
Towards ScalableFusion: Feasibility Analysis of a Mesh Based 3D
Reconstruction

Simon Schreiberhuber1, Johann Prankl1 and Markus Vincze1

Abstract— This work describes a novel real time approach for
creating, storing and maintaining a 3D reconstruction. Previous
approaches for reconstruction attach one uniform color to every
geometric primitive. This one-to-one relationship implies that
even when geometrical complexity is low, a high resolution
colorization can only be achieved by a high geometrical res-
olution. Our contribution is an approach to overcome this
limitation by decoupling the mentioned relationship. In fact
newer, higher resolution color information can replace old
one at any time without expensively modifying any of the
geometrical primitives. We furthermore promise scalability by
enabling capture of fine grained detail as well as large scale
environments.

I. INTRODUCTION

When mapping 3D environments based on the input of
an RGBD sensor two steps are usually executed simultane-
ously.Localization, in which the camera position is tracked
relative to the reconstruction or keyframes and the recon-
struction itself. This process of Simultaneous Localization
And Reconstruction (SLAM) aims to produce a dense rep-
resentation of reality which finds adaption in augmented
reality, robotics and other fields.

One of the first reconstruction algorithms introduced by
Izadi et al. was KinectFusion [5], which maintains a volume
in form of a 3D grid. In this approach, the grid is populated
with values of a Truncated Signed Distance Function (TSDF)
indicating where the closest surface resides. The initial
implementation is only able to map small volumes of fixed
position, size and resolution. By dynamically changing the
position of the active reconstruction volume, Kintinuous [10]
extends the basis algorithm and enables the reconstruction of
bigger scenes. The use of voxel hashing [8] allows higher
resolution reconstructions by reducing the memory foot-
print required for the reconstruction volume. KinectFusion
spawned further notable expansions like DynamicFusion [7],
which introduces a warp-able volume to reconstruct non rigid
objects.

Another thoroughly researched approach is made popular
by ElasticFusion [11] where the captured points are stored
as surfels, small discs with diameter, orientation, position
and color. This allows to store surfaces with varying spatial
resolution depending on which distance was perceived by the
sensor.
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(a) Ongoing reconstruction of an office. To the left all the geometry
is presented in low detail. To the right the sensor (red) is capturing
a desktop.

(b) Multiple different frames
with varying exposure times con-
tributed texture to the different
segments on the couch.

(c) Color coded surface normals
are only shown where the high
quality version of the surface is
loaded.

Fig. 1: The Level of Detail (LOD) system is apparent when
looking at a large scene (a). Most of what is displayed
consists out of a few triangles with colored corners. More
details only appear when zooming in or following the cap-
turing sensor (a). This becomes apparent when looking at the
normals (c) which are only shown for fully loaded geometry.

Our approach is inspired by the systems introduced by
[11] and [5] but has some essential differences/additions:

• Directly working on a triangle mesh enables us to use
textures which are spanned over the used triangles. This
strategy inherently propagates the neighborhood infor-
mation given by the depth map into the reconstruction.
This is contrary to the disk shaped surfels used by
ElasticFusion [11] which are unconnected and have to
overlap to appear like uniform surfaces.

• Storing the texture separate from the geometry allows
the meshed surface to be spanned with color information
of arbitrary resolution. The density of color information
is no longer bound to the geometrical resolution as in
ElasticFusion and KinectFusion.

• A Level of Detail (LOD) system which offloads the
data residing on the GPU memory to the more plenti-
ful system memory is required when capturing bigger
scenes. For user interaction purposes this offloaded data
is conserved on the GPU in a lower quality version.
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This is not taken care of by the mentioned systems, but
absolutely necessary for bigger scenes. Results of this
are shown in Fig. 1.

• The segmentation of a captured frame into smaller
surfaces is the logical result of the LOD system and
the chosen texturing approach. The goal is to split the
scene into small manageable chunks which need to be
of sufficient size to make texture allocation rational.

II. SCALABLE FUSION

While the mentioned approaches [5] and [11] work on an
intermediate data format, which has to be transformed into a
triangle mesh for rendering, our system directly creates and
maintains a triangle mesh.

Even more severe, the preceding algorithms attribute only
one color to each point of the reconstruction, which then
gets interpolated across the triangle surfaces. We, on the
other hand, are spanning textures over the surface creating a
more detailed reconstruction without increasing the number
of triangles.

The consecutive steps performed to incorporate a new
camera frame into the reconstruction are presented in the
following subsections. These sections are listed in the general
order in which they are applied to a frame. To improve
performance, this order is later broken up where possible
by a threading system described in III.

A. Camera Tracking

Tracking is directly taken from ElasticFusion [11]. But
instead of also using the photometric odometry our adaption
is limited to the projective ICP approach publicly released by
Whelan et al. [11]. Tracking is mostly done relative to the
current state of reconstruction. During initialization of the
map, an intermediate representation is used based on one
keyframe.

B. Geometry Refinement Update

The noise impairing the depth values delivered by RGBD
sensors is neither independent nor Gaussian. As a simple
example, we imagine a static sensor facing an object at a
distance of 4 meters. At distances of about 4 meters, the
quantization noise is in the range of centimeters. Usually,
the value would appear at one of the closest quantized
values, even when observing these values over multiple
frames.Following the assumption that this noise behaves
Gaussian we would only have to calculate the mean of
enough samples to end up with a low standard deviation.
From our experiments, we know that we cannot eliminate
quantization errors this way, as quantization effects would
still be visible this procedure.

In ElasticFusion [11] this is implicitly handled by in-
troducing a “weight” property for surfels. This weight in-
creases the longer a surfel gets observed. During these
observations, position, color and normal vectors get updated
with the sensor values. With increasing weight of a surfel,
these updates become weakened further and further. In the
end, the surfels become static, and if the camera does not

move, the quantization effects become prominent even with
this method. What eventually mitigates this effect is the
mechanism which increases the spatial resolution of the
reconstruction.

If the sensor approaches a surface in ElasticFusion, surfels
become split up into multiple smaller surfels appropriate for
the newly gathered data. When doing this, the weight of the
new surfels gets reset and a new process of refinement begins
cleared of the formerly quantization polluted geometry.

Our approach is inspired by these weights. Instead of
spawning new geometry every time the sensor approaches
a surface, we only do this when it is beneficial for the
reconstructions quality.

For each surface patch, our algorithm stores an additional
texture containing values for every sampled surface point p.
The values contained for each of these texture pixel (texel)
are:
µk The average deviation of the k measurements from the

actual surface. This is used to indicate where the meshed
surface deviates from the sensor’s perception.

σk An estimate of the noise level. It decreases with every
additional measurement. The smaller it is, the less
influence new measurements have on the geometry. We
also define σs,k as the estimated noise level of the sensor
projected onto the surface point p.

σm,k A value which stores estimated minimal noise level that
was achievable with the current measurements until step
k. The estimate is assuming the quantization effects as
the only limiting factor. Similar to before the subscript
s refers to the projected value σm,s,k of the sensor.

Each pixel of the texture is updated with the following
set of equations: The estimated minimal noise level σm is
updated by

σm,k+1 = min(σm,k, σm,s,k). (1)

Updating σ itself is done by

σ′k+1 =
σ′kσ

′
s,k

σ′k + σ′s,k
(2)

with
σ′s,k = σs,k − σm,k+1, (3)

σ′k = σk − σm,k+1 (4)

and therefore

σk+1 = σ′k+1 + σm,k+1. (5)

It shall be noted that σ′k+1 will always be smaller than σ′k and
σ′s,k which implies the assumption that every further mea-
surement improves the result. This system also guarantees
that σk is only approaching σm,k with increasing iteration
count k but never falls below it. The resulting values σ′s,k
and σ′k+1 are used to update µ by

µk+1 =

(
µk

σ′k
+
ds,k − dk
σ′s,k

)
σ′k+1 (6)
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with ds,k being the distance of this surface point perceived
by the sensor and dk being the distance of the reconstructed
point/texel to the sensor.

Transcribing these texture bound updates to the vertices
is done by shifting the vertex positions along the view rays
such that µk+1 ends up being 0 wherever possible.

It shall be noted that these updates do not necessarily
have to occur every time new sensor values are available
for a certain surface pixel. When the estimated noise level
of the sensor data σk is higher than on the surface σs,k,
no update needs to be made. The same applies when the
perceived depth values are too far off of what has been
mapped. This would indicate either unmapped geometry of
an already reconstructed surface, or the surface being invalid.

C. Expand Update

As soon as the sensor generates a new frame from a new
position, the formerly mapped surface elements are used
to render a depth map in the current sensor position. This
artificial depth map is then compared to the depth values
currently perceived by the sensor. If depth values of the
sensor are in proximity to what is mapped, the already
existing surfaces will receive an update as described in the
previous section. If the captured surface leaves this proximity
towards the camera, it will be added (meshed) to the current
reconstruction. The thresholds used for these operations as
well as σs,k are dependent on depth, pixel position and also
on the sensor itself. The sensor characteristics used for the
Asus Xtion Pro are derived by Halmetschlaeger-Funek et al.
[4] and approximated with a polynomial.

D. Meshing

After identifying the novel parts of the captured depth
map, 3D points are created by applying the pinhole model
to project the depth pixel. These points are then segmented
into smaller blocks depending on their distance to each other
and estimated normal vector. The neighborhood information
derived from the organized point cloud is directly used in this
and also for spanning triangles between each neighboring
set of 3 points. When doing so, it again is taken care that
no triangles get created where neighboring depth values are
within thresholds mentioned in II-C. The results of this
segmentation and the meshing process can be seen in Fig. 2.

E. Stitching

Generating a mesh on a single organized depth map
is computationally undemanding due to the neighborhood
information always being present on the 2D image plane.
The situation changes as soon as we seek to integrate new
sensor data into an existing reconstruction.

To tackle this problem, we search all the visible triangles
captured prior to the current frame for open edges. This refers
to every edge where a triangle does not border to another.
These edges then get projected in the pixel space of the
current frames depth map. When doing so, finding a potential
neighbor for a reconstructed triangle within the set of novel
triangles is a simple lookup in the current image plane. The

(a) The coarse segmentation
of the pointcloud into smaller
patches

(b) These patches get meshed
into a regular pattern of triangles.

Fig. 2: The triangle creation process applied to a single
frame.

whole process of expand the reconstruction is shown in Fig.
3.

(a) The already existing geom-
etry rendered with open edges
outlined in white.

(b) The novel geometry which is
not overlapping with the existing
geometry.

(c) Coarse segmentation of
the novel geometry. Note how
smaller regions do not get
mapped.

(d) Finished stitch. The novel
geometry appears rough since it
was not improved by additional
observations.

Fig. 3: The steps required to connect novel data of a
sensor frame to existing geometry. The open edges of the
geometry (a) outlined in white are connected to the coarse
segmentation (c). The result (d) shows a blatant line in the
segmentation pattern.

III. IMPLEMENTATION

Modern desktop hardware still distinguishes between
memory bound to the GPU and system memory which is
bound to the CPU. Access can not be done across memory
spaces without doing expensive data transfer over the PCI-E
bus. Therefore, our data structures are designed to mirror the
information between CPU and GPU and only synchronized
when absolutely necessary.

Modifications on the geometry occur on either the GPU
or the CPU depending on which processor is more fit for
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the performed task. This has implications on the data struc-
ture. While data stored CPU space is vastly interconnected,
the structures on the GPU only store very few references
between elements.

We furthermore use a threading system to simultaneously
process tasks which are not fully interdependent. While e.g.
the geometry of one frame is used to update the mesh, data
which is not needed can be transferred from GPU memory
to system memory (download). The odometry is likewise not
explicitly reliant on the most current version of geometry,
tracking of a new frame can therefore occur concurrently
with the integration of the last frame. A example of this
system is shown in a timeline in Fig. 4.

Odometry
Geom. Update
Color Update

Upload
Expand

Download

33ms 33ms 33ms 33ms 33ms33ms 33ms 33ms

Fig. 4: Each of the rows depicts one thread specialized for
its task. The lines show the data flow, beginning with the
capture of images at 30 Hz. It is shown how e.g. the geom-
etry refinement update of one frame prevents the geometry
refinement update of the following. For the download task,
this strategy is not an option. To ensure all the updates made
to geometry will be secured, a download step can only be
postponed but never dropped.

IV. EVALUATION

Whelan et al. evaluated the performance of ElasticFusion
by comparing the trajectory of the camera odometry to
the ground truth captured by Sturm et al. [9]. Further
comparisons included the distance of the resulting surfels
to the ground truth geometry used to artificially render a
dataset. Since our odometry only resembles a part of what
is being used by ElasticFusion, we renounce to run these
tests at this early state of the pipeline. It should be noted
though, that we do not see any technical limitation that
opposes the integration of the remaining mechanisms to
match ElasticFusions performance.

A. Qualitative Comparison

When looking at surfaces reconstructed by ElasticFusion
it is noticeable (Fig. 5) that some of the surfaces are mapped
multiple times. This is due to discrepancies in camera
tracking and sensor values which we are partially overcoming
with a thresholding system that takes standard deviations of
the sensor into account.

We are also utilizing a stitching mechanic for connecting
geometry that has been created in consecutive frames. Due to
imperfection in our stitching algorithm some of these stitches
are not complete as shown in Fig. 7. A situation which

(a) Colorized ElasticFusion re-
construction of a desktop. This
view is cutting trough the (dou-
ble) surface and facing a monitor.

(b) ElasticFusion creates mul-
tiple layers of the same sur-
face made distinguishable by the
green and blue colors (colorized
by number of observations).

Fig. 5: ElasticFusion has the tendency of doubling surfaces
by creating a secondary layer of surfels.

is worsened by oversegmentation and sequentially clustered
surfaces.

In case the sensor is approaching an already mapped
surface we replace the old textures of surfaces with the newer
higher resolution versions. In its current form this happens
without taking care of exposure time and other effects,
thus segment borders become visible by abrupt changes in
intensity. Fig. 8 shows the increased color density as well
as the mentioned discontinuities and offers a comparison to
ElasticFusion.

B. Memory Consumption

Our current implementation shows its advantage when the
sensor keeps exploring new surfaces. In these situations,
ElasticFusion will eventually run out of GPU memory while
ScalableFusion offloads finished chunks to system memory.
This is shown in Figure 9, where the memory consumption
of ElasticFusion is steadily increasing while our implemen-
tation adjusts its use of GPU memory on the demand.
Consecutively this also means that the memory consumption
increases when over-viewing big but also detailed structures.
In our tests this never posed a problem though.

C. Computational Performance

As depicted in Fig. 4 almost all of the tasks are run at
the designed 30 Hz. The only task massively deviating from
this design goal is the Expand (Section II-C) task. Instead
of the targeted 30 ms, it takes 150 to 800 ms to complete.
As long as novel geometry is not introduced at a high rate,
these durations will not pose a serious limitation.

For our experiments we used a desktop Intel Core i7-
7700K CPU in combination with a Nvidia Geforce GTX
1070 with 8 GB VRAM. This combination easily ran the
tracking and update steps at the full frame rate (30 Hz) while
expanding the geometry at approximately 5 Hz. Most of the
CPU cores are utilized to some extent, but mainly waiting for
GPU tasks to finish. The GPU was taxed to about 70% of its
capacity, which implies some headroom for future features.

Running the same software on a notebook resulted in
skipped frames for tracking (∼ 9 Hz), update steps (∼ 8 Hz)
and hiccups in the user interface. The expand step ran at an
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(a) When zoomed out like this, our scalable system only
shows a coarse representation of the full map.

(b) ElasticFusion on the other hand always renders all the
surfels.

Fig. 6: The reconstruction of scenes like a whole office
triggers the LOD system. When the user interface view is
zoomed out, our system (a) only renders a low detail version
of the reconstruction while ElasticFusion (b) still renders
every mapped surfel.

even lower frequency of ∼ 1.4 Hz. The resulting reconstruc-
tion nevertheless yields similar quality of what the desktop
fabricated. The notebook features an Intel Core i7-3740QM
CPU with a Nvidia Quadro K2000M and 2 GB VRAM.

V. CONCLUSIONS

It is shown that directly working on triangles and vertices
is feasible in terms of computational effort and even benefi-
cial when maintaining bigger reconstructions.

Conducting all of the meshing in pixel space presents
itself as efficient approach for a potentially CPU-intensive
problem.

When comparing the resulting normals rendered by Elas-
ticFusion and our approach, it becomes evident that we
achieve a similar level of detail (Fig. 7).

Textures appear superior in many instances due to being
captured in higher resolution. This representation is less

(a) Textured model generated by
our system.

(b) Color coded surface normals.

(c) Stitching artifacts appear be-
tween segments.

(d) Color coding the segments
shows the oversegmentation.

(e) Same scene captured by Elas-
ticFusion.

(f) Surfels color coded by their
normal vector (ElasticFusion).

Fig. 7: The couch scene captured by our system (a-d) and
by ElasticFusion (e, f). While the results of our system are
comparable on the geometry side, a closer look (c, d) to
where the (red) blanket initially shadows the couch from
the sensor reveals stitching issues. Geometry needs to be
connected between frames which is negatively influenced by
noise of geometry data. We hope to fix this issue with a post
processing step.

forgiving for rolling shutter sensors, changes in exposure
times and tracking errors. As a result, borders between
textured patches manifest themselves as sudden changes in
intensity as seen in Fig. 8.

VI. OUTLOOK

This paper describes a reconstruction pipeline in an im-
mature state and therefore leaves some problems untreated.

As already indicated in Section II-A the odometry is lim-
ited to the use of ICP instead of also exploiting photometric
alignment as in [11]. Besides adding these missing parts we
are also considering the usage of feature based approaches
like ORB SLAM [6] or different featureless ones as Direct
Sparse Odometry (DSO) [3].

Texture gets captured in varying lighting conditions, ex-
posure and angles. This leads to reconstructions with very
fragmented, non-uniformal texturing. A first step to counter
this would be a system to estimate and spare out specular
highlights as introduced for ElasticFusion [12]. To further
improve quality, the integration of vignetting compensation
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(a) Surface model captured by
the surfel based ElasticFusion.

(b) The same input data fed to
our system.

(c) Surfels colorized by their nor-
mals.

(d) Surfaces colorized by their
normals.

(e) Details like the stapler are
barely captured by ElasticFusion.

(f) While our approach has a
higher resolution texture for the
stapler.

(g) The stapler geometry is
barely mapped by ElasticFusion.

(h) Our approach introduces arti-
facts for the fine geometry of the
stapler.

Fig. 8: In a scenario where the sensor is slowly approach-
ing surfaces ElasticFusion (left), as well as our approach
(right), improve the geometrical surface quality with a similar
principle yielding similar results. When zooming in (e-h)
the improvements due to our texturing approach become
apparent.

[1] as well as high dynamic range and exposure control
presented by Alexandrov et al. [2] is planned.

Other unmentioned tasks are the removal, simplification
and tessellation of geometry which are planned for imple-
mentation.

It remains to be seen, how much impact these additional
features and further optimization will have on the system
performance. We are confident though, that further develop-
ment of this software will improve its utility while keeping
the moderate hardware requirements.
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Fig. 9: While the vertex count of ElasticFusion (blue) keeps
increasing steadily, the count of ScalableFusion (green) only
depends on what is visible momentarily. This also implies
that when the sensor overviews a large area full of highly
detailed surfaces, the memory consumption spikes (Frame
500).
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