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We address the steady-state behavior of a system consisting of several correlated monoatomic layers sandwiched
between two metallic leads under the influence of a bias voltage. In particular, we investigate the interplay
of the local Hubbard and the long-range Coulomb interaction on the charge redistribution at the interface, in
the paramagnetic regime of the system. We provide a detailed study of the importance of the various system
parameters, like Hubbard U, lead-correlated region coupling strength, and the applied voltage on the charge
distribution in the correlated region and in the adjacent parts of the leads. In addition, we also present results
for the steady-state current density and double occupancies. Our results indicate that, in a certain range of
parameters, the charge on the two layers at the interface between the leads and the correlated region display
opposite signs, producing a dipolelike layer at the interface. Our results are obtained within nonequilibrium
(steady-state) real-space dynamical mean-field theory, with a self-consistent treatment of the long-range part of
the Coulomb interaction by means of the Poisson equation. The latter is solved by the Newton-Raphson method
and we find that this significantly reduces the computational cost compared to existing treatment. As the impurity
solver for real-space dynamical mean-field theory, we use the auxiliary master equation approach, which addresses

the impurity problem within a finite auxiliary system coupled to Markovian environments.
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I. INTRODUCTION

Correlated systems out of equilibrium and especially elec-
tronic transport through heterostructures made from different
materials have attracted increasing interest due to the recent
impressive experimental progress to fabricate correlated het-
erostructures [1-6] with atomic resolution and, in particular,
growing atomically abrupt layers with different electronic
structures [1-3].

From a theoretical perspective, investigating and under-
standing the physical processes which govern the behavior of
such systems is a great challenge in the field of theoretical
solid state physics. For instance, it was shown that, due to
the proximity effect, any finite number of Mott-insulating lay-
ers become metallic when sandwiched between semi-infinite
metallic leads [7—14]. For such a geometry, the effect of impact
ionization in periodically driven Mott-insulating layers was
studied [15,16] as well as resonance phenomena in a system
consisting of several correlated and noncorrelated monoatomic
layers [17]. Another challenging aspect of such systems that
was investigated is the capacitance of multilayer systems
made from correlated materials [18-20]. Due to the local
Hubbard and long-range Coulomb interaction (LRCI) present
in these systems, charge redistribution takes place [20-22]. The
equilibrium situation was addressed, e.g., in Refs. [21,22]. In
particular, Ref. [21] studied the charge redistribution and the
corresponding thermoelectric properties for a metal, strongly
correlated barrier-metal device where the on-site energies of
the correlated region are shifted compared to the metals, while
Ref. [22] investigated the behavior of the correlated thin film
in a transverse electric field. Finally, Ref. [20] considered
correlated layers described by the Falicov-Kimball model,
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where one spin-species is immobile, with emphasis on the
nonequilibrium situation arising due to an applied bias voltage.

Here, we investigate a system of correlated layers sand-
wiched between two metallic leads in the paramagnetic phase,
see Fig. 1 for an illustration. Similar to Ref. [20], we take into
account LRCIs, but here we use the Hubbard model where
both spin-species are mobile. The goal of the current paper is
to investigate the influence of local Hubbard and LRCIs on the
charge redistribution in a nonequilibrium steady-state situation
produced by an applied bias voltage.

We obtain that the charge density deviation from the bulk
filling on opposite sites of the lead-correlated (LC) junction
have opposite signs in a certain range of parameters, indicating
the formation of a dipolelike layer. According to our calcula-
tions, such a layer arises for small values of the hybridisation
tic at the LC junction for all considered interactions and bias
voltages. On the other hand, for large 7 it occurs only for weak
to intermediate interactions and at low bias voltages.

To describe the behavior of the system, we adopt dynamical
mean-field theory (DMFT) [23-25], which is one of the most
powerful methods to investigate high-dimensional strongly
correlated electron systems. DMFT was originally developed
to describe translationally invariant systems in equilibrium,
but was later extended to inhomogeneous systems [7,8,12—
14,16,17,26-55], and also adapted to the nonequilibrium case
[12,13,56-64]. In the latter, DMFT is formulated within the
nonequilibrium Green’s function approach originating from
the works of Kubo [65], Schwinger [66], Kadanoff and Baym
[67,68], and Keldysh [69]. The only approximation in DMFT
is the assumption of a local self-energy. This can be calculated
by mapping the original problem onto a single impurity An-
derson model (STAM) [70], whose parameters are determined

©2018 American Physical Society
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FIG. 1. A Schematic representation of the system consisting of
L. = 4 correlated interfaces (red) sandwiched between two semi-
infinite metallic leads (blue). In addition to the local Hubbard
interaction, present only within the correlated layers, we also take
into account long-range Coulomb forces extending into the leads. We
take them into account by solving the Poisson equation in an extended
region including part of the lead layers (Le,g = 23 for each side). Here
LIL, CIL, and CML stand for lead interface layer, correlated interface
layer, and correlated middle layer, respectively.

self-consistently. For homogeneous systems, the self-energy is
the same for each lattice site due to translational symmetry,
and thus one needs to solve only one SIAM problem, per
DMEFT iteration, while for systems with broken translational
invariance, such as the one considered here, one needs to solve
many impurity problems to capture the spatial inhomogeneity
of the system. In the current work, the nonequilibrium STAM
problems are solved by using the recently developed auxiliary
master equation approach (AMEA) [62,63,71], which treats
the impurity problem within an auxiliary system consisting
of a correlated impurity, a small number Ny of uncorrelated
bath sites and two Markovian environments described by a
Lindblad master equation. The approach allows for an accurate
solution of the steady-state impurity problem already with a
small Np.

For the self-consistent solution of the nonlinear Poisson
equation, we used the Newton-Ralphson, which significantly
improves the convergence.

The paper is organized as follows. Section II decribes the
model and method. In particular, in Sec. IIA we introduce
the Hamiltonian of the system, in Sec. IIB we illustrate the
application of real-space DMFT within the nonequilibrium
steady-state Green’s function formalism for a system con-
sisting of many layers, in Sec. IIC we give an overview
of the solution of the Poisson equation and, finally, in
Sec. IID we present the self-consistency loop used to ob-
tain the self-consistent results. Thereafter, in Sec. III we
present our results, and our conclusions are presented in
Sec. IV.

II. MODEL AND METHOD
A. Model

We consider a system consisting of a correlated region
(c) with L, correlated infinite and translationally invariant
layers attached to two metallic leads (o =1, r), which are
semi-infinite in the z direction and translationally invariant
in the xy plane (parallel to the correlated layers). The phys-
ical situation is depicted in Fig. 1 and described by the

Hamiltonian

H=- Z tclro Civo Z tZZ'Czrazra
z,{r ,r'),o (2.2

+ Z Unzpeanzr,y + Z (UEO) + Uz)nz,r,a . (1

r z,r,0

Here c;r,,, creates an electron at site r = (x, y) of layer z
with spino andn,,, = czrygcz,r,g denotes the corresponding
occupation-number operator. (z, z’) stands for neighboring z
and 7z’ layers and (r , r’) stands for neighboring r and r’ sites
in the same layer.

The first two terms of the Hamiltonian Eq. (1) describe
nearest-neighbor intralayer and interlayer hoppings, with hop-
ping amplitudes ¢, and 7./, respectively. The third term intro-
duces the local Hubbard interactions U,, which are nonzero
only for the correlated region. The last term describes the
on-site energies, whereby v{”) is chosen such that we obtain
the required bulk filling in the zth layer with the special
case of v§0) = —U,/2 at half-filling (HF). Furthermore, v,
describes the Hartree shift of the on-site energies obtained after
the mean-field decoupling of the LRCI, V;;(n; — )(n; — 1),
which is produced by the charge inhomogeneity and has to be
determined self-consistently. In contrast to the local Hubbard
interaction, the LRCI affects not only the correlated region,
but the leads as well. Therefore, we incorporate parts of the
leads, namely Li.,q layers per side, into the region. Here, Ljcaq
has to be chosen large enough such that the (self-consistently
determined) electron density v, converges to the bulk filling of
the leads far away from the correlated region. To summarize,
the extended central region contains L L + 2L1ead layers.
The corresponding indices vary from — T to L1 |zl < L./2
describes the correlated region, L./2 < |z| < L./2 4 Lieag
corresponds to the left (z < 0) and right (z > 0) leads, which
we treat explicitly, while |z| > L./2 + Ljeaq corresponds to
the semi-infinite lead layers (z < O left lead and z > O right
lead). Here we note that the chosen labeling convention leads
to half-integer indices for even L. considered throughout the
paper.

We take the Hubbard interaction to be uniform within the
correlated region, i.e., U, = U for |z| < L./2 and U, = 0 on
the lead layers (|z| > L./2). We assume isotropic nearest-
neighbor hopping parameters within the correlated region
as well as in the leads, respectively. This amounts to the
choice 1, =t, =1, for the correlated region (|z| < L./2)
and t,; = t, =ty for the leads (|z| > L./2). Finally, the
lead-correlated region junction (LC-junction) coupling is the
same on both sides 7_ Lepl L = tLp_l Lerl = = f.. We work in
units where e = i = kb =a=1, with a denoting the lattice
spacing and take . = 1 as unit of energy.

The nonequilibrium situation is reached by applying a bias
voltage V = v; — v,. Here v; and v, are the on-site energies far
away from the correlated region (v;/, = v;—+). Notice that, in
general, V is not equal to the difference between the chemical
potentials of the leads Au = u; — p, due to the contribution
from back-scattered electrons [72].

To investigate steady-state properties of our system,
we work within the Keldysh Green’s function formalism
[66,68,69,73,74] and use real-space dynamical mean-field
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theory (R-DMFT) combined with the Poisson equation to
treat the Hubbard interaction and long-range coulomb forces,
respectively.

B. Real-space dynamical mean-field theory

Here, we give only a brief overview of the nonequilibrium
real-space DMFT approach [12,13,17,57-61] together with
the employed impurity solver, namely the auxiliary master
exquation approach (AMEA) [62,63,71,75].

In the nonequilibrium situation, the model remains trans-
lationally invariant along the xy plane (parallel to the layers),
which allows us to introduce the corresponding momenta k =
(ky, ky). Moreover, since the steady-state Green’s functions
depend only on the time difference, it is convenient to transform
them to the frequency domain w.

The Green’s function for the extended central region, which
consists of L = L.+ 2Lj.q layers, can be expressed via
Dyson’s equation:

[G (0, k) =[Gy (0, k)] — Z¥ (). 2)

Here, boldface indicates L x L matrices, while y stands for
retarded (R), advanced (A), and Keldysh (K) components. G4
and GX are related via G4 = (G®)f, while GX, in general, is
independent of G® and needs to be determined separately.
The inverse of the noninteracting Green’s function reads
(6o 5 (@.K) = 1 + 8. (0 — v, — v — E,(K))

— 8.0 Ty . (@, K), 3)

(6oL (0. k) = — 6. 5K, (0. k), “)

where E(K) is the dispersion relation for the zth layer of the
the extended central region and

Tin (@ K) =8, _atig] (0. k) + 8,

watlgl (@,k)  (5)

describes the hybridization between the semi-infinite leads and
the extended central region. g} (w, k) and g/ (, k) denote the
Green’s functions for the interface layers of the semi-infinite
leads disconnected from the extended central region. Their
retarded component can be expressed as [26,27,76]

o — vy — v — E, (k)

R
’ k =
8y (@, K) 212

.\/4t§ - (a) — vy — 00 — Ea(k))2
! 212

. ()

where vy—y/, + véoz), Jr and E,_;/,(k) denote the on-site en-
ergies and the dispersion relation for the left/right lead, re-
spectively. The sign of the square-root for negative argument
in Eq. (6) must be chosen such that the Green’s function has
the correct 1 /w behavior for |w| — o0. Since the disconnected
leads are separately in equilibrium, we can obtain their Keldysh
components from the retarded ones via the fluctuation dissipa-
tion theorem [73]:

8o (@, k) = 2i(1 = 2 fu(@)) Im g} (@, k). (N

Here, f,(w) is the Fermi distribution for the chemical potential
W and temperature 7.

Finally, 7 () =8, (w) stands for the self-energy
matrix, which, due to the DMFT approximation, is diagonal
and k-independent. To determine it, we map each correlated
layer z to a (nonequilibrium) single impurity problem (STAM)
with Hubbard interaction U, and on-site energy v, + v{”,
coupled to a self-consistently determined bath. The latter is
specified by its hybridization function obtained as (see, e.g.,
Refs. [17,24])

1

AR wy=w—v, =0 — 2R (@) = ——, 8
; (W) ;= - (w) GF_(@) (®

GE (w
A (@) = —5K (o) 4 loes @ ©)

z b4 R 2
|G10c,z(w)|
where the local Green’s function is defined as
d’k

G{;C,Z(a)) = on)? Gl (0, k). (10)

To calculate the diagonal elements of the matrices G (w, k)
from Eq. (2), we use the recursive Green’s function method
[16,17,77,78], which we generalize to the present situation of
Keldysh Green’s functions [17].

To describe the lattice structure of the isolated layers, we
use a Bethe-lattice density of state (DOS). Due to this choice,
we can replace E (k) by t,¢ and [ (2”17:‘)2 by [ dep(e), where
¢ is a dimensionless parameter characterizing the energy and
p(e) = 13/4 — &2 is the Bethe-lattice DOS.

The corresponding impurity problems are then solved with
AMEA, which is a state-of-the-art impurity solver particularly
suited to address the steady state. AMEA is based upon
mapping [62,75] the SITAM to an open quantum system of finite
size, which includes one correlated site, Np noninteracting
bath sites and two Markovian environments, whose dynamics
is governed by a Lindblad master equation. The resulting
open quantum system can then be solved by numerical many-
body techniques such as Krylov-space-based [63,71] methods
(which are the ones we use here), matrix product states
(MPS) [79], or the so-called stochastic wave function algorithm
[80,81].

C. Charge reconstruction

To take into account long-range Coulomb forces on a mean-
field level, we calculate the on-site energies v, self-consistently
by solving the corresponding Poisson equation:

9 ( ! 8”Z> — —(n, — n®k) (11)

&ZBZ

It is convenient to adopt von Neumann boundary conditions,
which in discretized form amounts to setting the Coulomb
potential of the two bulk semi-infinite leads equal to the one
of the boundary layers of the extended central region:

Uijr = VLol (12)
Here ¢, = =, &, is the relative permittivity of layer z and
&o 1s the permittivity of free space. Moreover,
1 [ K
n,=1+ E/ dodmGg, () (13)
—00
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is the electron density at layer z obtained from nonequilibrium
R-DMFT and n"™ is the bulk electron density, which we set
equal to 1 (HF) throughout this paper [82].

One way to proceed would be to fix the bias voltage V and in
the present particle-hole symmetric case v; = —v, = V/2. In
this case, one should adjust the asymptotic chemical potentials
n; and p, of the leads to obtain the correct asymptotic
charge neutrality n, .o, — 7% = 1. This is numerically
demanding. Another alternative is to carry out the calculations
for given w; = —p, = Ap/2 and update the values of the
on-site energies in the semi-infinite leads after each iteration,
according to Eq. (12). The bias voltage is then determined by
V = v; — v, a posteriori. Here we follow the second strategy
as it is numerically more convenient. In fact, we find that the
difference between Ap and V is quite small in most of the
calculations presented in this paper (1% or smaller), except for
weak to intermediate U at large #,., as we will discuss below.

For better readability, we introduce a vector notation for the
z-dependent quantities, namely,

{)’:{Uﬁ%,...,v%},
ﬁ:{ I’lLl},
Gloc(a) :{ G{S)CLI’GII(()C,f%""’GIIf)C,%}’
:{zRu. LI,EKQ,...,ZL}.
2 2 2

Obviously, the elements of 3 are zero outside of the correlated
region.

The electron densities depend, through G l’éc’ .(w)inEq. (13),
on the on-site energies as well as on the self-energy. The
self-energy in turn is, through the self-consistency in R-DMFT,
a functional of the on-site energies and of itself, i.e., ¥ =
3 (v, ). Thus, we have to solve Egs. (11)—(13) together with
the R-DMFT equations in a self-consistent manner.

For a fixed self-energy E(w) we solve Egs. (11)—(13) by
formulating it as a root searching problem, which we treat
by the Newton-Raphson method. To this end, we define the
function

P.(V) = czP(la"z) +(n,(3, %) — n‘“‘“‘)], (14)
dz \¢c; 0z

of which we seek the zero. Following the Newton-Raphson
scheme, we expand

P,V + AD) = Av. (15

Here Av = v*+D — ™ is the difference between two consec-
utive iterations in the self-consistent Poisson loop. Assuming

®,(7 + Av) = 0, one obtains the following iteration scheme:

3D =50 — M o), (16)
with ® = {®_c1,..., ®ri}and
.
Mji = a_l)lq)](v) (17)

For the technical details about the discretization of the Poisson
equation and the expression for the matrix elements M;;, we
refer to the Appendix.

Solving

impurity problems

=

)

Converged

7 and S(w)

FIG. 2. A visualization of the self-consistency loop. The shaded
area corresponds to the Poisson loop and we use the vector notation
for z-dependent quantities, v, 71, ¥ (w) and él(,c(w) introduced in
Sec. IIC. Moreover, x,, and x, are cost functions for the convergence
criteria defined in Eqgs. (18) and (19), respectively.

D. Self-consistency loop

Here, we describe the self-consistency loop used to deter-
mine the self-energies > (w) together with the on-site energies
v as self-consistent solution to the R-DMFT equations coupled,
through the electronic number densities 7 (v, E(a))) with the
Poisson equation, Eq. (11). An illustration of the algorithm
is presented in Fig. 2. In short, the iterative solution of the
Poisson equation constitutes an inner loop to the R-DMFT self-
consistency and is done for fixed self-energies > (w) before the
determination and solution of the impurity problems, which is
more time demanding.

In more detail, we start with an initial guess of the self-
energies ¥ (w) and on-site energies v. Next, the Poisson loop
is performed by calculating the electronic densities 71, Eq. (13),
and updating the on-site energies according to Eq. (16). These
two steps are then iterated until convergence [83] is reached,
for which we require

1
o= /ZZ@K%, (18)
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FIG. 3. Charge-density deviation from half-filling An, =n, — 1 (a) as a function of layer index z for Hubbard interactions U = 4, 8,
LC-junction coupling f. = f,. = 0.2, 1, and for different values of Ay = p; — u,. We present results for L. = 4 correlated layers. Other
parameters are . = 1,4, =1, = 2, vio) = —U,/2, and ¢ = 1.5. The black dashed lines separate the correlated region and leads. (b) Upper panel
An, for the lead interface layer (LIL) and lower panel An, for the correlated region interface layer (CIL) as a function of the bias voltage

V = v, — v,. (c) Dependence of A on the bias voltage V.

where €4 is the required accuracy. For each converged Poisson
loop, we proceed with the corresponding on-site energies v
to the R-DMFT iteration, which consists of computing the
bath hybridization functions, Egs. (8)—(9), and solving the
corresponding impurity problems thereby obtaining a new set
of self-energies X (w). The alternate solution of the Poisson
equation and the impurity problems are then iterated until
convergence of the R-DMFT loop. We quantify the accuracy of
the latter by the weighted difference between the hybridization
functions of two consecutive loops [84]:

Liead+Lc )

> /EIIAE’”)—AE’"*“||dw<eA, (19)

i=Lieag+1" "~

1
L.

XA

with

A~ A = Y am([ar]” - [a7]7
y=R,K

III. RESULTS

As mentioned in the introduction, the emphasis of the
present work lies on the influence of electronic correlations
on the charge redistribution in a nonequilibrium situation.
To this end, we consider the heterostructure sketched in
Fig. 1, which is driven out of equilibrium by an applied bias
voltage.

To understand the behavior of the charge distribution, for
finite LC-junction coupling (f. > 0) it is instructive to begin
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with a qualitative discussion of the expected behavior in the
limit in which the correlated region is isolated from the leads
(i = 0), but still capacitively coupled to them via the LRCI. In
that case, when the correlated region is metallic, i.e., for weak
to intermediate Hubbard interactions, the system consists of
two capacitors (one at each LC-junction) connected in series.
On the other hand, when the correlated region is insulating, i.e.,
for large values of the Hubbard interaction, it can be viewed
as one capacitor with a dielectric material placed between two
conducting materials. Applying a bias voltage will cause in
both cases opposite charging of the facing surface layers of
the lead and the correlated region, which can be viewed as
dipolelike layers. For definiteness, we will refer to them as
lead interface layer (LIL) and the correlated interface layer
(CIL), respectively (see Fig. 1).

We perform calculations for L, = 4 and L, = 40 correlated
layers, with a homogeneous local Hubbard interaction U, =
U.For L, =4 (L. = 40), we explicitly consider Lje,q = 23
(Liead = 30) noninteracting, U, = 0, layers for each lead, to
allow for proper charge redistribution in the leads as well.
Therefore, in total, the extended central region, where the
LRCT s accounted for, contains L = 50 (L = 100) layers. The
infinite region outside of this range is treated exactly, whereby
we take the charge and the Coulomb potential to be equal to
its asymptotic bulk values. This is justified, as can be seen
from Figs. 3(a), 4(a), 5(a), 5(b), 7(a), and 7(b). To work at
particle-hole symmetry, we set the bare on-site energies v.*) =
—U,/2 and the asymptotic lead charge densities 7,1, = 1.
The hopping between nearest-neighbor correlated region sites
is taken as unit of energy, 7. = 1, and the hopping between
nearest-neighbor sites of the leads is #; = ¢, = 2. Further, to
investigate the effect of the coupling strength of LC-junction
on the behavior of the system, we perform calculations for
different values of . = 0.2,0.4, ..., 1. All calculations are
performed at ambient temperature 7; = 7, = 0.025 and we
consider an isotropic Coulomb parameter with the moderate
value c, = c = 1.5.

Due to particle-hole symmetry, properties of the zth and
(—z)th layer are connected by a particle-hole transformation.

040 T T T
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0.05F { | i
N E o i 1
0.00f>-s-o-s-o-ease o £
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C : \ ]

010, L

An

(a)

For the self-energies, the relation reads

2f )= —[ZF.(—w)] + U.. (20)
25 w) = [25,(-w)]". (1)

Consequently, we need to calculate the self-energies only for
half the system, i.e., z < 0. Finally, all results for L. = 4 are
obtained with N, = 6 bath sites in the AMEA, while for L. =
40 we considered N = 4 due to the increased numerical effort
[85].

A. Effect of the bias voltage

First, we investigate the effect of an applied bias voltage
for intermediate, U = 4, and strong, U = 8, Hubbard interac-
tion, as well as small (7. = 0.2) and large (. = 1) coupling
strengths between the leads and the correlated region.

Our calculations show that at the LC-junction, the system
still hosts dipolelike layers for small but nonzero LC-junction
coupling strengths. Figure 3(a) indeed shows for #,. = 0.2, that
the charge density deviations from HF, An, = n, — 1, for the
CIL and the LIL have opposite signs and their absolute values
increase with bias voltage V [see Fig. 3(b)] for both considered
Hubbard interactions. So, similar to . = 0, also for 7. = 0.2,
LIL and CIL can be viewed as dipolelike layers.

On the other hand, the behavior is qualitatively different
for large values of the LC-junction coupling (#. = 1) and, in
particular, sensitive to the value of the Hubbard interaction.
For strong interaction (U = 8), we obtain that An, of the LIL
and CIL have the same sign and their absolute values increase
with the bias voltage. When considering a weaker interaction
(U = 4), this stays true for Anyy (charge density deviation
from HF for the LIL), while Ancy. (charge density deviation
from HF for the CIL) shows nonmonotonic behavior and a
sign change as a function of the bias voltage. So, in contrast
to small values of the LC-junction coupling strength, for large
ones, dipolelike layers are only present at the LC-junction for
weak to intermediate U and low bias voltages.

010 ]
0.08;U=8’ LIL = —

-

0.00F

-0.02F

-0.04 ]

oo b b b b v b b b0

02 03 04 05 06 07 08 0.9 1
Ilc

(b)

FIG. 4. (a) An, as a function of layer index z for U = 4, 8, Au = 2, and different values of #. (b) An, for the LIL (blue curves) and CIL
(red curves) as a function of the LC-junction coupling strength #,.. Other parameters are the same as in Fig. 3.
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FIG. 5. An, (a),(b)as afunction of layer index z for different values of the Hubbard interaction U . (¢), (d) An, for the LIL (blue curve) and for
the CIL (red curve) as a function of Hubbard interaction U. Dashed green lines in (e) show results of the fit for the CIL Ancy, = A exp(—AoU)
and for the LIL Anyy. = B, + By exp(—ByU), with fit parameters Ay ~ By = 0.301, A; = —0.139, B; = 0.027, and B, = 0.090. In (d), we
additionally plot the curves 0.04 « V versus U (green). In the inset of (d), we plot the bias voltage as a function of interaction U for fixed
(n_r4n.r,) for the CIL (red curve) and for the CML(indigo curve) as a
function of Hubbard interaction U. The results in (a), (c), (e) are obtained with Ay = 2 and £, = t,. = 0.2, while the ones in (b), (d), (f) with

value of A = 0.5 (see details in text). (e), (f) Double occupancy d,

Ap = 0.5 and #, = 1, = 1. Other parameters are the same as in Fig. 3.
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Remember that the bias voltage V = v; — v, and the dif-
ference between the chemical potentials Ap = p; — w, differ
from each other. As we have already discussed in Sec. IID,
it is numerically more convenient to perform calculations for
fixed Ap and evaluate V' a posteriori. For weak values of the
LC-junction coupling or for large value of U, the difference
between V and Apu is negligible (1% or smaller). However,
there is a significant deviation for the case of i, = land U = 4,
see Fig. 3(c). This is due the fact that when increasing . the
flow of particles from the left lead to the right one increases. As
aresult, there is a depletion of particles on the left lead which,
if one wants to keep both leads at HF, has to be compensated
by increasing ;. The opposite situation obviously occurs on
the right lead.

B. Effect of the LC-junction coupling strength

We further investigate the effect of the LC-junction coupling
strength 7. between the leads and the correlated region. We
perform calculations for several values of #, fixing Apu =2
and again considering U = 4, 8.

When the LC-junction coupling strength is increased, the
current through the heterostructure rises. Thus, we expect that
more charge is transferred from the left lead to the correlated
region. Indeed our results, Figs. 4(a) and 4(b), show that the
charging of the LIL and the CIL are first decreasing as f is
increased. With further increase of f., this trend holds true for
the LIL while, interestingly, for the CIL, Ancy changes sign
at some U-dependent value #;. Furthermore, we find that £}
decreases with increasing U and for noninteracting correlated
region (U = 0) Ancy is negative for all values of £, we have
considered. From here, it follows then that correlations lead
to an earlier disappearance of dipolelike layers with respect to
the LC-junction coupling strength. This can be understood by
the following.

For U = 0, the behavior of the system can be intuitively
understood by the hydraulic analogy, where a fluid takes over
the role of the electric charge and pipes represent wires. In
this picture, larger 7. translates into a bigger diameter of the
“LC-junction-pipe.” For the behavior of the LIL, this means
that less fluid gets jammed at the interface. When thinking
about the behavior of the left-CIL in the hydraulic picture, it is

IR AR R AR
0.25 1:=0.2, Au=2 |
0.20
=
50.15
<
0.10F
0.05
0.00 e e =R
0.20f E
2015, i
< 0.10F ]

P R s e P P
000876 5 4 32 410 12 3 458678

(a)

cccccc

NN
PN JORN RN
o
\

\

easiest to consider the jam created at the right-CIL, since the
two are connected by particle-hole symmetry, which will also
get decreased with increasing #.. This means that the trends
observed in Fig. 4(b) are consistent with the hydraulic analogy.
Coming back to the reason why for stronger Hubbard
interaction # is lowered, we can thus interpret the slope of
Ancy(#c), for low £, to originate from the U = 0 behavior
and thus the value of # is mainly influenced by the starting
value Ancy (e = 0), which is suppressed by the Hubbard
interaction leading to the decrease of #! as a function of U.

C. Effect of the local interaction

Finally, we investigate the effect of the interaction U
for small (f, = 0.2) and larger (#. = 1) values of the LC-
junction coupling strength. We consider differences between
the chemical potentials, Ay = 2 and A = 0.5, respectively.
These values are chosen such that for small interactions the
opposite charging of the LIL and CIL is most pronounced, see
Fig. 3(b). Furthermore, to better resolve the charge distribution,
we also present results for a system with a larger correlated
region (L. = 40), in addition to the case with L. = 4. When
studying the charging dependence as a function of U, we
should expect that, in the limit of large U, An_ vanishes for
the correlated region, since in this limit any double occupation
is extinguished.

1. Small correlated region (L. = 4)

First, we discus the effect of the interaction for weak
LC-junction coupling (#. = 0.2) and Au = 2. Figures 5(a)
and 5(c) show that the opposite charging of the interface
layers is suppressed by the Hubbard interaction. Further, An,
for LIL converges monotonically to some finite value for
U — oo, while for the CIL it converges to 0 as expected. To
investigate the behavior of the boundary charge, we fit them
(for U > 2) with exponential functions [see Fig. 5(c)], namely
AI’lCIL = A1 exp(—AoU) and AnLIL = Bz + Bl exp(—BoU).
The resulting fit parameters are given in the figure caption.
Notice that both fits give approximately the same exponent;
that is, Ag =~ By.

For small LC-junction coupling (#. = 0.2) and increasing
interaction strength U, as we already mentioned above, the

RN RN AN RN
tIC:1,Au:O.5;

cccccccc

W n
—“0O~NOOTRAN—

FIG. 6. Steady-state spectral function for different Hubbard interactions for the CIL, upper panel, and central middle layer (CML), lower
panel. Same setup as in Fig. 5. (a) Au = 2 and LC-junction coupling #. = . = 0.2, (b) A = 0.5 and LC-junction coupling #. = f, = 1.
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charging of the LIL and CIL is exponentially suppressed, but
these layers still have opposite signs and for any finite U, while
being reduced, the dipolelike layers are still there.

On the other hand, this is no longer the case for stronger
LC-junction coupling strength (#. = 1) and Au =0.5, as
can be anticipated based on the results presented in previous
subsections. Indeed, from Figs. 5(b) and 5(d), we can see that
An, is nonmonotonic for both surface layers and, in addition,
the CIL displays a sign change at U ~ 5 which approaches
zero only for higher values of the interaction.

To understand this behavior, it is important to recall that the
results presented in Figs. 5(b) and 5(d) are performed for fixed
Ap = 0.5, which corresponds to different bias voltages V [see
inset of Fig. 5(d)]. When examining Fig. 5(d) more closely, one
can see that the shape of Anyy (U) for U > 4 resembles that
of V(U) from the inset. Moreover, from Fig. 3(b), we know
that Anpy (V) is just proportional to V and almost insensitive
to U. Based on that, to exclude the dependence on the bias
voltage we plot n(U) = 0.04V (U), where the coefficient of
proportionality is extracted from Fig. 3(b), see green line in
Fig. 5(d). One indeed finds that the behavior of Anyy for
U > 4 is controlled by the V (U ) dependency. We thus expect
that the curve of Anrp vs U for fixed V would continue its
downward trend also for U > 4 and converge to some value
as in the case of the smaller LC-junction coupling strength
tic = 0.2. In contrast to the behavior of Anyy, fixing V would
not affect qualitatively the behavior of Ancy. versus U. As
a matter of fact, taking the dependence on V into account,
one would expect an even more pronounced maximum in the
behavior of Ancy [see red curve in Fig. 5(d)].

We also investigate the double occupancy d, =
(nzr,4nzr). Our calculations show that both for small
as well as for large LC-junction coupling strength, the double
occupancies d, for the correlated sites are monotonically
decreasing as expected [see Figs. 5(e) and 5(f)]. For weak
LC-junction coupling strength, the double occupancy d, of
the CIL is always larger compared to the one of the correlated
middle layer (CML), while for large LC-junction coupling
strength, this is only true for U < 5. This can be explained by
the fact that for U < 5, the filling in the CML is larger than
the filling in the CIL.

A different behavior of the system between the regimes
of weak and strong LC-junction coupling strengths can be
also seen by considering the steady-state spectral functions
A.(w) = —13mGER(w) (see Fig. 6). For i = 0.2 and Ap =
2, the spectral function does not show a Kondo-like peak at
w = pu; = 1. We attribute this fact to a combined effect of the
width of the Kondo-like peak being so small that we are not
able to resolve it as well as the substantial bias voltage present
in the system, leading to decoherence which suppresses the
resonance. In contrast, for large values of the LC-junction
coupling strength there is a clear Kondo-like peak for the CIL
(atw = p; = 0.25)uptointeractions as strongas U = 10. This
is not surprising, because the width of the Kondo-like peak is
proportional to tlzc and, correspondingly, the difference between
these two cases is O(100) and, in addition, the considered
Apu is a factor of 4 smaller. Figure 6 also shows the spectral
function for the CML featuring, as expected [86] due to the
increased distance to the leads, a less pronounced Kondo-like

0.151 U0 T
| i
r Gc—o =,
0.10f Ut
r —o U=2
L —o U=8
0.05} U=1
o~
S o.ooi
-0.05F
-0.10F |
r | L.=40,t =02, Ap=2
015 \\\\\\\\\ Liininiin b Lo Lo Lo
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=0OR_rN—=O

0.05}
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-0.05}
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FIG. 7. An, (a) and on-site energies v, (b) as a function of layer
index z for L. = 40 correlated layers, f. = f,. = 0.2, Ay =2, and
different values of Hubbard interaction U. Total number of layers
L = 100. Calculations are performed with N, = 4. Other parameters
are the same as in Fig. 3. (c) An, for the LIL (blue curve) and CIL
(red curve) as a function of the Hubbard interaction U.
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peak compared to the CIL which is already destroyed for
U =10.

It appears that the Kondo-like peak in the spectral density
occurs whenever Anyy, and Ancy, have the same sign, which
indicates that the mobility within the correlated region is small
as compared to f.

2. Large correlated region (L. = 40)

We now want to investigate how far the charging of the
interface region extends into a bulk system. To this end, we
enlarge the correlated region to L, = 40. Results are obtained
with N, = 4 auxiliary bath sites in the AMEA impurity solver
[85]. Due to the heavy numerical calculations, the convergence
of the DMFT self-consistency is quite slow, especially for the
strong interactions.

At this point it is worth noting that for a metallic material,
one would expect that only the surface is charged with an
exponential tail into the bulk since the induced charge on
the surface will compensate the electric field in the bulk.
Indeed, our results for An, and v, presented in Figs. 7(a) and
7(b), respectively, show that the charging and on-site energies
behave as expected and fall off exponentially into the bulk.
Further, we find that the corresponding penetration depth for
charging, although increasing with U, depends only weakly on
U and that this dependence is more pronounced for the on-site
energies. Note that the system is still metallic for all values
of the interaction U < 10 and the exponential suppression
can therefore be attributed to screening. The trend that the
penetration depth increases with U can thus be interpreted as
less effective screening due to the lower DOS around w =~ 0.

As in the previous results for L, = 4, the main effect of the
interaction is to reduce the absolute value of the charging at the
interface between the correlated and uncorrelated region. As
can be seen from Fig. 7(c), the behavior agrees qualitatively
with the ones observed for L, = 4, see also Fig. 5(c). The
fact that the exponential dependence on U is not so obvious
in Fig. 7(c) can be attributed to the lower accuracy due to the
increased numerical challenge to converge the self-consistent
equations.

3. Current

We also investigate the effect of the interaction on the
steady-state current density through the correlated interface.
The latter can be calculated using off-diagonal elements of the
Keldysh Green’s function [12,87]:

* dw d’k |, . X
J=J 1 =t /;oo Z /];Z W(Gz-&-l,z - Gz,z-H)’
(22)

where summation over spin is implicitly assumed.

Results are shown in Fig. 8, where we plot a rescaled
current density J /1. to present the curves on the same plot. As
expected, our calculations show that for all considered system
parameters the current density is strongly suppressed when
increasing the interaction strength U [88]. For the system with
a smaller correlated region (L, = 4), the qualitative form of
the suppression as a function of U seems rather independent
of f. and Ap. Nevertheless, from the figure it appears that the

O L=4,1,=1,Au=05
O L=4,1,=0.2, Au=2
o L =40,1,=0.2, Au=2

FIG. 8. Current density J as a function of the interaction for
different parameter sets. Blue line with squares (red line with circles)
correspond to a system with L, =4 correlated layers, with LC-
junction coupling strength #. = 0.2 (f, = 1) and Apu =2 (Au =
0.5). Green diamonds correspond to a system with L. = 40 correlated
sites with 7, = 0.2 and Au = 2. Other parameters are the same as in
Fig. 3.

scaling behavior of the current density is stronger than o fy..
This is because the stronger hybridization leads to a more
pronounced resonance peak making the central region more
metallic especially around @ = O resulting in more spectral
weight within the Fermi window of the leads already for small
voltages. See also Figs. 6(a) and 6(b).

Furthermore, we compare the steady-state current density
for the small (L, =4) and the large (L. = 40) correlated
regions (see Fig. 8). We observe that the difference between
them is marginal for weak interactions while for intermediate
to strong interactions we have a substantial suppression for
L. = 40. This is due to a reduced electron mobility induced
by the loss of metallicity of the correlated region. However,
this cannot be simply generically described by a decreased
conductivity but rather by the fact that for U 2 2, the pene-
tration depth of the electric field exceeds the size of the small
correlated region L. = 4, see also Fig. 7(b).

IV. CONCLUSIONS

We addressed the steady-state properties of a system con-
sisting of a multilayer correlated region attached to two metal-
lic leads. The model was solved by nonequilibrium R-DMFT
whereby AMEA [62,63,71] was used as the impurity solver.
We studied the charge redistribution in the system induced
by the local Hubbard and the LRClIs in the presence of a bias
voltage. We find that its behavior is very different for weak and
strong LC-junction coupling strengths, especially for strong
local interactions. The influence of U on the lead layers is due
to the proximity effect and therefore less pronounced in the
lead compared to the correlated region.

Our results indicate that the charges (considered with
respect to the bulk value) on opposite sides of the LC-junction
can have equal or opposite signs, depending on the system
parameters. The case of opposite signs can be interpreted as the
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o dipole-like layer
o no dipole-like layer
® Kondo _peak + no dipole-like layer

FIG. 9. Three-dimensional representation of the regions in . —
Ap — U-space in which the system exhibits(lacks) dipolelike layers
at the LC-junction red (blue) open circles. In addition, parameter
combinations where a Kondo-like peak can be clearly identified, are
marked by full circles.

formation of a dipolelike layer. In particular, these dipolelike
layers are present for small but finite LC-junction coupling
strengths. In contrast, for stronger values of the LC-junction
coupling strength, this is only true for intermediate to weak
interactions at low bias voltages. For strong interactions, as
well as for intermediate to weak interactions at moderate
to high values of the bias voltage, the dipolelike layers are
destroyed and the charging of the LIL and CIL have the
same sign. The dependence of Ancy. on the local Hubbard
interaction U is quite peculiar, being exponentially decreasing
for small 7. while for large #. it displays a nonmonotonic
behavior and even changes sign as a function of U.

This behavior can be understood from the fact that the
dipolelike layers are formed if the charges flow faster out of
the transition region than they flow in, i.e.,

te,
el 1, (23)

Iie

where 1. ¢ is the effective hopping for the correlated region.
Indeed, we observe that for sufficiently large #, the dipolelike
layers get destroyed in accordance with Eq. (23). Obviously,
increasing the Hubbard interaction effectively decreases the
mobility in the correlated region. We also observe that a Kondo-
like peak is present in the spectral function of the CIL for large
values of the LC-junction coupling strength . and the Hubbard
interaction U. This suggests that the dipolelike layers have the
tendency to suppress the Kondo-like peak. A summary of our
results is reported in the three-dimensional plot of Fig. 9.

Finally, we want to emphasize that the results presented
in this paper obtained for the Hubbard interaction differ from
the ones for the Falicov-Kimball model for large values of the
LC-junction coupling (# = 1) in Ref. [20]. In the latter, the
LIL and CIL are always oppositely charged. This indicates that
the sign change of Ancyy, is not a generic feature of strong local
correlations paired with long-range coulomb forces. Ratheritis
acombined effect of strong local Hubbard interactions together
with long-range Coulomb forces.
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APPENDIX: POISSON EQUATION

Here, we present the details of the self-consistent solution
of Egs. (11)—(13). As mentioned in the main text, we employ
the Newton-Raphson method to find the root of

(I)Z(l_}') — CZ|:i<i%> + (nz _ nbulk)i|'

Al
dz \ ¢, 0z S

First, we discretize the derivative. Setting the lattice constant
a =1, we get

- Erz41 = Erz—1 Vg1 — Uz
Cbz(v) = VUz41 — 2vz + v+

2¢;; 2
+——(n: —n™"). (A2)
&r,z€0
Following Newton-Raphson, we expand
. - 3P, (v)
(U + AT) = (D) + Z a;v,-m" . (A3

Here Av = v®+D — 3™ is the difference between two consec-

- o !
utive iterations in the Poisson loop. Assuming ®,(v + Av) =
0, we obtain

CIDj(l_f) — _Mji(vi(nﬂ) _ Ui(n)) , (A4)
with
0 -
M;; za—l)i@j(v), (AS)
which leads to the final iteration scheme
v =5 — Mo (). (A6)
1. Expressions for the matrix Elements M ;;
Plugging Eq. (A1) into Eq. (AS), we obtain
M 0 1 0 v n 0 1 @)
= — —\le i — — n;(v)| .
J ov; [ &, 0z 79z av; [ &, &0 I
=M M
(A7)

-—— and the fact that n™'* does not depend

on ¥ and, therefore, 3n™ /3v; = 0.

Here, weused c, =
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After some simple manipulations, we arrive at

M(l) — d 1 0 c aU]
av & j Bz n 0z
(1 88”’)5 26, + (1 4 der )3
= — — )0i,j—1 — 20 i+1s
48r,j L] J 4 r,] L]

(A8)

with 88r’j = &rj+l — Erj-1-

This leaves us with the evaluation of the matrix elements for
M® | which involves the dependence of the charge density on
the on-site energies. Using, the defining equations, Eqgs. (10)
and (13) in Eq. (A7), we obtain

w0
! &, ;€0 OV;
2 d’k d
_ ¢ f_zf “% <—GK(a)k))
&rj€0 Jpz (27) o
(A9)
Next, using the Keldysh inversion formula, GX =
—GR[G'1¥G*, we can expand the derivative
d _x aGﬂ BGﬁj
a—viij= o —[G~ ]l,,G“ G (G o0,
o
— G5 [GT G (A10)

Here and below, all indices appearing twice are summed over.
y R.A

to the derivative of its inverse,

Relating the derivative
given by Eq. (3) [89], leads to

aGy R, A
81),'

J/' _[G Gy

9
= G’,G, + GGl —

o (A11)

v
Ehyb i’

and recalling Eq. (4), we also have

a (G-
av,-

Thus, Eq. (A10) now reads

ad
i = =88 =T (A12)

9 K R ~K K ~A R ~K 0 R
gu Ol = GliGli + GG + GGl 3= Ti,
d 9
+GKG;j8 z;*yb,JrGRG;ja TR (A13)

which, based on the symmetries of the Green’s function
and the fluctuation dissipation theorem for E}fyb ; allows the
simplification to the final form

0
B_GK‘ — 2lm§m[GR GK] + Nb 8’(1 + N][‘]KSKL . (A14)
v
Here
N =2i3m[ne (G GE + |G [P0 = 2£))]  (AI5)
and
o —v, — v — E(k)
Me=—5|1+i 2
\/4,2 — v — v — E(k))
(A16)

Moreover f,—;  stands for the Fermi function in left and right
leads, respectively.

To speed up the convergence, we can use the fact that the
electron density in the first and last site will converge to their
bulk values and therefore we consider them fixed, Wthh also
means 0n;—;;/0v; =0 and, correspondingly, M ;" =0 for
je{lL).
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