined, closed, symmetric operator with infinite
defect numbers. Furthermore, in general S contains a self-adjoint part which
can be split off. More precisely, consider the closed subspace

H1 = span
⋃

λ∈C\[0,∞)

(ran(S − λ))⊥

of L2(R3) and let H2 = H⊥
1 . Then S admits the orthogonal sum decomposition

S = S1 ⊕ S2

with respect to the space decomposition L2(R3) = H1 ⊕ H2, where the closed
symmetric operator S1 is completely non-self-adjoint or simple (cf. [3, Chap-
ter VII]) in H1 and S2 is a self-adjoint operator in H2 with purely absolutely
continuous spectrum. In the following, let L2(R,dλ,Hλ) be a spectral repre-
sentation of the self-adjoint operator S2 in H2; cf. [6, Chapter 4].

Theorem 3.8. Fix η < 0 such that 0 ∈ ρ(Bη − α) and define the operator
function C\[0,∞) � λ �→ N(λ) by

(N(λ)h)(x) =
∫

Σ

h(y)
ei

√
λ|x−y| − ei

√
η|x−y|

4π|x − y| dσ(y), (3.5)

where h ∈ L2(Σ) and x ∈ Σ. Then the following assertions hold.

(i) ImN(λ) ∈ S1(L2(Σ)) for all λ ∈ C\[0,∞) and the limit

Im N(λ + i0) := lim
ε↘0

Im N(λ + iε)

exists in S1(L2(Σ)) for a.e. λ ∈ [0,∞).
(ii) The function λ �→ N(λ), λ ∈ C\[0,∞), is a Nevanlinna function such

that the limit

N(λ + i0) := lim
ε↘0

N(λ + iε)

exists in the Hilbert–Schmidt norm for a.e. λ ∈ [0,∞). Moreover, for a.e.
λ ∈ [0,∞) the operator N(λ + i0) + Bη − α is boundedly invertible.

(iii) The space L2(R,dλ,Gλ ⊕ Hλ), where

Gλ := ran (Im N(λ + i0)) for a.e. λ ∈ [0,∞),

forms a spectral representation of −Δfree.
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(iv) The scattering matrix {S(λ)}λ∈R of the scattering system
{−Δfree,−ΔΣ,α} acting in the space L2(R,dλ,Gλ ⊕ Hλ) admits the rep-
resentation

S(λ) =
(

S′(λ) 0
0 IHλ

)

for a.e. λ ∈ [0,∞), where

S′(λ) = IGλ
− 2i

√
Im N(λ + i0)

(
N(λ + i0) + Bη − α

)−1√
Im N(λ + i0).

4. The Operator Bλ and the Generalized Trace

In this section, we discuss properties of the operator Bλ in (2.7) and of the
generalized trace defined in (2.8). We verify that the latter is well defined and
independent of λ. Our investigation of the operator Bλ is split into two parts:
first the special case of a circle Σ is treated, and afterwards the results are
extended by perturbation arguments to the general case.

4.1. Properties of Bλ for a Circle

Throughout this subsection, we assume that Σ is a circle of radius R = L
2π .

Without loss of generality we assume that Σ lies in the xy-plane and is centered
at the origin. We will make use of its arc length parametrization

σ : [0, L] → R
3, σ(t) = (R cos(2πt/L), R sin(2πt/L), 0)

and occasionally use the formula

|σ(s) − σ(t)| = 2R sin
(
|s − t|π

L

)
, s, t ∈ [0, L], (4.1)

which holds for elementary geometric reasons. Furthermore, for x = σ(t) ∈ Σ
and δ > 0 let IΣ

δ (x) be the open interval in Σ with center x and length 2δ as
in (2.6).

Let us first prove the following preliminary lemma. Its proof is partly
inspired by [59, Lemma 1].

Lemma 4.1. Let λ ≤ 0 and x ∈ Σ. Then the limit

kλ := lim
δ↘0

[∫
Σ\IΣ

δ (x)

e−
√

−λ|x−y|

4π|x − y| dσ(y) +
ln δ

2π

]

exists in R, is independent of x and equals

kλ =
∫ π

2

0

e−
√

−λ·2R sin(s) − 1
2π sin(s)

ds +
ln(4R)

2π
.

In particular, kλ → −∞ as λ → −∞.
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Proof. First of all, it follows from the symmetry of the circle Σ that kλ is
indeed independent of x (if it exists). Hence, without loss of generality, we can
choose x = σ(0). Using (4.1) and the substitution s = π

L t, we obtain
∫

Σ\IΣ
δ (x)

e−
√

−λ|x−y|

4π|x − y| dσ(y) =
∫ L−δ

δ

e−
√

−λ·2R sin( π
L t)

4π · 2R sin( π
L t)

dt

=
∫ π− π

L δ

π
L δ

e−
√

−λ·2R sin(s)

4π sin(s)
ds,

where we have used π
L = 1

2R in the last equality. As sin(π
2 − s) = sin(π

2 + s)
for all s ∈ R it follows∫

Σ\IΣ
δ (x)

e−
√

−λ|x−y|

4π|x − y| dσ(y) +
ln δ

2π

=
∫ π

2

δ
2R

e−
√

−λ·2R sin(s)

2π sin(s)
ds +

ln( δ
2R ) − ln(π

2 ) + ln(πR)
2π

=
1
2π

[∫ π
2

δ
2R

e−
√

−λ·2R sin(s)

sin(s)
ds −

∫ π
2

δ
2R

1
s

ds + ln(πR)

]

=
1
2π

[∫ π
2

δ
2R

e−
√

−λ·2R sin(s) − 1
sin(s)

ds +
∫ π

2

δ
2R

1
sin(s)

− 1
s

ds + ln(πR)

]
. (4.2)

With d
ds (ln(sin(s/2)) − ln(cos(s/2))) = 1

sin s , s ∈ (0, π
2 ), we get

∫ π
2

0

(
1

sin(s)
− 1

s

)
ds = ln

(
4
π

)
.

Hence, in the limit δ↘0 the Eq. (4.2) becomes

kλ =
∫ π

2

0

e−
√

−λ·2R sin(s) − 1
2π sin(s)

ds +
ln(4R)

2π
.

In particular, kλ exists and is finite. By monotone convergence, we have
∫ π

2

0

1 − e−
√

−λ·2R sin(s)

sin(s)
ds →

∫ π
2

0

1
sin(s)

ds ≥
∫ π

2

0

1
s

ds = +∞

as λ → −∞, and hence kλ → −∞ as λ → −∞. �

As a first step towards the study of the operator Bλ on the circle, we
show properties of B0 in the following lemma.

Lemma 4.2. Consider the operator B0 in (2.7), i.e.,

(B0h)(x) = lim
δ↘0

[∫
Σ\IΣ

δ (x)

h(y)
1

4π|x − y| dσ(y) + h(x)
ln δ

2π

]
, h ∈ C0,1(Σ).

Then the following assertions hold.
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(i) B0 is a well-defined, essentially self-adjoint operator in L2(Σ).
(ii) B0 is bounded from above, has a compact resolvent, and its eigenvalues

νk(0), k = 1, 2, . . . , ordered nonincreasingly and counted with multiplici-
ties, are given by

ν1(0) =
ln(4R)

2π
, ν2k(0) = ν2k+1(0) =

ln(4R)
2π

− 1
π

k∑
j=1

1
2j − 1

.

Proof. Let h ∈ C0,1(Σ). For every x ∈ Σ, we can write

(B0h)(x) =
∫

Σ

h(y) − h(x)
4π|x − y| dσ(y)

+ h(x) lim
δ↘0

[∫
Σ\IΣ

δ (x)

1
4π|x − y|dσ(y) +

ln δ

2π

]
.

Note that the first integral exists due to the fact that h is Lipschitz continuous.
According to Lemma 4.1 (for λ = 0) we can write the above equation as

(B0h)(x) =
∫

Σ

h(y) − h(x)
4π|x − y| dσ(y) + h(x)

ln(4R)
2π

, (4.3)

where we have used k0 = ln(4R)
2π . It follows directly

|(B0h)(x)| ≤ R

2
Lh +

ln(4R)
2π

‖h‖∞,

where Lh is a Lipschitz constant of h. Thus, B0 is a well-defined operator in
L2(Σ).

To show the symmetry of B0 let g, h ∈ C0,1(Σ) be arbitrary. Using (4.3),
we get

〈B0h, g〉L2(Σ) − 〈h,B0g〉L2(Σ)

=
〈[

B0 − ln(4R)
2π

]
h, g

〉
L2(Σ)

−
〈

h,

[
B0 − ln(4R)

2π

]
g

〉
L2(Σ)

=
∫

Σ

(∫
Σ

h(y) − h(x)
4π|x − y| dσ(y)

)
g(x)dσ(x)

−
∫

Σ

h(y)
(∫

Σ

g(x) − g(y)
4π|x − y| dσ(x)

)
dσ(y)

=
∫

Σ

∫
Σ

h(y)g(y) − h(x)g(x)
4π|x − y| dσ(y)dσ(x) = 0,

where the last equality follows from the fact that the integrand is skew-
symmetric with respect to x, y. Thus, B0 is symmetric.
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Next we calculate the eigenvalues of B0; this will also lead us to the
essential self-adjointness of B0. Consider the functions hk defined by hk(x) =
sin(kt/R) with x = σ(t) and k ∈ N. Then by (4.3) and (4.1) we have

([
B0 − ln(4R)

2π

]
hk

)
(x) =

∫
Σ

hk(y) − hk(x)
4π|x − y| dσ(y)

=
∫ L

0

sin(ks/R) − sin(kt/R)

4π · 2R sin
(

|s−t|
2R

) ds.

Due to the identity sin(ks/R) − sin(kt/R) = 2 sin(ks−kt
2R ) cos(ks+kt

2R ) this leads
to

([
B0 − ln(4R)

2π

]
hk

)
(x) =

∫ L

0

sin
(

k(s−t)
2R

)
cos
(

k(s+t)
2R

)

4πR sin
(

|s−t|
2R

) ds. (4.4)

We split the interval of integration into two parts and obtain with the substi-
tution z = s − t + L for the first integral

∫ t

0

sin
(

k(s−t)
2R

)
cos
(

k(s+t)
2R

)
4πR sin

(
t−s
2R

) ds

=
∫ L

L−t

sin
(

k(z−L)
2R

)
cos
(

k(z−L+2t)
2R

)
4πR sin

(
L−z
2R

) dz

=
∫ L

L−t

sin
(

kz
2R − kπ

)
cos
(

kz
2R − kπ + kt

R

)
4πR sin

(
π − z

2R

) dz

=
∫ L

L−t

sin
(

kz
2R

)
cos
(

kz
2R + kt

R

)
4πR sin

(
z

2R

) dz, (4.5)

where we have used in the last step that sin is an odd function and that the
formulas sin(x + π) = − sin(x) and cos(x + π) = − cos(x) hold for all x ∈ R.
For the remaining second integral, the substitution z = s − t yields

∫ L

t

sin
(

k(s−t)
2R

)
cos
(

k(s+t)
2R

)
4πR sin

(
s−t
2R

) ds =
∫ L−t

0

sin
(

kz
2R

)
cos
(

kz
2R + kt

R

)
4πR sin

(
z

2R

) dz. (4.6)

With the help of (4.5) and (4.6) and the substitution s = z/(2R), the iden-
tity (4.4) implies
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([
B0 − ln(4R)

2π

]
hk

)
(x)

=
∫ L

0

sin
(

kz
2R

)
cos
(

kz
2R + kt

R

)
4πR sin

(
z

2R

) dz

=
∫ π

0

sin(ks) cos
(
ks + kt

R

)
2π sin(s)

ds

=
∫ π

0

sin(ks)
2π sin(s)

[
cos(ks) cos

(
kt

R

)
− sin(ks) sin

(
kt

R

)]
ds

= − sin
(

kt

R

)∫ π

0

sin2(ks)
2π sin(s)

ds, (4.7)

where ∫ π

0

sin(ks) cos(ks)
2π sin(s)

ds = 0

was used in the last step. Furthermore, using 2 sin2(ks) = 1 − cos(2ks) and
the indefinite integrals given in [39, 2.526 1. and 2.539 4.], we get∫ π

0

sin2(ks)
2π sin(s)

ds =
1
4π

∫ π

0

1
sin(s)

− cos(2ks)
sin(s)

ds

= − 1
2π

k∑
j=1

cos[(2j − 1)s]
2j − 1

∣∣∣∣
π

0

=
1
π

k∑
j=1

1
2j − 1

.

Hence, (4.7) yields
([

B0 − ln(4R)
2π

]
hk

)
(x) = −

⎛
⎝ 1

π

k∑
j=1

1
2j − 1

⎞
⎠hk(x). (4.8)

By an analogous computation, we see that also
([

B0 − ln(4R)
2π

]
h̃k

)
(x) = −

⎛
⎝ 1

π

k∑
j=1

1
2j − 1

⎞
⎠ h̃k(x), (4.9)

where h̃k(x) = cos(kt/R) with x = σ(t). Moreover, for the constant function
h(x) = 1 on Σ we clearly have[

B0 − ln(4R)
2π

]
h = 0. (4.10)

Since the functions h, hk, h̃k are eigenfunctions of B0 by (4.8), (4.9) and (4.10)
and span a dense subspace of L2(Σ), it follows that the symmetric operator
B0 is actually essentially self-adjoint in L2(Σ). Furthermore, by (4.8), (4.9)
and (4.10), the self-adjoint closure B0 has a pure point spectrum and its
eigenvalues, counted with multiplicities, are given by νk(0), k = 1, 2, . . . , in



Vol. 18 (2017) Spectral Theory for Schrödinger Operators 1319

item (ii). Since these eigenvalues are bounded from above and converge to
−∞ as k → +∞, it follows that B0 is bounded from above and has a compact
resolvent. �

Let us now turn to the operator Bλ on the circle for general λ < 0.

Lemma 4.3. Let λ ≤ 0, let Σ be a circle of radius R and let Bλ be defined
in (2.7). Then the following assertions hold.

(i) Bλ is a well-defined, essentially self-adjoint operator in L2(Σ) and the
identity dom Bλ = dom B0 holds.

(ii) Bλ is bounded from above and has a compact resolvent.
(iii) The eigenvalues νk(λ) of Bλ, k = 1, 2, . . . , ordered nonincreasingly and

counted with multiplicities, satisfy

νk(λ) = − ln k

2π
+ O(1) as k → +∞.

(iv) The largest eigenvalue ν1(λ) of Bλ is given by kλ in Lemma 4.1. In par-
ticular, νk(λ) → −∞ as λ → −∞, k = 1, 2, . . . . The eigenspace corre-
sponding to ν1(λ) is given by the constant functions on Σ.

Proof. Note first that the operator Bλ can be written as

Bλ = B0 − Mλ, (4.11)

where

(Mλh)(x) =
∫

Σ

h(y)
1 − e−

√
−λ|x−y|

4π|x − y| dσ(y), h ∈ L2(Σ).

The integral operator Mλ has a real, symmetric kernel, which is square inte-
grable since for all x, y ∈ Σ there exists ξ ∈ [−

√
−λ|x − y|, 0] with

∣∣∣∣∣
1 − e−

√
−λ|x−y|

4π|x − y|

∣∣∣∣∣ =
∣∣∣e0 − e−

√
−λ|x−y|

∣∣∣
4π|x − y| =

eξ
∣∣0 − (−

√
−λ|x − y|)

∣∣
4π|x − y| ≤

√
−λ

4π
.

Thus, Mλ is a compact, self-adjoint operator in L2(Σ). Hence, due to
Lemma 4.2 and (4.11) Bλ is well defined and essentially self-adjoint in L2(Σ)
with

Bλ = B0 − Mλ. (4.12)

In particular, Bλ has a compact resolvent and dom Bλ = dom B0, which
shows (i).

Next, we show that Bλ is bounded from above by the number kλ defined
in Lemma 4.1. For every h ∈ C0,1(Σ) and x ∈ Σ, we can write

(Bλh)(x) =
∫

Σ

[h(y) − h(x)]
e−

√
−λ|x−y|

4π|x − y| dσ(y) + kλ · h(x),
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where again the integral exists due to the Lipschitz continuity of h. Hence,

〈(Bλ − kλ)h, h〉L2(Σ) =
∫

Σ

(∫
Σ

[h(y) − h(x)]
e−

√
−λ|x−y|

4π|x − y| dσ(y)

)
h(x)dσ(x)

=
∫

Σ

∫
Σ

[h(y) − h(x)]
e−

√
−λ|x−y|

4π|x − y| h(x)dσ(y)dσ(x)

= −
∫

Σ

∫
Σ

[h(y) − h(x)]
e−

√
−λ|x−y|

4π|x − y| h(y)dσ(y)dσ(x),

where in the last step we first changed the roles of x and y and then the order
of integration. Addition of the last two lines yields

2 〈(Bλ − kλ)h, h〉L2(Σ)

=
∫

Σ

∫
Σ

[h(y) − h(x)]
e−

√
−λ|x−y|

4π|x − y|
[
h(x) − h(y)

]
dσ(y)dσ(x)

≤ 0

and, hence, 〈Bλh, h〉L2(Σ) ≤ kλ〈h, h〉L2(Σ) for all h ∈ C0,1(Σ), with equality if
and only if h is constant, that is, Bλ (and, thus, Bλ) is bounded from above
by kλ, which shows (ii). Moreover, it follows ν1(λ) = kλ. By Lemma 4.1 this
implies ν1(λ) → −∞ as λ → −∞ and thus νk(λ) → −∞ as λ → −∞ for all
k. This finishes the proof of (iv).

It remains to verify the asymptotic behavior of the eigenvalue νk(λ) for
k → +∞ as claimed in (iii). According to [1, Equation 4.1.32], we have

k∑
j=1

1
j

= ln(k) + γ + o(1) as k → +∞,

where γ ≈ 0.577216 denotes the Euler–Mascheroni constant. Hence,
k∑

j=1

1
2j − 1

=
2k∑

j=1

1
j

− 1
2

k∑
j=1

1
j

= ln(2k) + γ − ln(k) + γ

2
+ o(1)

=
γ

2
+

ln(4k)
2

+ o(1) as k → +∞.

By Lemma 4.2 (ii) for the eigenvalues of B0 this implies

ν2k(0) =
ln(4R)

2π
− 1

π

k∑
j=1

1
2j − 1

=
ln(4R)

2π
− γ

2π
− ln(4k)

2π
+ o(1)

= − ln k

2π
+

ln R − γ

2π
+ o(1) = − ln(2k)

2π
+ O(1) as k → +∞ (4.13)

and consequently

ν2k+1(0) = ν2k(0) = −
ln(2k + 1) − ln(2k+1

2k )
2π

+ O(1)

= − ln(2k + 1)
2π

+ O(1) as k → +∞.

(4.14)



Vol. 18 (2017) Spectral Theory for Schrödinger Operators 1321

From (4.12), we conclude with the help of the min-max principle

νk(0) − ‖Mλ‖ ≤ νk(λ) ≤ νk(0) + ‖Mλ‖, k = 1, 2, . . . .

The latter together with (4.13) and (4.14) implies

νk(λ) = νk(0) + O(1) = − ln k

2π
+ O(1) as k → +∞,

which completes the proof of the lemma. �
4.2. Properties of Bλ in the General Case

In this subsection, Σ is an arbitrary compact, closed, regular C2-curve in R
3

of length L without self-intersections. In the following, we explore properties
of Bλ using the results of the previous subsection for the case of a circle. This
will be done by a perturbation argument.

Let T be a circle in R
3 with radius R = L

2π which is parametrized with
respect to the arc length by a function τ : [0, L] → R

3. To distinguish the
operators Bλ on Σ from those on the circle T we denote the latter by BT

λ .
Moreover, recall that σ : [0, L] → R

3 is an arc length parametrization of Σ.
We define an operator Dλ by

(Dλh) (σ(t)) =
∫ L

0

h(σ(s))

[
e−

√
−λ|σ(t)−σ(s)|

4π|σ(t) − σ(s)| − e−
√

−λ|τ(t)−τ(s)|

4π|τ(t) − τ(s)|

]
ds (4.15)

for h ∈ L2(Σ). Furthermore, let J : L2(Σ) → L2(T ) be the unitary operator
defined by

Jh = h ◦ σ ◦ τ−1, h ∈ L2(Σ). (4.16)

Our studies of Bλ will rely on the following properties of Dλ.

Lemma 4.4. For each λ ≤ 0, the operator Dλ in (4.15) is well defined, compact
and self-adjoint in L2(Σ), and ‖Dλ‖ ≤ C holds for all λ ≤ 0 and some C > 0
which is independent of λ. In the special case λ = 0, the estimate

‖D0‖ ≤ dΣ (4.17)

holds with dΣ given in (3.3). Moreover, the relation

Bλ = Dλ + J∗BT
λ J (4.18)

is satisfied for all λ ≤ 0.

Proof. To study the integral in the definition (4.15) of Dλ, we identify the
parametrizations σ, τ of Σ and T , respectively, with their L-periodic contin-
uations to all of R. Let s, t ∈ R with |s − t| ≤ L

2 . Define f : (0,∞) → R via

f(z) = e−
√

−λz

4πz for z > 0. Then

f ′(z) =
−

√
−λe−

√
−λz4πz − e−

√
−λz4π

(4πz)2
= −e−

√
−λz

√
−λz + 1
4πz2

, (4.19)

from which it follows that f ′ is monotonously nondecreasing on (0,∞) and,
thus, |f ′| is monotonously nonincreasing on (0,∞). Hence, with

ζmin = min {|σ(t) − σ(s)|, |τ(t) − τ(s)|}
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it follows ∣∣∣∣∣
e−

√
−λ|σ(t)−σ(s)|

4π|σ(t) − σ(s)| − e−
√

−λ|τ(t)−τ(s)|

4π|τ(t) − τ(s)|

∣∣∣∣∣
≤ |f ′(ζmin)| · ||σ(t) − σ(s)| − |τ(t) − τ(s)|| . (4.20)

Note that there exist εσ > 0 and ετ > 0 such that for all s, t ∈ R with
|s − t| ≤ L

2

|σ(s) − σ(t)| ≥ εσ|s − t| and |τ(s) − τ(t)| ≥ ετ |s − t|

holds. With ε := min{εσ, ετ} > 0, the estimate (4.20) can be simplified to
∣∣∣∣∣
e−

√
−λ|σ(t)−σ(s)|

4π|σ(t) − σ(s)| − e−
√

−λ|τ(t)−τ(s)|

4π|τ(t) − τ(s)|

∣∣∣∣∣
≤ |f ′(ε|s − t|)| ||σ(t) − σ(s)| − |τ(t) − τ(s)|| . (4.21)

Recall that Σ is a C2-curve. Hence, we get with Taylor’s theorem (for each
component) for some suitable ζ1, ζ2 and ζ3

σ(t) =

⎡
⎣σ1(t)

σ2(t)
σ3(t)

⎤
⎦ = σ(s) + σ′(s)(t − s) +

⎡
⎣σ′′

1 (ζ1)
σ′′

2 (ζ2)
σ′′

3 (ζ3)

⎤
⎦ (t − s)2

2
.

With Cσ :=
√

‖σ′′
1‖2

∞ + ‖σ′′
2‖2

∞ + ‖σ′′
3‖2

∞ and |σ′(s)| = 1 it follows

|σ(t) − σ(s)| ≤ |σ′(s)| · |t − s| +

∣∣∣∣∣∣
⎡
⎣σ′′

1 (ζ1)
σ′′

2 (ζ2)
σ′′

3 (ζ3)

⎤
⎦
∣∣∣∣∣∣
(t − s)2

2
≤ |t − s| +

Cσ

2
|t − s|2.

Analogously, we get with Cτ :=
√

‖τ ′′
1 ‖2

∞ + ‖τ ′′
2 ‖2

∞ + ‖τ ′′
3 ‖2

∞

|τ(t) − τ(s)| ≥ |τ ′(s)| · |t − s| −

∣∣∣∣∣∣
⎡
⎣τ ′′

1 (ξ1)
τ ′′
2 (ξ2)

τ ′′
3 (ξ3)

⎤
⎦
∣∣∣∣∣∣
(t − s)2

2
≥ |t − s| − Cτ

2
|t − s|2

for some suitable ξ1, ξ2 and ξ3. Hence,

|σ(t) − σ(s)| − |τ(t) − τ(s)| ≤ Cσ + Cτ

2
|t − s|2.

By changing the roles of σ and τ , we observe

||σ(t) − σ(s)| − |τ(t) − τ(s)|| ≤ Cσ + Cτ

2
|t − s|2. (4.22)

Note that e−x(x + 1) ≤ 1 for x ≥ 0. Together with (4.19), (4.22) and

C̃ :=
Cσ + Cτ

8πε2



Vol. 18 (2017) Spectral Theory for Schrödinger Operators 1323

the estimate (4.21) implies∣∣∣∣∣
e−

√
−λ|σ(t)−σ(s)|

4π|σ(t) − σ(s)| − e−
√

−λ|τ(t)−τ(s)|

4π|τ(t) − τ(s)|

∣∣∣∣∣
≤ C̃e−

√
−λε|s−t|

[√
−λε|s − t| + 1

]
≤ C̃ (4.23)

for all s, t ∈ R with |s − t| ≤ L
2 . For arbitrary s, t ∈ R, there exists k ∈ Z

such that |(s + kL) − t| ≤ L
2 . As σ and τ are L-periodic it follows that (4.23)

holds for all s, t ∈ R. From (4.23), we conclude that the integral kernel of
the operator Dλ is bounded with a bound C̃ independent of λ. Thus, with
C = C̃L, the definition of Dλ in (4.15) and estimate (4.23) follows

‖Dλh‖2
L2(Σ) ≤ ‖h‖2

L2(Σ)

∫ L

0

∫ L

0

∣∣∣∣∣
e−

√
−λ|σ(t)−σ(s)|

4π|σ(t) − σ(s)| − e−
√

−λ|τ(t)−τ(s)|

4π|τ(t) − τ(s)|

∣∣∣∣∣
2

ds dt

≤ C2‖h‖2
L2(Σ)

for all h ∈ L2(Σ) and C does not depend on λ. In particular, Dλ is a well-
defined, compact operator in L2(Σ) whose operator norm can be estimated
by a constant independent of λ. Since the integral kernel of Dλ is real and
symmetric, it follows that Dλ is self-adjoint. For λ = 0, the estimate (4.17)
follows immediately from the definition of Dλ.

To verify the relation (4.18) observe that h ∈ C0,1(Σ) if and only if
h̃ := Jh ∈ C0,1(T ) and in this case

(
J∗BT

λ Jh
)
(x) = lim

δ↘0

[∫
T \IT

δ (τ(t))

h̃(ỹ)
e−

√
−λ|τ(t)−ỹ|

4π|τ(t) − ỹ| dσ(ỹ) + h̃(τ(t))
ln δ

2π

]

for every h ∈ C0,1(Σ) and x = σ(t) ∈ Σ. This identity and the definitions of
Bλ and Dλ lead to the relation (4.18). �

Now we are in the position to prove all properties of Bλ which are required
for the proofs of the main results of this paper.

Proposition 4.5. Let λ ≤ 0 and let Bλ be given in (2.7). Then the following
assertions hold.

(i) Bλ is a well-defined, essentially self-adjoint operator in L2(Σ) and the
identity dom Bλ = dom B0 holds.

(ii) Bλ is bounded from above and has a compact resolvent.
(iii) The eigenvalues νk(λ) of Bλ, k = 1, 2, . . . , ordered nonincreasingly and

counted with multiplicities, satisfy

νk(λ) = − ln k

2π
+ O(1) as k → +∞.

(iv) For every k ∈ N, the function λ �→ νk(λ) is continuous and strictly
increasing on the interval (−∞, 0] and νk(λ) → −∞ as λ → −∞.
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Proof. Let Dλ be given in (4.15) and let J : L2(Σ) → L2(T ) be the unitary op-
erator in (4.16). Since Dλ is self-adjoint and compact in L2(Σ) by Lemma 4.4,
the assertions in (i) and (ii) follow directly from (4.18) and Lemma 4.3 (i)
and (ii). Furthermore, by (4.18), Lemma 4.3 (ii) and (iv), and Lemma 4.4,
there exists C > 0 independent of λ such that for h ∈ dom Bλ we have

〈
Bλh, h

〉
L2(Σ)

= 〈Dλh, h〉L2(Σ) +
〈
BT

λ Jh, Jh
〉

L2(T )

≤ ‖Dλ‖ · ‖h‖2
L2(Σ) + kλ‖Jh‖2

L2(T )

≤ (C + kλ)‖h‖2
L2(Σ), (4.24)

where kλ is given in Lemma 4.1. Since kλ → −∞ as λ → −∞ by Lemma 4.1,
we conclude from (4.24) that νk(λ) → −∞ as λ → −∞ for each k. From (4.18)
and the min-max principle, it follows

νk(λ) − C ≤ νT
k (λ) ≤ νk(λ) + C, k = 1, 2, . . . ,

where νT
k (λ) denotes the kth eigenvalue of BT

λ . We obtain with the help of
Lemma 4.3 (iii) that

νk(λ) = νT
k (λ) + O(1) = − ln k

2π
+ O(1) as k → +∞.

This proves the assertion (iii).
To show the remaining assertions in (iv), let λ, μ ≤ 0 and define the

operator Dλ,μ : L2(Σ) → L2(Σ) by

(Dλ,μh)(x) =
∫

Σ

h(y)
e−

√
−λ|x−y| − e−√−μ|x−y|

4π|x − y| dσ(y), h ∈ L2(Σ).

As Bλh − Bμh = Dλ,μh for all h ∈ C0,1(Σ), it follows that

Bλh = Bμh + Dλ,μh, h ∈ dom Bλ. (4.25)

As in the proof of Lemma 4.3 one shows that Dλ,μ is a compact, self-adjoint
operator with

‖Dλ,μ‖ ≤ |
√

−λ − √−μ|
4π

L.

In particular, ‖Dλ,μ‖ → 0 as λ → μ. From this and (4.25), it follows with
the min-max principle that νk(λ) → νk(μ) for all k, that is, all the functions
λ �→ νk(λ) are continuous.

For the strict monotonicity, let λ, μ < 0. If h ∈ dom Bλ = dom Bμ, it
follows from the definition of γλ and γμ in (2.3) that

γλh − γμh = (−Δ − λ)−1(hδΣ) − (−Δ − μ)−1(hδΣ)

= (λ − μ)(−Δ − λ)−1(−Δ − μ)−1(hδΣ), (4.26)

in particular, γλh − γμh ∈ H2(R3). Note also that γλ − γμ is continuous from
L2(Σ) to H2(R3) since γλ −γμ is defined on L2(Σ) and is closed as a mapping
from L2(Σ) to H2(R3). According to Lemma 2.1, we have
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(γλh − γμh)(x) =
∫

Σ

h(s)
e−

√
−λ|x−s| − e−√−μ|x−s|

4π|x − s| ds (4.27)

for almost all x ∈ R
3\Σ. As the integral in (4.27) is continuous with respect

to x we obtain (4.27) for all x ∈ R
3. In particular,

(γλh − γμh)|Σ(x) =
∫

Σ

h(s)
e−

√
−λ|x−s| − e−√−μ|x−s|

4π|x − s| ds

= (Bλh − Bμh)(x) (4.28)

for all x ∈ Σ and h ∈ C0,1(Σ) = dom Bλ = dom Bμ. If h ∈ dom Bλ = dom Bμ,
we can choose a sequence (hn) ⊂ dom Bλ = dom Bμ such that hn → h and
Bλhn → Bλh. Due to (4.28) and (4.26), we observe

Bλhn = Bμhn + (γλhn − γμhn)|Σ
= Bμhn +

(
(λ − μ)(−Δ − λ)−1(−Δ − μ)−1(hnδΣ)

)
|Σ.

Since the mapping h �→ hδΣ is continuous from L2(Σ) to H−2(R3) (see (2.2)),
−Δ − λ is an isomorphism between Hs(R3) and Hs−2(R3) for all s ∈ R, and
the trace map is continuous from H2(R3) to L2(Σ), we conclude

Bλh = lim
n→∞

Bμhn +
(
(λ − μ)(−Δ − λ)−1(−Δ − μ)−1(hδΣ)

)
|Σ

and hence the limit limn→∞ Bμhn exists and equals Bμh. Using the continuity
of γλ − γμ as a mapping from L2(Σ) to H2(R3), the continuity of the trace
and (4.28), we observe

(γλh − γμh)|Σ = lim
n→∞

(γλhn − γμhn)|Σ
= lim

n→∞
(Bλhn − Bμhn)

= Bλh − Bμh (4.29)

for all h ∈ dom Bλ = dom Bμ. From (4.29), (4.26) and (2.2), we obtain
〈(

Bλ − Bμ

)
h, h

〉
L2(Σ)

= 〈(γλh − γμh)|Σ, h〉L2(Σ)

=
〈[

(λ − μ)(−Δ − λ)−1(−Δ − μ)−1(hδΣ)
]
|Σ, h

〉
L2(Σ)

= (λ − μ)
〈
(−Δ − λ)−1(−Δ − μ)−1(hδΣ), hδΣ

〉
2,−2

= (λ − μ)
〈
(−Δ − μ)−1(hδΣ), (−Δ − λ)−1(hδΣ)

〉
L2(Σ)

.

Hence,

lim
μ→λ

〈
Bλh, h

〉
L2(Σ)

−
〈
Bμh, h

〉
L2(Σ)

λ − μ
= ‖(−Δ − λ)−1(hδΣ)‖2

L2(Σ)

= ‖γλh‖2
L2(Σ).
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Since γλ is an injective operator it follows that the function λ �→
〈
Bλh, h

〉
L2(Σ)

is strictly increasing on (−∞, 0), as its derivative is positive, i.e.,〈
Bλh, h

〉
L2(Σ)

<
〈
Bμh, h

〉
L2(Σ)

whenever λ < μ < 0. From this and the min-max principle for λ < μ < 0, we
obtain

−νk(λ) = min
U⊆dom Bλ

dim U = k

max
h∈U

‖h‖=1

〈
−Bλh, h

〉
L2(Σ)

> min
U⊆dom Bμ

dim U = k

max
h∈U

‖h‖=1

〈
−Bμh, h

〉
L2(Σ)

= −νk(μ),

where we have used that the operators −Bλ and −Bμ are bounded from below;
cf. (ii). Thus, νk(λ) < νk(μ) for λ < μ < 0 and by continuity the same holds
in the case λ < μ = 0. This proves the remaining assertion in (iv). �
4.3. Well-definedness of the Generalized Trace

In this subsection, we verify that the definition of the generalized trace u|Σ
in (2.8) is independent of the choice of λ < 0. Observe first that if

u = uc + γλh, uc ∈ H2(R3), h ∈ dom Bλ, (4.30)

for some λ < 0 then h ∈ dom Bμ for any μ < 0 by Proposition 4.5 (i) and

u = vc + γμh, where vc := uc + γλh − γμh. (4.31)

It follows as in (4.26) that γλh − γμh belongs to H2(R3), and hence also
vc ∈ H2(R3). Thus, if u admits the decomposition (4.30) with respect to some
λ < 0, then u admits the decomposition (4.31) with respect to any μ < 0. Note
also that for fixed λ < 0 both elements uc and h in the decomposition (4.30)
are unique.

Let now λ, μ < 0 and assume that

u = uc + γλh = vc + γμk (4.32)

with uc, vc ∈ H2(R3) and h, k ∈ dom Bλ = dom Bμ. Then it follows from the
above considerations and the uniqueness of the decompositions in (4.32) that

vc = uc + γλh − γμh and h = k. (4.33)

Using (4.29), it follows from (4.33) that

vc|Σ + Bμk = (uc + γλh − γμh) |Σ + Bμh

= uc|Σ + (Bλh − Bμh) + Bμh

= uc|Σ + Bλh.

This shows that the definition of the generalized trace in (2.8) is independent
of the choice of λ.

5. Proofs of the Main Results

In this section, we provide the complete proofs of the results in Sect. 3.



Vol. 18 (2017) Spectral Theory for Schrödinger Operators 1327

5.1. Proof of Theorem 3.1

We start by proving assertion (i). Assume first that λ ∈ σp(−ΔΣ,α) for some
λ < 0, let u ∈ ker(−ΔΣ,α−λ), u �= 0, and write u = uc+γλh with uc ∈ H2(R3)
and h ∈ dom Bλ. Using the definition of γλ in (2.3), we obtain

0 = (−ΔΣ,α − λ)(uc + γλh)

= (−Δ − λ)(uc + γλh) − 1
α

u|Σ · δΣ

= (−Δ − λ)uc +
1
α

(αh − u|Σ)δΣ.

Since (−Δ − λ)uc ∈ L2(R3) it follows uc = 0. In particular, 0 �= u = γλh,
which implies h �= 0. Moreover,

αh = u|Σ = (γλh)|Σ = Bλh,

that is, h ∈ ker(α − Bλ). Since u = γλh, it follows

ker(−ΔΣ,α − λ) ⊆ γλ

(
ker(α − Bλ)

)
.

Conversely, if h ∈ ker(α − Bλ), h �= 0, for some λ < 0 set u = γλh. Since γλ is
injective, we obtain u �= 0 and

u|Σ = (γλh)|Σ = Bλh = αh,

and hence

(Aα − λ)u = (−Δ − λ)γλh − 1
α

u|Σ · δΣ = hδΣ − hδΣ = 0.

From this, we conclude (−ΔΣ,α − λ)u = 0. Thus,

γλ

(
ker(α − Bλ)

)
⊆ ker(−ΔΣ,α − λ)

and λ ∈ σp(−ΔΣ,α). Since γλ is continuous as a mapping from L2(Σ) to
L2(R3), it follows that γλ is an isomorphism between the spaces ker(α − Bλ)
and ker(−ΔΣ,α − λ).

Next, we verify the resolvent formula (3.1) in (ii) and, simultaneously,
the self-adjointness of −ΔΣ,α. In the following, for a given α �= 0 fix λ0 < 0
such that α �∈ σp(Bλ0); this is possible according to Proposition 4.5 (iv). By
item (i), we have

ker(−ΔΣ,α − λ0) = {0}.

Let now v ∈ L2(R3) be arbitrary and define

u = (−Δfree − λ0)−1v + γλ0

(
α − Bλ0

)−1
γ∗

λ0
v ∈ L2(R3), (5.1)

and note that (α − Bλ0)
−1 is a bounded, self-adjoint operator in L2(Σ); cf.

Proposition 4.5 (i) and (ii). Furthermore, as (−Δfree − λ0)−1v ∈ H2(R3) and
(α−Bλ0)

−1γ∗
λ0

v ∈ dom Bλ0 , the trace u|Σ is well defined in the sense of (2.8).
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Making use of (2.5), we compute

u|Σ =
(
(−Δfree − λ0)−1v

)
|Σ + Bλ0

(
α − Bλ0

)−1
γ∗

λ0
v

=
(
I + Bλ0

(
α − Bλ0

)−1
)

γ∗
λ0

v

= α
(
α − Bλ0

)−1
γ∗

λ0
v. (5.2)

From (2.3), (5.2) and the definition of u in (5.1), we then conclude

(Aα − λ0)u = (−Δ − λ0)u − 1
α

u|Σ · δΣ

= v +
((

α − Bλ0

)−1
γ∗

λ0
v
)

· δΣ − 1
α

u|Σ · δΣ

= v

and hence Aαu = v + λ0u ∈ L2(R3). Thus, we have u ∈ dom(−ΔΣ,α) and

(−ΔΣ,α − λ0)−1v = u = (−Δfree − λ0)−1v + γλ0

(
α − Bλ0

)−1
γ∗

λ0
v.

Since v ∈ L2(R3) was arbitrary, the identity (3.1) follows for λ0. In particular,
since (α − Bλ0)

−1 is a bounded, self-adjoint operator in L2(Σ), it follows that
(−ΔΣ,α −λ0)−1 is bounded and self-adjoint in L2(R3). This implies that λ0 ∈
ρ(−ΔΣ,α) and that −ΔΣ,α is a self-adjoint operator in L2(R3).

Assume now that λ ∈ ρ(−ΔΣ,α) ∩ (−∞, 0) is arbitrary. Then α ∈ ρ(Bλ)
by item (i) and Proposition 4.5 (ii) and the above arguments with λ0 replaced
by λ yield the resolvent formula (3.1) for all λ ∈ ρ(−ΔΣ,α) ∩ (−∞, 0). The
identity (3.1) also implies

∥∥(−ΔΣ,α − λ)−1 − (−Δfree − λ)−1
∥∥ =

∥∥∥γλ

(
α − Bλ

)−1
γ∗

λ

∥∥∥
≤ ‖γλ‖2

∥∥∥(α − Bλ

)−1
∥∥∥

≤ ‖γλ‖2

α − ν1(λ)

for all α > ν1(λ); cf. Proposition 4.5 (ii). It follows that the right-hand side
converges to 0 as α → +∞. This proves assertion (ii).

To prove assertion (iii), let first λ = λ0 ∈ ρ(−ΔΣ,α) ∩ (−∞, 0) be fixed.
Then

(−ΔΣ,α − λ0)−1 − (−Δfree − λ0)−1 = γλ0(α − Bλ0)
−1γ∗

λ0
. (5.3)

Note that the identity (2.5) implies that γ∗
λ0

can also be regarded as a bounded
operator from L2(R3) to H1(Σ) since the restriction map H2(R3) � ϕ �→ ϕ|Σ ∈
H1(Σ) is continuous (cf., e.g., [13, Theorem 24.3]). In particular, it follows from
the compactness of the embedding of H1(Σ) into L2(Σ) that γ∗

λ0
is compact.

Since (α − Bλ0)
−1 is a bounded operator in L2(Σ), the identity (5.3) implies

that the resolvent difference in (3.2) is compact for λ = λ0. For an arbitrary
λ ∈ ρ(−ΔΣ,α) ∩ ρ(−Δfree), a simple calculation yields
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(−ΔΣ,α − λ)−1 − (−Δfree − λ)−1

= U
(
(−ΔΣ,α − λ0)−1 − (−Δfree − λ0)−1

)
V,

where

U = 1 + (λ − λ0)(−Δfree − λ)−1 and V = 1 + (λ − λ0)(−ΔΣ,α − λ)−1

are bounded operators in L2(R3). Now the claim follows from the assertion for
λ0. This proves (iii).

5.2. Proof of Theorem 3.2

It suffices to prove the assertion of Theorem 3.2 only for a fixed

λ = λ0 ∈ ρ(−ΔΣ,α) ∩ (−∞, 0).

Once it is established for λ0, it follows for all λ ∈ ρ(−ΔΣ,α) ∩ ρ(−Δfree) with
an argument as in the proof of Theorem 3.1 (iii) and standard properties
of singular values; cf. [38, II.§2.2]. When we denote by −ΔΣ

LB the Laplace–
Beltrami operator in L2(Σ) and write Λ := (I −ΔΣ

LB)1/2 then Λ is an isometric
isomorphism between H1(Σ) and L2(Σ). Moreover, Λ−1 is a compact, self-
adjoint operator in L2(Σ), whose singular values satisfy sk(Λ−1) = O(1/k) as
k → +∞; cf. [2, (5.39) and the text below]. Since γ∗

λ0
is bounded from L2(R3)

to H1(Σ) (see the proof of Theorem 3.1 (iii)) it follows that the operator
Λγ∗

λ0
: L2(R3) → L2(Σ) is bounded and from

γ∗
λ0

= Λ−1Λγ∗
λ0

we conclude sk(γ∗
λ0

) = O(1/k) as k → +∞; cf. [38, II.§2.2]. As a consequence,
also γλ0 : L2(Σ) → L2(R3) is a compact operator with sk(γλ0) = O(1/k) as
k → +∞. Moreover, with the help of Corollary 2.2 in [38, Chapter II] we
obtain

s3j−2

(
γλ0(α − Bλ)−1γ∗

λ0

)
≤ s2j−1

(
γλ0(α − Bλ)−1

)
sj(γ∗

λ0
)

≤ sj(γλ0)sj

(
(α − Bλ)−1

)
sj(γ∗

λ0
)

(5.4)

for all j ∈ N. Due to these observations and Proposition 4.5 (iii), there exists
C = C(λ0) > 0 such that

sj(γλ0) ≤ C

j
, sj

(
(α − Bλ)−1

)
≤ C

ln j
, and sj(γ∗

λ0
) ≤ C

j

hold for all j ∈ N. From this the claim of the theorem follows for λ = λ0.
Indeed, for j ≥ 2, with the help of (5.4) we get

s3j−2

(
γλ0(α − Bλ)−1γ∗

λ0

)
≤ C3

j2 ln j
≤ 27C3

(3j)2 ln(3j)

since ln j = 1
3 ln(j3) ≥ 1

3 ln(3j). As

s3j

(
γλ0(α − Bλ)−1γ∗

λ0

)
≤ s3j−1

(
γλ0(α − Bλ)−1γ∗

λ0

)
≤ s3j−2

(
γλ0(α − Bλ)−1γ∗

λ0

)
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and
27C3

(3j)2 ln(3j)
≤ 27C3

(3j − 1)2 ln(3j − 1)
≤ 27C3

(3j − 2)2 ln(3j − 2)
we observe

sk

(
γλ0(α − Bλ)−1γ∗

λ0

)
≤ 27C3

k2 ln k
for all k ∈ N, k ≥ 4. This yields the assertion of the theorem.

5.3. Proof of Theorem 3.3 and Corollary 3.4

Let us first prove Theorem 3.3. For λ ≤ 0, let us denote by νj(λ) the eigenvalues
of the operator Bλ, ordered nonincreasingly and counted with multiplicities;
cf. Proposition 4.5 (iii). We remark that by Theorem 3.1 (i) and Proposi-
tion 4.5 (iv) the number Nα of negative eigenvalues of −ΔΣ,α counted with
multiplicities coincides with the number of eigenvalues of B0 larger than α,
counted with multiplicities. Moreover, let T be a circle of radius R = L

2π , where
L is the length of Σ. We denote by BT

λ the analog of Bλ where Σ is replaced
by the circle T , and by νT

j (λ) the eigenvalues of its closure. From (4.18) with
λ = 0, it follows with the min-max principle that

νT
j (0) − ‖D0‖ ≤ νj(0) ≤ νT

j (0) + ‖D0‖, j = 1, 2, . . . .

Taking into account (4.17), we obtain

νT
j (0) − dΣ ≤ νj(0) ≤ νT

j (0) + dΣ, j = 1, 2, . . . . (5.5)

Assume first that α − dΣ ≥ ln(4R)
2π . For λ < 0 and j = 1, 2, . . . , we obtain

from Proposition 4.5 (iv), (5.5), and Lemma 4.2 (ii)

νj(λ) < νj(0) ≤ ν1(0) ≤ νT
1 (0) + dΣ =

ln(4R)
2π

+ dΣ ≤ α.

In particular, α /∈ σp(Bλ) for all λ < 0. From this and Theorem 3.1 (i), it
follows λ /∈ σp(−ΔΣ,α) for all λ < 0, hence Nα = 0.

Assume now α + dΣ ∈ Ir for some r ≥ 0 and α − dΣ ∈ Il for some l ≥ 0.
By means of Lemma 4.2 (ii), this implies

νT
2r+2(0) ≤ α + dΣ < νT

2r+1(0) (5.6)

and

νT
2l+2(0) ≤ α − dΣ < νT

2l+1(0). (5.7)

From (5.6), (5.7) and (5.5), it follows

ν2l+2(0) ≤ νT
2l+2(0) + dΣ ≤ α < νT

2r+1(0) − dΣ ≤ ν2r+1(0). (5.8)

Due to Proposition 4.5 (iv), the functions λ �→ νj(λ) are continuous and strictly
increasing and satisfy νj(λ) → −∞ as λ → −∞, j = 1, 2, . . . . Thus, by (5.8)
for each j ≤ 2r+1 there exists precisely one λj < 0 such that νj(λj) = α. From
Theorem 3.1 (i), we conclude that each such λj is an eigenvalue of −ΔΣ,α and
hence we obtain the estimate

2r + 1 ≤ Nα.
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In the same way, (5.8) implies that for any j ≥ 2l + 2 there exists no λ < 0
such that νj(λ) = α and that for each j ∈ {k : 2r + 2 ≤ k ≤ 2l + 1} there
exists at most one λj < 0 such that νj(λj) = α. Theorem 3.1 (i) yields that
each such λj is an eigenvalue of −ΔΣ,α and, therefore,

Nα ≤ 2l + 1.

In the remaining case, α + dΣ ∈ Ir with r = −1 it is clear that

2r + 1 = −1 ≤ Nα,

and the upper estimate for Nα follows as above. This completes the proof of
the theorem.

Let us now turn to the proof of the corollary. As in Theorem 3.3, let r

and l such that α+dΣ ∈ Ir and α−dΣ ∈ Il. The condition α+dΣ < ln(4R)
2π − 1

π
ensures 1 ≤ r ≤ l. The proof is based on the estimates

ln k + γ +
1
2k

− 1
12k2

< Hk < ln k + γ +
1
2k

− 1
12k2

+
1

120k4
(5.9)

for the harmonic sum Hk =
∑k

j=1
1
j , k ≥ 1, see e.g. [40, (9.89)]. Since∑k

j=1
1

2j−1 = H2k − 1
2Hk, it follows from (5.9)

k∑
j=1

1
2j − 1

> ln(2k) + γ +
1
4k

− 1
48k2

− 1
2

(
ln k + γ +

1
2k

− 1
12k2

+
1

120k4

)

=
ln k + ln 4 + γ

2
+

1
48k2

− 1
240k4

>
ln k + ln 4 + γ

2
.

Hence, α − dΣ ∈ Il implies

α − dΣ <
ln(4R)

2π
− 1

π

l∑
j=1

1
2j − 1

<
ln(4R)

2π
− ln l + ln 4 + γ

2π

and, therefore,

ln l < −2π(α − dΣ) + lnR − γ. (5.10)

Using Nα ≤ 2l + 1 from Theorem 3.3 and the estimate (5.10), we get

Nα − 2Re−2π(α−dΣ)−γ ≤ 2l + 1 − 2e−2π(α−dΣ)+ln R−γ < 2l + 1 − 2eln l = 1

which yields the upper estimate for Nα in (3.4).
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For the lower estimate in (3.4), we deduce from (5.9) the estimate

k∑
j=1

1
2j − 1

< ln(2k) + γ +
1
4k

− 1
48k2

+
1

1920k4
− 1

2

(
ln k + γ +

1
2k

− 1
12k2

)

=
ln k + ln 4 + γ

2
+

1
48k2

+
1

1920k4

<
ln k + ln 4 + γ + 1

23k2

2
.

Hence, α + dΣ ∈ Ir implies

α + dΣ ≥ ln(4R)
2π

− 1
π

r+1∑
j=1

1
2j − 1

>
ln(4R)

2π
−

ln(r + 1) + ln 4 + γ + 1
23(r+1)2

2π

and, therefore,

ln(r + 1) +
1

23(r + 1)2
> −2π(α + dΣ) + lnR − γ. (5.11)

Using Nα ≥ 2r + 1 from Theorem 3.3 and the estimate (5.11), we get

Nα − 2Re−2π(α+dΣ)−γ ≥ 2r + 1 − 2e−2π(α+dΣ)+ln R−γ

> 2r + 1 − 2eln(r+1)+ 1
23(r+1)2

= 2(r + 1) − 1 − 2(r + 1)e
1

23(r+1)2

= 2(r + 1)
(
1 − e

1
23(r+1)2

)
− 1 =: g(r).

As g′(r) > 0 for all r ≥ 1, the minimum of g for r ≥ 1 is attained at r = 1.
Hence,

Nα − 2Re−2π(α+dΣ)−γ > 4
(
1 − e

1
92

)
− 1,

which gives the lower estimate in (3.4).

5.4. Proof of Theorem 3.6

The proof of Theorem 3.6 follows the ideas of [25,28]. Suppose that Σ is not a
circle. Then the strict inequality∫ L

0

|σ(s + u) − σ(s)| ds <
L2

π
sin

πu

L
, u ∈ (0, L), (5.12)

holds, where σ is identified with its L-periodic extension to all of R. For
u ∈ (0, L

2 ], the inequality (5.12) follows from [28, Theorem 2.2 and Propo-
sition 2.1]. As every u ∈ (L

2 , L) can be written as u = L − v with v ∈ (0, L
2 ),
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the substitution t = s − v and the periodicity of σ yield for u ∈ (L
2 , L)∫ L

0

|σ(s + u) − σ(s)| ds =
∫ L

0

|σ(s − v) − σ(s)| ds

=
∫ L

0

|σ(t) − σ(t + v)| dt

<
L2

π
sin

πv

L

=
L2

π
sin

πu

L
,

i.e., the estimate (5.12) holds for all u ∈ (0, L).
In the following, denote by λ1 = min σ(−ΔT ,α) < 0 the smallest eigen-

value of −ΔT ,α (cf. Corollary 3.5) and let νT
1 (λ1) be the largest eigenvalue of

BT
λ1

. By Theorem 3.1 (i), we have α ∈ σp(BT
λ1

) and, in particular, α ≤ νT
1 (λ1).

We claim that
νT
1 (λ1) < ν1(λ1) (5.13)

holds. To see this, note first that (4.18) implies

Bλ1 = Dλ1 + J∗BT
λ1

J, (5.14)

where J : L2(Σ) → L2(T ) is the unitary mapping given in (4.16) and the
compact operator Dλ1 in L2(Σ) is given by

(Dλ1h) (σ(t)) =
∫ L

0

h(σ(s))

[
e−

√
−λ1|σ(t)−σ(s)|

4π|σ(t) − σ(s)| − e−
√

−λ1|τ(t)−τ(s)|

4π|τ(t) − τ(s)|

]
ds

for h ∈ L2(Σ). It follows from Lemma 4.3 (iv) and (5.14) that for the constant
function h = 1√

L
on Σ (which implies ‖h‖L2(Σ) = 1) we have

〈
Bλ1h, h

〉
L2(Σ)

= 〈Dλ1h, h〉L2(Σ) +
〈
BT

λ1
Jh, Jh

〉
L2(T )

= 〈Dλ1h, h〉L2(Σ) + νT
1 (λ1). (5.15)

Our aim is to estimate the term 〈Dλ1h, h〉L2(Σ). For this purpose, we
define the function

G(x) =
e−

√
−λ1x

4πx
, x > 0.

It is easy to see that G is strictly monotone decreasing and convex. Hence,
(5.12) and the monotonicity of G imply

G

(
L

π
sin

πu

L

)
< G

(
1
L

∫ L

0

|σ(s + u) − σ(s)|ds

)
(5.16)

for each u ∈ (0, L). Using Jensen’s inequality, see e.g. [56, Theorem 3.3], the
convexity of G implies

G

(
1
L

∫ L

0

|σ(s + u) − σ(s)|ds

)
≤ 1

L

∫ L

0

G(|σ(s + u) − σ(s)|)ds. (5.17)



1334 J. Behrndt et al. Ann. Henri Poincaré

Combining (5.16) and (5.17), we observe

0 <

∫ L

0

(∫ L

0

G(|σ(s + u) − σ(s)|) ds − LG

(
L

π
sin

πu

L

))
du

=
∫ L

0

∫ L

0

G(|σ(s + u) − σ(s)|) − G

(
L

π
sin

πu

L

)
duds. (5.18)

Moreover, for each s ∈ (0, L) with the substitution t = s + u, we get∫ L

0

G(|σ(s + u) − σ(s)|) − G

(
L

π
sin

πu

L

)
du

=
∫ L+s

s

G(|σ(t) − σ(s)|) − G

(
L

π
sin

π(t − s)
L

)
dt

=
∫ L

s

G(|σ(t) − σ(s)|) − G

(
L

π
sin

π(t − s)
L

)
dt

+
∫ s

0

G(|σ(t + L) − σ(s)|) − G

(
L

π
sin

π(t + L − s)
L

)
dt

=
∫ L

s

G(|σ(t) − σ(s)|) − G

(
L

π
sin

π(t − s)
L

)
dt

+
∫ s

0

G(|σ(t) − σ(s)|) − G

(
L

π
sin

π(s − t)
L

)
dt

=
∫ L

0

G(|σ(t) − σ(s)|) − G

(
L

π
sin

π|t − s|
L

)
dt.

Therefore, (5.18) can be rewritten as

0 <

∫ L

0

∫ L

0

G(|σ(t) − σ(s)|) − G

(
L

π
sin

π|t − s|
L

)
dtds.

From the last equality and (4.1) (with σ replaced by τ), we conclude

〈Dλ1h, h〉L2(Σ) =
1
L

∫ L

0

∫ L

0

e−
√

−λ1|σ(t)−σ(s)|

4π|σ(t) − σ(s)| − e−
√

−λ1|τ(t)−τ(s)|

4π|τ(t) − τ(s)| ds dt

> 0

for the constant function h = 1√
L

. Hence, (5.15) leads to〈
Bλ1h, h

〉
L2(Σ)

> νT
1 (λ1)

for the constant function h = 1√
L

and hence (5.13) follows. In particular,

α ≤ νT
1 (λ1) < ν1(λ1).

As the function λ �→ ν1(λ) is continuous and strictly increasing on (−∞, 0] by
Proposition 4.5 (iv) and ν1(λ) → −∞ as λ → −∞, there exists λ2 < λ1 such
that α = ν1(λ2). By Theorem 3.1 (i), λ2 is an eigenvalue of −ΔΣ,α. Thus,

min σ(−ΔΣ,α) ≤ λ2 < λ1 = min σ(−ΔT ,α),

which completes the proof of Theorem 3.6.
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5.5. Proof of Theorem 3.8

Consider the scattering pair {−Δfree,−ΔΣ,α} with α ∈ R\{0} and fix η < 0
such that 0 ∈ ρ(Bη − α), which is possible according to Proposition 4.5 (ii)
and (iv). As in (A.9) and (A.10), consider the symmetric operator

Su = −Δu, dom S =
{
u ∈ H2(R3) : u|Σ = 0

}
,

and the operator

Tu = −Δu − hδΣ, dom T = H2(R3) +̇
{
γηh : h ∈ dom Bη

}
,

where γηh = (−Δ − η)−1(hδΣ) is as in (2.3). Then T = S∗ according to
Proposition A.5. Now we slightly modify the boundary maps in Proposition A.5
such that Theorem A.4 can be applied directly to the pair {−Δfree,−ΔΣ,α}.
More precisely, we claim that {L2(Σ),Γ0,Γ1}, where

Γ0u = h and Γ1u = uc|Σ + (Bη − α)h, u = uc + γηh ∈ dom T, (5.19)

is a quasi boundary triple for S∗ such that

− Δfree = T � ker Γ0 and − ΔΣ,α = T � ker Γ1. (5.20)

The γ-field and Weyl function corresponding to {L2(Σ),Γ0,Γ1} are given by

γ(λ)h = (−Δ − λ)−1(hδΣ) and M(λ)h = N(λ)h + (Bη − α)h, (5.21)

where λ ∈ C\[0,∞), h ∈ dom Bη, and the function N is as in (3.5).
In fact, the identities in (5.20) hold by construction and Proposition A.5.

To verify the abstract Green identity for the boundary maps in (5.19), recall
from (A.17) in the proof of Proposition A.5 that for u, v ∈ dom T such that
u = uc + γηh and v = vc + γηk the identity

〈Tu, v〉L2(R3) − 〈u, Tv〉L2(R3) = 〈uc|Σ, k〉L2(Σ) − 〈h, vc|Σ〉L2(Σ)

holds. Since (Bη − α) is a self-adjoint operator in L2(Σ), we have

〈uc|Σ, k〉L2(Σ) − 〈h, vc|Σ〉L2(Σ)

=
〈
uc|Σ + (Bη − α)h, k

〉
L2(Σ)

−
〈
h, vc|Σ + (Bη − α)k

〉
L2(Σ)

= 〈Γ1u,Γ0v〉L2(Σ) − 〈Γ0u,Γ1v〉L2(Σ)

and hence the Green identity is valid. The same argument as in the proof of
Proposition A.5 shows that the range of the mapping u �→ (Γ0u, Γ1u)� is dense
in L2(Σ) × L2(Σ). Hence, {L2(Σ),Γ0,Γ1} is a quasi boundary triple for S∗.
Since Γ0 is the same map as in Proposition A.5, the corresponding γ-field has
the same form as in Proposition A.5. The form of the Weyl function in (5.21)
follows from

M(η)h = Γ1γ(η)h = Γ1(−Δ − η)−1(hδΣ) = (Bη − α)h

for h ∈ ran Γ0 = dom Bη and (3.5) in the same way as in the proof of Propo-
sition A.5; cf. (4.26), (4.28), and Remark A.6.

Now we complete the proof of Theorem 3.8. Consider the quasi boundary
triple {L2(Σ),Γ0,Γ1} in (5.19). It follows from (5.21), (2.3) and the proof of
Theorem 3.2 that

γ(η) = γη ∈ S2

(
L2(Σ), L2(R3)

)
. (5.22)
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Moreover, since η < 0 was chosen such that 0 ∈ ρ(Bη − α) it is clear that the
operator M(η)−1 = (Bη − α)−1 is bounded in L2(Σ). Note also that

Im M(λ) = ImN(λ), λ ∈ C\[0,∞),

holds by (5.21). Hence, the assumptions in Theorem A.4 are satisfied and the
assertions (i), (iii), and (iv) in Theorem 3.8 follow. Observe that by (5.21) and
(A.4)

N(λ) = (λ − η)γ(η)∗(−Δfree − η)(−Δfree − λ)−1γ(η)

= (λ − η)γ(η)∗γ(η) + (λ − η)2γ(η)∗(−Δfree − λ)−1γ(η)

holds for λ ∈ C\[0,∞). Therefore, (5.22) and [6, Proposition 3.14] yield that
the limit N(λ + i0) exists in the Hilbert–Schmidt norm for a.e. λ ∈ [0,∞),
that is, assertion (ii) in Theorem 3.8 holds. This completes the proof.
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Appendix A. Quasi Boundary Triples and Their Weyl Functions

In this appendix, we briefly review the abstract notions of quasi boundary
triples and their Weyl functions from extension theory of symmetric operators
in Hilbert spaces, and relate them to the Schrödinger operators −Δfree and
−ΔΣ,α. Furthermore, we recall a representation formula for the scattering
matrix in terms of the Weyl function of a quasi boundary triple from [10],
which is the main ingredient in the proof of Theorem 3.8. For more details on
quasi boundary triples and their Weyl functions, we refer the reader to [7,8],
and for generalized and ordinary boundary triples to [20,23,24].

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Definition A.1. Let S be a densely defined, closed, symmetric operator in a
Hilbert space (H, 〈·, ·〉H) and assume that T is a linear operator in H such that
T = S∗. A triple {G,Γ0,Γ1} is a quasi boundary triple for S∗ if (G, 〈·, ·〉G) is
a Hilbert space and Γ0,Γ1 : dom T → G are linear mappings such that the
following holds.

(i) For all u, v ∈ dom T , one has

〈Tu, v〉H − 〈u, Tv〉H = 〈Γ1u,Γ0v〉G − 〈Γ0u, Γ1v〉G .

(ii) The range of the mapping (Γ0,Γ1)� : dom T → G × G is dense.
(iii) The operator A0 := T � ker Γ0 is self-adjoint in H.

If {G,Γ0,Γ1} is a quasi boundary triple for T = S∗, then

S = T � (ker Γ0 ∩ ker Γ1).

Moreover, if ran Γ0 = G, then {G,Γ0,Γ1} is a generalized boundary triple in
the sense of [24, Section 6], and if ran(Γ0,Γ1)� = G × G then {G,Γ0,Γ1}
is an ordinary boundary triple; cf. [20,23]. In the latter case, it follows that
T = S∗ and hence the abstract Green identity in Definition A.1 (i) holds for
all u, v ∈ dom S∗. We remark that for an ordinary boundary triple, condition
(iii) in Definition A.1 is automatically satisfied.

A quasi boundary triple {G,Γ0,Γ1} for T = S∗ is a useful tool to describe
the extensions of S which are contained in T via abstract boundary conditions
in the auxiliary Hilbert space G. However, in this context it is important to
note that not all self-adjoint extensions of S in H are covered, but only those
which are also restrictions of T . Furthermore, a self-adjoint parameter Θ in G
does not automatically lead to a self-adjoint extension via

AΘ := T � ker(Γ1 − ΘΓ0), (A.1)

as one is used to from the theory of ordinary boundary triples. In general,
AΘ in (A.1) is only symmetric in H, not necessarily closed, and one has to
impose additional conditions on Θ or on other involved objects to ensure self-
adjointness of the extension AΘ, see, e.g., [7,8].

Next we recall [8, Theorem 6.11] which is very useful for the construction
of quasi boundary triples and provides a method to determine the adjoint of
a symmetric operator.

Theorem A.2. Let T be a linear operator in a Hilbert space (H, 〈·, ·〉H), let
(G, 〈·, ·〉G) be a Hilbert space, and assume that Γ0,Γ1 : dom T → G are linear
mappings such that the following holds.

(i) For all u, v ∈ dom T , one has

〈Tu, v〉H − 〈u, Tv〉H = 〈Γ1u,Γ0v〉G − 〈Γ0u, Γ1v〉G .

(ii) ran(Γ0,Γ1)� is dense in G × G and ker Γ0 ∩ ker Γ1 is dense in H.
(iii) There exists a self-adjoint operator A0 in H such that A0 ⊂ T � ker Γ0.
Then S := T � (ker Γ0∩ker Γ1) is a densely defined, closed, symmetric operator
in H such that T = S∗, and {G,Γ0,Γ1} is a quasi boundary triple for S∗ with
A0 = T � ker Γ0.
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Next, we recall the notion of the γ-field and Weyl function associated
with a quasi boundary triple {G,Γ0,Γ1} for T = S∗. First of all it follows from
the direct sum decomposition dom T = dom A0+̇ ker(T − λ), λ ∈ ρ(A0), and
dom A0 = ker Γ0 that the restriction of the boundary map Γ0 onto ker(T − λ)
is invertible. The inverse

γ(λ) = (Γ0 � ker(T − λ))−1
, λ ∈ ρ(A0),

is a densely defined operator from G into H. The function λ �→ γ(λ) is called the
γ-field associated to {G,Γ0,Γ1}. The Weyl function M associated to {G,Γ0,Γ1}
is defined by

M(λ) = Γ1 (Γ0 � ker(T − λ))−1
, λ ∈ ρ(A0).

The values M(λ) of the Weyl function are densely defined operators in G,
which may be unbounded and not closed in general. If one views the boundary
maps Γ0 and Γ1 as abstract Dirichlet and Neumann trace maps then the values
of the Weyl function can be interpreted as abstract analogs of the Dirichlet-to-
Neumann map in the theory of elliptic PDEs. For λ, μ ∈ ρ(A0) and h ∈ ran Γ0,
we note the useful identities

γ(λ)∗ = Γ1(A0 − λ)−1 (A.2)

and
γ(λ)h = (A0 − μ)(A0 − λ)−1γ(μ)h (A.3)

as well as

M(λ)h = M(μ)∗h + (λ − μ)γ(μ)∗(A0 − μ)(A0 − λ)−1γ(μ)h (A.4)

for the γ-field and Weyl function, and refer the reader for more details and
proofs of the above identities to [7,8].

The following theorem from [7,8] contains a Krein-type resolvent formula
and provides a criterion to show self-adjointness of the extension AΘ in (A.1).

Theorem A.3. Let S be a densely defined, closed, symmetric operator in a
Hilbert space (H, 〈·, ·〉H) and let {G,Γ0,Γ1} be a quasi boundary triple for T =
S∗ with A0 = T � ker Γ0 and γ-field γ and Weyl function M . Let Θ be an
operator in G and let

AΘ = T � ker(Γ1 − ΘΓ0).

Assume, in addition, that λ ∈ ρ(A0) is not an eigenvalue of AΘ or, equiva-
lently, ker(Θ − M(λ)) = {0}. Then the following assertions hold.

(i) u ∈ ran(AΘ − λ) if and only if γ(λ)∗u ∈ dom(Θ − M(λ))−1.
(ii) For all u ∈ ran(AΘ − λ) one has

(AΘ − λ)−1u = (A0 − λ)−1u + γ(λ) (Θ − M(λ))−1
γ(λ)∗u. (A.5)

In particular, if Θ is a symmetric operator in G and ran γ(λ)∗ is contained in
dom(Θ − M(λ))−1 for some λ ∈ C

+ and some λ ∈ C
− then AΘ is self-adjoint

in H and the resolvent formula (A.5) holds for all λ ∈ ρ(AΘ) ∩ ρ(A0) and all
u ∈ H.
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Next, we provide a slightly generalized variant of the representation for-
mula for the scattering matrix from [10]. Let again S be a densely defined,
closed, symmetric operator in a Hilbert space (H, 〈·, ·〉H) and let {G,Γ0,Γ1} be
a quasi boundary triple for T = S∗ with A0 = T � ker Γ0 and γ-field γ and
Weyl function M . Assume, in addition, that the extension

A1 = T � ker Γ1

is self-adjoint in H; in general A1 is only symmetric in H and not neces-
sarily closed. Denote the absolutely continuous subspaces of A0 and A1 by
Hac(A0) and Hac(A1), respectively, let P ac(A0) be the orthogonal projection
onto Hac(A0) and let

Aac
0 = A0 � (dom A0 ∩ Hac(A0))

in Hac(A0) be the absolutely continuous part of A0. If the difference of the
resolvents of A0 and A1 is a trace class operator, that is,

(A1 − λ)−1 − (A0 − λ)−1 ∈ S1(H) (A.6)

for some, and hence for all, λ ∈ ρ(A0) ∩ ρ(A1) then the wave operators

W±(A0, A1) := s − lim
t→±∞

eitA1e−itA0P ac(A0)

exist and satisfy ranW±(A0, A1) = Hac(A1) according to the Birman–Krein
theorem [14]. It follows that the scattering operator

S(A0, A1) := W+(A0, A1)∗W−(A0, A1)

is unitary in the absolutely continuous subspace Hac(A0) of A0, and that
S(A0, A1) is unitarily equivalent to a multiplication operator {S(λ)}λ∈R in a
spectral representation of the absolutely continuous part Aac

0 of A0. The family
{S(λ)}λ∈R is called the scattering matrix of the pair {A0, A1}; cf. [6,42,55,61].

In general, the underlying closed symmetric operator S is not simple (or
completely non-self-adjoint) and hence its self-adjoint part is reflected in the
scattering matrix of {A0, A1}. More precisely, if S is not simple then there is
a nontrivial orthogonal decomposition of the Hilbert space H = H1 ⊕ H2 such
that

S = S1 ⊕ S2, (A.7)

where S1 is a simple symmetric operator in H1 and S2 is a self-adjoint operator
in H2. Since A0 and A1 are self-adjoint extensions of S, there exist self-adjoint
extensions B0 and B1 of S1 in H1 such that

A0 = B0 ⊕ S2 and A1 = B1 ⊕ S2. (A.8)

In the following, let L2(R,dλ,Hλ) be a spectral representation of the absolutely
continuous part Sac

2 of the self-adjoint operator S2 in H2.
Now we can formulate a variant of [10, Theorem 3.1 and Corollary 3.3]

which is suitable for our purposes. Instead of generalized boundary triples, the
result is stated for quasi boundary triples here.
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Theorem A.4. Let S be a densely defined, closed, symmetric operator in H
decomposed in the form (A.7) and let {G,Γ0,Γ1} be a quasi boundary triple
for T = S∗ with A0 = T � ker Γ0 and γ-field γ and Weyl function M . Assume
that the extension A1 = T � ker Γ1 is self-adjoint in H and let B0 and B1 be
self-adjoint operators as in (A.8). Furthermore, suppose that

γ(λ0) ∈ S2(G,H) for some λ0 ∈ ρ(A0),

and that M(λ1)−1 is a bounded operator in G for some λ1 ∈ ρ(A0) ∩ ρ(A1).
Then (A.6) is satisfied for all λ ∈ ρ(A0) ∩ ρ(A1) and the following assertions
hold.

(i) Im M(λ) ∈ S1(G) for all λ ∈ ρ(A0) and the limit

Im M(λ + i0) := lim
ε↘0

Im M(λ + iε)

exists in S1(G) for a.e. λ ∈ R.
(ii) For all ϕ ∈ ran Γ0 and a.e. λ ∈ R the limit

M(λ ± i0)ϕ := lim
ε↘0

M(λ ± iε)ϕ

exists and the operators M(λ ± i0) are closable with boundedly invertible
closures M(λ ± i0).

(iii) The space L2(R,dλ,Gλ ⊕ Hλ), where

Gλ := ran
(
Im M(λ + i0)

)
for a.e. λ ∈ R,

forms a spectral representation of Aac
0 .

(iv) The scattering matrix {S(λ)}λ∈R of the scattering system {A0, A1} acting
in the space L2(R,dλ,Gλ ⊕ Hλ) admits the representation

S(λ) =
(

S′(λ) 0
0 IHλ

)

for a.e. λ ∈ R, where

S′(λ) = IGλ
− 2i

√
Im M(λ + i0)

(
M(λ + i0)

)−1
√

Im M(λ + i0)

is the scattering matrix of the scattering system {B0, B1}.

In the following, we show how the objects of this manuscript fit in the
abstract scheme of quasi boundary triples. Let −Δfree be the self-adjoint Lapla-
cian in L2(R3) with domain H2(R3) and let −ΔΣ,α be the Schrödinger oper-
ator with a δ-interaction of strength 1

α supported on Σ from Definition 2.3.
Consider the symmetric operator

Su = −Δu, dom S =
{
u ∈ H2(R3) : u|Σ = 0

}
, (A.9)

and define the operator T in L2(R3) by

Tu = −Δu − hδΣ, dom T = H2(R3) +̇
{
γηh : h ∈ dom Bη

}
, (A.10)

where η < 0 is chosen such that 0 ∈ ρ(Bη−α) (see Proposition 4.5 (ii) and (iv))
and γηh = (−Δ − η)−1(hδΣ) is as in (2.3). It follows from the remark below
Definition 2.2 that the sum in the definition of domT is direct. Furthermore, T
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is a well-defined operator in L2(R3) since for an element u = uc +γηh ∈ dom T

with uc ∈ H2(R3) and h ∈ dom Bη one has

− Δu − hδΣ = (−Δ − η)(uc + γηh) + η(uc + γηh) − hδΣ

= −Δuc + ηγηh ∈ L2(R3). (A.11)

Note also that

ker(T − η) =
{
γηh : h ∈ dom Bη

}
. (A.12)

In the following useful proposition, we specify a quasi boundary triple
{L2(Σ),Γ0,Γ1} for the adjoint of the symmetric operator S such that
−Δfree = T � ker Γ0.

Proposition A.5. The operator S in (A.9) is densely defined, closed and sym-
metric in L2(R3) and satisfies S∗ = T with T in (A.10). Furthermore, the
triple {L2(Σ),Γ0,
Γ1}, where

Γ0u = h and Γ1u = uc|Σ, u = uc + γηh ∈ dom T, (A.13)

is a quasi boundary triple for S∗ such that ran Γ0 = dom Bη,

− Δfree = T � ker Γ0 and − ΔΣ,α = T � ker
(
Γ1 − (α − Bη)Γ0

)
. (A.14)

The γ-field and Weyl function corresponding to {L2(Σ),Γ0,Γ1} are given by

γ(λ)h = (−Δ − λ)−1(hδΣ) (A.15)

and

M(λ)h =
[(

(−Δ − λ)−1 − (−Δ − η)−1
)
hδΣ

]
|Σ (A.16)

for all λ ∈ C\[0,∞) and h ∈ dom Bη. The values M(λ) of the Weyl function
are densely defined bounded operators in L2(Σ).

Proof. To show that the mappings in (A.13) yield a quasi boundary triple for
S∗, we make use of Theorem A.2. Note first that the identities

S = T � (ker Γ0 ∩ ker Γ1) and − Δfree = T � ker Γ0

hold. Hence, it remains to check that the Green identity

〈Tu, v〉L2(R3) − 〈u, Tv〉L2(R3) = 〈Γ1u,Γ0v〉L2(Σ) − 〈Γ0u, Γ1v〉L2(Σ) (A.17)

holds for all u, v ∈ dom T and that the range of the mapping u �→ (Γ0u, Γ1u)�

is dense in L2(Σ) × L2(Σ). To verify (A.17) decompose u, v ∈ dom T in the
form u = uc+γηh and v = vc+γηk, where uc, vc ∈ H2(R3) and h, k ∈ dom Bη.
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With the help of (A.11), one computes

〈Tu, v〉L2(R3) − 〈u, Tv〉L2(R3)

= 〈T (uc + γηh), vc + γηk〉L2(R3) − 〈uc + γηh, T (vc + γηk)〉L2(R3)

= 〈−Δuc + ηγηh, vc + γηk〉L2(R3) − 〈uc + γηh,−Δvc + ηγηk〉L2(R3)

= 〈−Δuc, γηk〉L2(R3) + 〈ηγηh, vc〉L2(R3)

− 〈uc, ηγηk〉L2(R3) − 〈γηh,−Δvc〉L2(R3)

= 〈(−Δ − η)uc, γηk〉L2(R3) − 〈γηh, (−Δ − η)vc〉L2(R3)

= 〈uc, kδΣ〉2,−2 − 〈hδΣ, vc〉−2,2

= 〈uc|Σ, k〉L2(Σ) − 〈h, vc|Σ〉L2(Σ),

which shows (A.17). Next assume that for some ϕ,ψ ∈ L2(Σ)

0 = 〈ϕ,Γ0u〉L2(Σ) + 〈ψ,Γ1u〉L2(Σ) = 〈ϕ, h〉L2(Σ) + 〈ψ, uc|Σ〉L2(Σ)

holds for all u = uc + γηh ∈ dom T . Restricting to elements u in H2(R3) (i.e.,
h = 0) it follows that ψ = 0. Finally, if 0 = 〈ϕ, h〉L2(Σ) for all h ∈ dom Bη then
ϕ = 0 as Bη is densely defined in L2(Σ). Now it follows from Theorem A.2
that T = S∗ and that {L2(Σ),Γ0,Γ1} is a quasi boundary triple for S∗.

To see that −ΔΣ,α = T � ker(Γ1 − (α − Bη)Γ0) holds, suppose first that
Γ1u = (α−Bη)Γ0u or, equivalently, uc|Σ = (α−Bη)h for some u = uc +γηh ∈
dom T . Then it follows from the definition of u|Σ in (2.8) that

u|Σ = uc|Σ + (γηh)|Σ = uc|Σ + Bηh = αh

and hence h = 1
αu|Σ. Together with (A.10) and Definition 2.3 this implies

ker
(
Γ1 − (α − Bη)Γ0

)
⊂ dom(−ΔΣ,α)

and −ΔΣ,αu = Tu for all u ∈ ker(Γ1 − (α − Bη)Γ0). If, conversely, u ∈
dom(−ΔΣ,α) then u = uc + γηh for some uc ∈ H2(R3) and some h ∈ dom Bη,
in particular, u ∈ dom T . Moreover,

Tu = −Δu − hδΣ ∈ L2(R3)

and

−ΔΣ,αu = −Δu − 1
α

u|Σ · δΣ ∈ L2(R3),

which implies (h − 1
αu|Σ)δΣ ∈ L2(R3) and thus h − 1

αu|Σ = 0. Using again the
definition of u|Σ in (2.8) we obtain

0 = u|Σ − αh = uc|Σ + (γηh)|Σ − αh = uc|Σ − (α − Bη)h

and thus u ∈ ker(Γ1 − (α − Bη)Γ0). The second identity in (A.14) follows.
Next it will be shown that the γ-field and Weyl function corresponding

to {L2(Σ),Γ0,Γ1} have the form in (A.15) and (A.16). Note first that (A.12)
and the definition of Γ0 imply γ(η)h = γηh = (−Δ − η)−1(hδΣ) for all h ∈
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ran Γ0 = dom Bη. Furthermore, for λ ∈ C\[0,∞), we conclude from (A.3) and
(A.14) that

γ(λ)h = (−Δfree − η)(−Δfree − λ)−1γ(η)h = (−Δ − λ)−1(hδΣ)

holds. Moreover,

γ(λ)∗u = Γ1(−Δfree − λ)−1u =
(
(−Δfree − λ)−1u

)
|Σ (A.18)

for all u ∈ L2(R3) by (A.2); cf. (2.5). It follows from the definition of Γ1 that

M(η)h = Γ1γ(η)h = Γ1(−Δ − η)−1(hδΣ) = 0

holds for all h ∈ ran Γ0 = dom Bη. From (A.4) and (A.18) we then conclude
for λ ∈ C\[0,∞) and h ∈ ran Γ0 = dom Bη

M(λ)h = (λ − η)γ(η)∗(−Δfree − η)(−Δfree − λ)−1γ(η)h

=
[
(λ − η)(−Δfree − λ)−1(−Δ − η)−1hδΣ

]
|Σ

=
[(

(−Δ − λ)−1 − (−Δ − η)−1
)
hδΣ

]
|Σ;

cf. (4.26). We have shown that (A.16) holds. Note also that M(η) = 0 and
(A.4) with μ = η imply that the operators M(λ) are bounded. This completes
the proof of Proposition A.5. �

Remark A.6. If the operator T in (A.10) is replaced by the operator

T ′u = −Δu − hδΣ, dom T ′ = H2(R3) +̇
{
γηh : h ∈ L2(Σ)

}
,

then T ⊂ T ′ and the assertions in Proposition A.5 remain valid with T re-
placed by T ′ and dom Bη replaced by L2(Σ), respectively. In particular, in this
situation the boundary map Γ0 maps onto L2(Σ) and hence the quasi bound-
ary triple {L2(Σ),Γ0,Γ1} in Proposition A.5 is a generalized boundary triple,
and the values M(λ) of the Weyl function are bounded operators defined on
L2(Σ). It follows from (4.26) and (4.28) that

(M(λ)h)(x) =
∫

Σ

h(y)
ei

√
λ|x−y| − ei

√
η|x−y|

4π|x − y| dσ(y), x ∈ Σ, h ∈ L2(Σ).

Note, however, that Γ1 is not surjective and {L2(Σ),Γ0,Γ1} is not an ordinary
boundary triple.

References

[1] Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. U.S. Government Printing Office, Wash-
ington, D.C. (1964)

[2] Agranovich, M.S.: Elliptic operators on closed manifolds, Partial Differential
Equations VI, Encyclopaedia Math. Sci., vol. 63, pp. 1–130. Springer, Berlin
(1994)

[3] Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space.
Dover Publications, USA (1993)



1344 J. Behrndt et al. Ann. Henri Poincaré
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[16] Blagoveščenskii, A.S., Lavrent’ev, K.K.: A three-dimensional Laplace operator
with a boundary condition on the real line (in Russian). Vestn. Leningr. Univ.
Mat. Mekh. Astron. 1, 9–15 (1977)

[17] Brasche, J.F., Exner, P., Kuperin, Yu.A., Šeba, P.: Schrödinger operators with
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Poincaré 16, 559–582 (2004)

[32] Exner, P., Kondej, S.: Hiatus perturbation for a singular Schrödinger operator
with an interaction supported by a curve in R

3. J. Math. Phys. 49, 032111 (2008)

[33] Exner, P., Kondej, S.: Strong coupling asymptotics for Schrödinger operators
with an interaction supported by an open arc in three dimensions. Rep. Math.
Phys. 77, 1–17 (2016)
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