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Regularizing transformations of polygons

Johann Lang , Sybille Mick and Otto Röschel

Abstract. We start with a generic n-gon Q0 with vertices qj,0 (j = 0,
. . . , n − 1) in the d-dimensional Euclidean space E

d. Additionally, m + 1
real numbers u0, . . . , um ∈ R (m < n) with

∑m
µ=0 uµ = 1 are given. From

these initial data we iteratively define generations of n-gons Qk in E
d

for k ∈ N with vertices qj,k :=
∑m

µ=0 uµ qj+µ,k−1. We can show that this
affine iteration generally regularizes in an affine sense.
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1. Introduction

Schoenberg [6], Ziv [7], Nicollier [2] and Donisi et al. [1] studied geometric
iteration processes starting with a generic n-gon Q0 in E

2. They use homo-
theties to construct vertices of a next generation polygon Q1. Reiterating this
process creates a series of generations Qk. This iteration, in general, has a reg-
ularizing effect on the polygon. Surprisingly, the result for n-gons in the plane
E
2 presented by Roeschel in [5] is also valid for n-gons in higher dimensions.

In [5] the proof for E
2 is based on the fact that the space of planar n-gons is

spanned by the planar prototype n-gons of E2. As this does not hold for higher
dimensions the proof for E

d with d ≥ 3 demands another approach with dif-
ferent arguments. We prove an affine regularization theorem: these iterations
in higher dimensions also deliver generations Qk approaching the affine shape
of regular planar polygons.

2. The spatial affine iteration

We use vectors in R
d to describe points of the d-dimensional Euclidean space

E
d (d > 2) with respect to a Cartesian coordinate frame {O;x1, . . . , xd}. We

start with some spatial n-gon Q0 ⊂ E
d with vertices {q0,0, q1,0, . . . , qn−1,0}
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Figure 1 An example for n = 8 and m = d = 3: the polygon
Q0 with vertices of a cube and the first generation polygon
Q1 for (u0, u1, u2, u3) = (0.2,−0.35, 0.75, 0.4)

(n > 2, qj,0 ∈ R
d). Our starting polygon Q0 shall be called polygon of genera-

tion 0.

On the other hand in an m-dimensional affine space R
m (0 < m < n) with a

simplex S := {a0, . . . , am} we choose a reference point z∗ with respect to S:
Let z∗ :=

∑m
μ=0 uμ aμ be given by its barycentric coordinates (u0, . . . , um) ∈

R
1×(m+1) with

∑m
μ=0 uμ = 1.

Let αj,1 be the affine mappings from the ordered reference simplex vertex set
S to ordered sets of m consecutive vertices qj,0, . . . , qj+m,0 of Q0 (j ∈ J :=
{0, . . . , n − 1}; first index mod n). Each of these n affine mappings is applied
to the reference point z∗; this way we get n image points qj,1 := αj,1(z∗) =∑m

μ=1 uμ qj+μ−1,0 which form a new n-gon Q1 called the generation 1 polygon.

The same process can now be applied, in turn, to the polygon Q1 with the same
reference simplex S and the same reference point z∗, creating a subsequent
polygon Q2. Iteration yields a series of polygons. Qk := {q0,k, . . . , qn−1,k} is
the kth generation polygon with vertices

qj,k =
m∑

μ=0

uμ qj+μ,k−1 ∈ R
d (j ∈ J, k ∈ N\{0}) . (2.1)

The procedure is a d-dimensional generalisation of the geometric iteration
presented in [5]. Figure 1 shows the first iteration step for an example with
n = 8 and m = d = 3.

3. The iteration process

We describe the polygons Qk by d × n-matrices Qk := (q0,k, . . . , qn−1,k) in
R

d×n with qj,k (2.1). Formula (2.1) can be rewritten as a product of matrices
Qk := Qk−1.M with the circulant n × n-matrix M ∈ R

n×n:
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M =

⎛
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⎜
⎜
⎜
⎜
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u0 0 · · · · · · 0 um um−1 · · · u2 u1

u1
. . . . . . . . . . . . . . . u2

...
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . um−1

um−1
. . . . . . . . . . . . um

um
. . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . 0

0 · · · · · · 0 um um−1 · · · · · · u1 u0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.1)

The nth complex roots of unity ∈ C shall be termed ζj := exp(i2jπ
n ) =

cos 2jπ
n + i sin 2jπ

n (j ∈ Z). We define the vectors

Pj := (ζ0j , . . . , ζn−1
j ) ∈ C

1×n (j ∈ Z) (3.2)

and have Pj · M = Pj

∑m
μ=0 uμ ζμ

j and M · P t
n−j = (

∑m
μ=0 uμ ζμ

j )P t
n−j . Thus,

the vectors Pj and P t
n−j (j ∈ J) are left and right eigenvectors of M . The

corresponding eigenvalue is

λj :=
m∑

μ=0

uμ ζμ
j (j ∈ J). (3.3)

As (u0, . . . , um) ∈ R
1×(m+1) and ζμ

j = ζμ
n−j we have λj = λn−j for all j ∈

J\{0}.

We now regard two matrices out of Cn×n

L :=
1√
n

⎛

⎜
⎝

P0

...
Pn−1

⎞

⎟
⎠ and R :=

1√
n

⎛

⎜
⎝

Pn

...
P1

⎞

⎟
⎠ . (3.4)

L and R are symmetric and regular for n > 1 (see [3,5,6] and [7]). We have:
L = R and L ·R = In,n with the n×n- unit matrix In,n; the matrices L and R
are unitary n×n-matrices in C

n×n. We have L ·M ·R = D(λ0, . . . , λn−1) with
the diagonal matrix D(λ0, . . . , λn−1) ∈ C

n×n containing the eigenvalues λj of
M as its elements in the main diagonal. This yields M = R·D(λ0, . . . , λn−1)·L
and

Qk · R = Qk−1 · R · D(λ0, . . . , λn−1) and
Qk · R = Q0 · R · D(λ0, . . . , λn−1)k for k ∈ N\{0}.

(3.5)

We get Qk · R = 1√
n

(∑n−1
ν=0 qν,kζν

n,
∑n−1

ν=0 qν,kζν
n−1, . . . ,

∑n−1
ν=0 qν,kζν

1

)
.

Then (3.5) yields
n−1∑

ν=0

qν,kζν
n−j = λk

j

n−1∑

ν=0

qν,0ζ
ν
n−j ∀ j ∈ J. (3.6)
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Due to λ0 =
∑m

μ=0 uμζμ
0 = 1 and ζν

n = 1, the index j = 0 in (3.6) delivers
∑n−1

ν=0 qν,k =
∑n−1

ν=0 qν,0 for all k ∈ N\{0}: All polygons Qk have the same
center of gravity.

From now on let the initial polygon Q0 have its center of gravity in the origin
O := (0, . . . , 0)t. So we can be sure that for all k ∈ N

1
n

n−1∑

ν=0

qν,k = od := (0, . . . , 0)t. (3.7)

As the matrix R is regular the initial polygon Q0 can explicitly be retrieved
from the d × n- matrix

Q0 · R =: B = (b0, . . . , bn−1) ∈ C
d×n with bj =

1√
n

n−1∑

ν=0

qν,0 ζν
n−j ∈ C

d.

(3.8)
From qν,0 ∈ R

d and ζν
n−j = ζν

j we get bj = bn−j for all j ∈ J
∗ := {1, . . . , n−1}.

Because of (3.7) the first column vector is zero: b0 = od. Equation (3.5) yields

Qk · R = B · D(λ0, . . . , λn−1)k = (od, λ
k
1b1, . . . , λ

k
n−1bn−1). (3.9)

Thus, we do not alter the recursion in any way if we replace the diagonal matrix
D(λ0, . . . , λn−1) in (3.5) by the diagonal matrix D∗ := D(0, λ1, . . . , λn−1).
With this in mind, the iteration process can be described by

Qk = B · D∗ k · L =
1√
n

n∑

ν=1

λk
ν bν Pν ⇔ qj,k =

1√
n

n∑

ν=1

λk
ν bν ζν

j (3.10)

for j ∈ J. Note that bν Pν ∈ C
d×n for ν ∈ J

∗.

4. Prototype polygons

The Gaussian plane of complex numbers C can be interpreted as a Euclidean
plane E

2 with a Cartesian coordinate frame {O; 1, i}. We embed E
2 into E

d by
identifying 1 and i with the d-dimensional unit vectors e1 := (1, 0, 0, . . . , 0)t

and e2 := (0, 1, 0, . . . , 0)t, respectively. The elements of Pj (3.2) can be viewed
as a collection of n points ζν

j (ν ∈ J) equally distributed on the unit circle of
E
2 ⊂ E

d centered in O with j ∈ J
∗ := {1, . . . , n − 1}. Its points can be written

as

Tj = e1
Pj + P j

2
+ e2

Pj − P j

2 i
= e1

Pj + Pn−j

2
+ e2

Pj − Pn−j

2 i
. (4.1)

Tj is represented by a matrix ∈ R
d×n with columns

tν,j := (cos
2πνj

n
, sin

2πνj

n
, 0, . . . , 0)t ∈ R

d (ν ∈ J). (4.2)

Tj forms the so-called ‘regular prototype n-gon of jth kind’. The regular n-gon
Tn−j is symmetric to Tj w.r.t. the axis e1 and thus affinely equivalent to Tj .
If j and n are relatively prime the polygon Tj is either a regular n-gon or an
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n-sided regular star. If j is a divisor of n with n = j p the polygon Tj is either
a regular p-gon or an ordinary regular star with p vertices, each of the vertices
being multiply counted (j times).

5. The concept of affine regularization

An affine mapping of Ed keeping the origin O in its place is described by

β : Ed −→ E
d, x 	→ β(x) = Cx with C ∈ R

d×d. (5.1)

The affine image of the polygon Qk = (q0,k, . . . , qn−1,k) is β(Qk) := C · Qk.
Our iteration (2.1) seems to regularize for certain (u0, . . . , um) ∈ R

1×(m+1)

irrespective of the choice of the starting polygon Q0. In order to examine this
interesting peculiarity we compare the n-gons Qk with a regular prototype
n-gon Tj (4.1) of j th kind1:

Definition 5.1. We call the iteration (2.1) affinely regularizing of kind j with
1 ≤ j ≤ n/2 if, for any generic initial polygon Q0, there exist affine mappings
βk : E

d −→ E
d transforming Qk = (q0,k, . . . , qn−1,k)t into polygons βk(Qk)

with the property that the series Δk of sums of the squared distances

Δk :=
n−1∑

ν=0

‖βk(qν,k) − tν,j‖2 = tr
(
(Tj − βk(Qk))t · (Tj − βk(Qk))

)
(5.2)

of respective vertices of β(Qk) and of the regular prototype polygon Tj of jth
kind is a null series: limk→∞ Δk = 0.

6. The affine regularization theorem

The shape of the polygons Qk depends on the input data set Q0 and on the
barycentric coordinates (u0, . . . , um) of the reference point z∗ with

∑m
μ=0 uμ =

1. The latter determine the matrix M (3.1), the eigenvalues λj and the diagonal
matrix D∗ = D(0, λ1, . . . , λn−1). The norms nj := |λj | of λj for j ∈ J

∗ are
given by

n2
j = λjλj =

m∑

μ,ν=0

uμuν ζμ−ν
j . (6.1)

We put N := max {n1, . . . , nn−1}. Let the barycentrics (u0, . . . , um) be chosen
generally such that not all λ1, . . . , λn−1 vanish. N = 0 is equivalent with
λ1 = · · · = λn−1 = 0 and can only occur if m = n − 1 and, additionally,
(u0, . . . , un−1) = (1/n, . . . , 1/n). This case of iterated series of ‘degenerate n-
gons’ Qk, all collapsing into the center of gravity O shall be excluded further
on. For 0 < N < 1 the series Qk gradually contracts for increasing k and
tends towards the center of gravity O. For N = 1 the series Qk remains finite,

1As the prototypes Tj and Tn−j are affinely equivalent, an iteration regularizing of j th kind

will also be regularizing of kind n − j and we can confine ourselves to 1 ≤ j ≤ n/2.
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but in general still may change its shape and its position from generation to
generation. For N > 1 the series Qk gradually expands for increasing k.

We will prove that for any N > 0, the algorithm is—in general—affinely reg-
ularizing. We divide the set of indices into two distinct subsets:

J1 := {j ∈ J
∗/ |λj | = N} �= ∅ and J2 := J

∗\J1. (6.2)

According to (3.3), for any j∗ ∈ J1 the index n− j∗ is also contained in J1; for
even n and j∗ = n/2 these two indices coincide. We have

|λj |
N

= 1 ∀j ∈ J1 and 0 ≤ |λj |
N

< 1 ∀j ∈ J2. (6.3)

Equations (3.10) yield

Qk = Nk√
n

(∑
ν∈J1

(
λν

N

)k
bνPν +

∑
ν∈J2

(
λν

N

)k
bνPν

)

⇔ qj,k = Nk√
n

(∑
ν∈J1

(
λν

N

)k
bνζj

ν +
∑

ν∈J2

(
λν

N

)k
bνζj

ν

)
.

(6.4)

Regardless of the input data bj (3.8) the coefficients (λν

N )k form null series
for all ν ∈ J2 and k → ∞; the coefficients (λν

N )k for all ν ∈ J1 are complex
numbers of norm 1 for all k ∈ N.

Qk and any homothetic image ρk(Qk) have the same affine shape. Following
Definition 5.1 we can apply homotheties ρk : Ed −→ E

d with x 	→ x
√

n
Nk . These

homotheties ρk turn (6.4) into

ρk(Qk) =
∑

ν∈J1

(
λν

N

)k
bνPν +

∑
ν∈J2

(
λν

N

)k
bνPν

⇔ ρk(qj,k) =
∑

ν∈J1

(
λν

N

)k
bνζj

ν +
∑

ν∈J2

(
λν

N

)k
bνζj

ν .
(6.5)

With reference to the cardinal number of the index set J1 we have three cases:

Case A: The index set J1 contains just one element. This can only happen if
n is an even integer and the barycentrics (u0, . . . , um) lead to J1 = {n/2}. We
have ζn/2 = −1, and λn/2 =

∑m
μ=0 uμ(−1)μ ∈ R. As N =

∣
∣λn/2

∣
∣ > 0 and

therefore λn/2 = ±N �= 0 formula (6.5) reads as

ρk(Qk) = (±1)kbn/2Pn/2 +
∑

ν∈J2

(
λν

N
)kbνPν . (6.6)

For every k we apply a further homothety σk : Ed −→ E
d with

σk(x) = (±1)kx ⇒ σk(ρk(Qk)) = bn/2Pn/2 +
∑

ν∈J2

(
±λν

N
)kbνPν . (6.7)

We have bn/2 =
∑n−1

ν=0 qν,0 ζν
n/2 =

∑n−1
ν=0(−1)ν qν,0 ∈ R

d. For a generic input
polygon Q0 we can assume bn/2 �= od. In this case we choose an affine mapping
τ with fixed point O and bn/2 	→ e1 ∈ R

d. The mapping τ induces an affine
mapping C

d −→ C
d transforming bν (ν ∈ J2) into b∗

ν := τ(bν) ∈ C
d; the
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vectors b∗
ν do not depend on k. The affine mapping βk := τ ◦σk ◦ρk places the

kth generation polygon Qk into

βk(Qk) = e1Pn/2 +
∑

ν∈J2

(
±λν

N
)k b∗

ν Pν . (6.8)

The distance vectors dj,k of the vertices of βk(Qk) to the respective ver-
tices of the prototype polygon Tn/2 = e1 Pn/2 (4.1) are the columns of
Dk = (d0,k, . . . , dn−1,k) with

Dk =
∑

ν∈J2

(±λν

N

)k
b∗
ν Pν ⇔ dj,k =

∑
ν∈J2

(±λν

N

)k
b∗
ν ζj

ν (j ∈ J). (6.9)

The vectors b∗
νζj

ν are independent from k. As the norms of (λν

N )k form null series
for all ν ∈ J2 we can be sure that limk→∞ dj,k = od for all j ∈ J. The sum
of the squared distances Δk :=

∑n−1
j=0 ‖dj,k‖2 is a null series: limk→∞ Δk = 0.

Thus, according to our Definition 5.1 the iteration process in case A is affinely
regularizing of kind n/2. For generic input Q0 the polygons Qk approach the
shape of the n-gon Tn/2. The straight lines approximating the polygons Qk

tend towards the straight line through O with direction vector bn/2.

Case B: The index set J1 contains exactly two different elements: J1 = {j∗, n−
j∗} with 1 ≤ j∗ < n/2. In a way, this could be considered the general case.
We put λj∗ = Nei φ and λn−j∗ = Ne−i φ with some real angle φ ∈ [0, 2π) and
define W :=

∑
ν∈J2

(λν

N )k bν Pν . Then (6.5) yields

ρk(Qk) = ei kφ bj∗ Pj∗ + e−i kφ bn−j∗ P j∗ + W. (6.10)

Let bj∗ := x + i y with x, y ∈ R
d. We then have bn−j∗ = bj∗ = x − i y and

ρk(Qk) = x(eikφPj∗ + e−ikφP j∗) + i y(eikφPj∗ − e−ikφP j∗) + W. (6.11)

For a generic input n-gon Q0 the two vectors x, y ∈ R
d are linearly indepen-

dent. Let σ : Ed −→ E
d be any affine mapping that maps the two vectors x, y

into σ(x) := e1/2 and σ(y) := −e2/2. σ induces an affine mapping C
d −→ C

d

transforming bν(ν ∈ J2) into σ(bν). We have

σ(ρk(Qk)) = (e1 cos kφ + e2 sin kφ)
Pj∗ + P j∗

2

+ (−e1 sin kφ + e2 cos kφ)
Pj∗ − P j∗

2 i

+
∑

ν∈J2

(
λν

N

)k

σ(bν)Pν . (6.12)

We define the complex numbers θμ, ν := σ(bμ)t σ(bν) for μ, ν ∈ J2. The matri-
ces

Rk :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cos kφ sin kφ 0 . . . 0
− sin kφ cos kφ 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(6.13)
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describe rotations τk in E
d. The induced mappings τk in C

d transform the
vectors σ(bν) into vectors τk(σ(bν)) ∈ C

d(ν ∈ J2). The mappings βk := τk ◦
σ ◦ ρk are affine mappings from E

d into E
d and deliver

βk(Qk) = e1
Pj∗ + P j∗

2
+ e2

Pj∗ − P j∗

2 i
+

∑

ν∈J2

(
λν

N

)k

τk(σ(bν))Pν . (6.14)

As every τk preserves scalar products we have τk(σ(bμ))t τk(σ(bν)) = θμ, ν for
all μ, ν ∈ J2. According to (5.2) we compute the sum of squared distances of
the vertices of βk(Qk) to the respective vertices of the prototype polygon Tj∗

and arrive at

Δk = tr
(
(Tj∗ − βk(Qk))t · (Tj∗ − βk(Qk))

)
= n

∑

μ∈J2

(
λμλμ

N2

)k

θμ,n−μ.

(6.15)
As the values θμ, n−μ are independent from k and 0 ≤ λμλμ

N2 < 1 for all μ ∈ J2

the values Δk (k ∈ N) form a null series. Accordingly, the corresponding
iteration process in case B is regularizing of kind j∗ with 1 ≤ j∗ < n/2. For
generic input n-gons Q0 the two vectors x and y determine a plane ε∗ through
O. The planes εk approximating the polygon Qk tend towards ε∗.

Case C: The index set J1 contains more than two different elements. We have
j∗, j∗∗, n − j∗ ∈ J1 with 1 ≤ j∗ < j∗∗ ≤ n/2. According to (6.1) this is
characterized by

m∑

μ,ν=0

uμuν ζμ−ν
j∗∗ =

m∑

μ,ν=0

uμuν ζμ−ν
j∗ . (6.16)

The coefficients of uμuν in (6.16) are ζμ−ν
j∗∗ + ζν−μ

j∗∗ − ζμ−ν
j∗ − ζν−μ

j∗ ∈ R. The
corresponding barycentrics (u0, . . . , um) denote points z∗ ∈ R

m which, in gen-
eral, are positioned on an (m − 1)-dimensional quadric of Rm containing the
vertices of the simplex S. In this case we cannot prove any regularizing effect
of the affine iteration.

We call the barycentrics (u0, . . . , um) ‘generic’ if they do not lead to Case C
or, for m = n − 1, they are different from ( 1

n , . . . , 1
n ). Overall, we have

Theorem 6.1. Affine Regularization Theorem. For generic barycentrics the
iteration process (2.1) is affinely regularizing according to Definition 5.1. The
barycentrics (u0, . . . , um) (m < n) determine the eigenvalues λ1, . . . , λn−1

given by (3.3) and their maximal norm N > 0. If there is exactly one index j∗

(with 1 ≤ j∗ ≤ n/2) with eigenvalue λj∗ of norm N the iteration is regularizing
of kind j∗.

If the iteration is affinely regularizing of kind j∗ then, for a generic input n-gon
Q0, the shape of Qk gradually approaches the shape of an affinely transformed
prototype n-gon Tj∗ .
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Figure 2 An example with n = 8, m = d = 3 with J1 = {1, 7}

Figure 3 An exceptional example for n = 8, m = d = 3
with b4 = od and J1 = {4}. For this specific n-gon Q0 the
algorithm works as if it was affinely regularizing of kind 3

Figure 2 shows an example for the same initial octogon Q0 as in Fig. 1
(n = 8, m = d = 3). Here the barycentrics of z∗ are (u0, u1, u2, u3) =
(0.4, 0.5, 0.3,−0.2). We get n1 ≈ 1.03, n2 ≈ 0.71, n3 ≈ 0.13, n4 ≈ 0.4 and
therefore we have J1 = {1, 7}. The algorithm is regularizing of kind 1 (case
B). The figure shows Q0 and the following generations up to Q16.

7. Remarkable exceptions

For specific initial polygons Q0 the algorithm may deliver unexpected results.
If the coefficient vectors bν of the regarded eigenvalues λν for ν ∈ J1 in (6.4)
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vanish the respective eigenvalues have no influence on the regularizing process.
So, for such a specific n-gon Q0, the algorithm works in the same way as if
in (3.10) these eigenvalues λν had been replaced by λν = 0. The remaining
eigenvalues deliver another maximum norm N∗ < N and a different set J1.
Now our classification (Sect. 6) reveals the affine shape of the series Qk.

Figure 3 shows such an example for n = 8, m = d = 3 where we have
(u0, u1, u2, u3) = (0.5,−0.25, 0.5, 0.25). We get n1 ≈ 0.52, n2 = 0.5, n3 ≈
0.99 < 1, n4 = 1. Hence N = 1 and we conclude that the algorithm is affinely
regularizing of kind 4; Qk is expected to approach the shape of the prototype
is T4 which is a line segment. The special initial octogon Q0, however, yields
b4 = od; we put λ4 := 0 and perform a new case study. The affine shape of
Qk tends towards the prototype T3. Figure 3 displays Q0 and the following
generations up to Q6.

8. Conclusion

We studied affine iterations transforming an initial n-gon Q0 in E
d (d > 1) into

successive generations of n-gons Qk. The Affine Regularization Theorem in this
paper does not only extend the results in [5] to dimensions d > 2; surprisingly,
even for dimensions d > 2 the regularization leads to planar, regular prototypes
no matter which generic input n-gon Q0 we start with. For very specific input
n-gons Q0, though, the same algorithm seems to regularize in a different way.
The understanding of this phenomenon completes the results.
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