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Abstract. Climate Change will affect our lives, yet communicating about climate 
change has proven to be more complicated than initially thought. Recent attention 
has turned to the potential affordances of immersive virtual environments (IVE) 
to support public engagement around climate change. We offer theoretical 
arguments for ways that IVEs may influence understanding, emotion, and 
behavior related to climate change, and we present a systematic literature review 
covering IVE applications to climate change. From 619 papers, 55 were fully 
reviewed. The findings were analyzed and discussed according to how IVEs may 
influence understanding, emotion, and action related to climate change. Findings 
suggest that IVE has a positive outcome in climate change engagement and the 
use of IVEs in the context of climate change warrant further investment of 
resources toward design and research.  
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1 Introduction 

1.1 Challenges in communicating about climate change 

Although the effects of climate change are evident [1] it remains a struggle to 
communicate about causes and outcomes associated with climate change. Scientific 
articles that use numerical projections and text-based descriptions fail to capture the 
character of anticipated changes and possible futures. Climate change will affect all our 
lives [2], but the effects seem remote when reported at national or global scales. 

In efforts to communicate about climate change, messages used in mass media tend 
toward stories that are emotionally charged, in efforts to grab attention. Yet, research 
shows that invoking fear can be counterproductive [3], and that effectively 
communicating about climate change is more complicated than initially thought [4]. 
Sparking awareness is only a start, and changing attitudes is still not enough; current 
thinking suggests that meaningful impact requires public engagement with climate 
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change. Engagement is considered to have three components 1) understanding 
(knowledge), 2) emotion (interest and concern), and 3) behavior (action) [5].  

Recent attention has turned to the potential affordances of immersive virtual 
environments (IVEs) – including virtual environments, virtual reality (VR), augmented 
reality (AR) and mixed reality (MR) - to support public engagement with climate 
change. Below we outline a theoretical rationale for the potential of IVEs to impact this 
space, and we provide a review of work that is represented in the literature.  

1.2 Theoretical framework for the use of immersive virtual environments to 
support climate change engagement 

Immersive virtual environments offer fundamentally new ways to communicate the 
causes and consequences of climate change. Building on the components of 
engagement, we outline theoretical arguments for how IVEs may influence 
understanding, emotion, and action related to climate change. 
 
Supporting understanding. Prior work on the use of AR shows that vision-based AR 
can support student understanding of concepts that require interpretation of complex 
spatial relationships – concepts for which visualization is a useful tool [6]. For example, 
Shelton & Hedley [7] report on improvements in conceptual understandings of complex 
spatial concepts associated with earth-sun relationships while vision-based AR used in 
physics and astronomy laboratories had positive effects on students’ attitudes, skills 
and conceptual understanding [8, 9]. The application of IVEs in K-12 educational 
contexts reveal other theoretical and empirical benefits of using IVEs to support 
reasoning about causal dynamics embedded in complex systems.  Prior work on the 
EcoMUVE project, which uses a multi-user virtual environment as part of a middle 
grades ecosystem science curriculum, demonstrates that student use of the IVE supports 
new forms of thinking about time and scale as they relate to ecosystems [10], supports 
adoption of process- instead of event-based reasoning [11], and engages students in 
practices, like modeling, that align with expert approaches for understanding complex 
systems [12]. 

Engaging emotions. IVEs offer the potential to elicit emotional states through 
manipulating the visual, auditory and haptic stimuli presented to the user, and the 
strength of the emotion is linked with the users sense of presence [13]. By invoking a 
sense of presence, IVEs can support intense feelings that make a user think, feel and 
behave as though they are really embedded in the place represented by the computer-
generated virtual space [14]. It is possible that such affordances of IVEs may be applied 
to climate change in order to position users in a context that elicits specific emotional 
responses, like a sense of wonder about the natural world or horror at the destruction 
caused by coastal flooding. However, design and use of IVEs to elicit emotional 
response remains poorly understood, and while some constrained designs 
systematically elicit intended user emotions [15], it is also common for users to have 
diverse emotional reactions to the same experience (J. Bailenson, pers. comm.).  
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Inspiring Action. A core theoretical domain related to IVEs is that of embodied 
cognition. We interact, communicate and learn through movements, gesture and 
physical activities [16]. Research shows that designing learning activities that 
encourage actions that are linked with concepts can support the formation of memories, 
prepare users for future learning, and help people link observable and unobservable 
phenomena, but these interactions must be designed carefully for these purposes [17]. 
IVEs for kinesthetic training suggests that the medium can be particularly powerful 
when users have opportunities to practice movements and decisions that mimic those 
that will be made at a later time in a more complex context [18]. For example, in his 
book, Experience on Demand, Jeremy Bailenson recounts how quarterbacks in the US 
National Football League are using VR to train for games, and experiencing 
improvements in performance. Such affordance of IVEs to elicit movement, gesture 
and interaction might offer possibilities for encouraging embodied understanding 
related to climate change or supporting the habituation of pro-environmental behaviors. 

2 Research Methodology 

2.1 Search Strategy and Terms.  
This review was based on published research papers available until early 

March/2018. Terms and databases used are described as follows. The terms used in the 
search were: Immersive Virtual Environment, Virtual Reality, Augmented Reality, 
Mixed Reality and Climate Change. The search thus used the following string in each 
online database, composed of Boolean operators (AND/OR): (("immersive virtual 
environment" OR "virtual reality" OR "augmented reality" OR “mixed reality”) AND 
“climate change”)). The online databases used and number of articles found (n) were: 
ScienceDirect (n=499), Scopus (n=78), Web of Science (n=29), IEEE Xplore (n=7), 
ACM Digital Library (n=5) and ERIC (n=1). These databases were chosen to cover the 
multidisciplinary nature of the use of IVE in climate change engagement. Papers were 
further subject to the inclusion and exclusion criteria below. 

Inclusion Criteria.  

● Peer-reviewed research papers written in English 
● Studies directly investigating the research questions 
● Papers describing the outcomes of using IVE in climate change 

Exclusion Criteria.  

● Papers not describing outcomes of using IVE in climate change engagement 
● Papers not answering the research questions 
● Papers not available through our institutional access and not available after requested 

to their authors (not retrieved) 
 

2.2 Research Questions 

1. How are the studies distributed geographically and temporally? 
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2. What types of immersive medium are used? 
3. Which topics and population are investigated? 
4. What are the outcomes reported of using IVE in climate change? 
5. What are the suggestions for future studies reported by the authors? 

3 Results 

The 619 total papers were evaluated according to the title and abstract. Of these, 55 
were selected and fully evaluated. They were classified into 3 categories: Education 
and Communication (EdCom), Analytics, and Plan. “EdCom” focused IVEs for climate 
change communication, education and awareness; “Analytics” focused on IVE for 
analytics, modeling and data visualization; and “Plan” focused on IVE for 
environmental or urban planning and decision making at a community or landscape 
scale. After full evaluation, the papers were categorized according to their topics and 
outcomes (Understanding, Action and Emotion), as can be seen in the Table 1.  

Table 1. Results 

Topic / Outcomes EdCom Plan Analytics 
U E A U E A U E A 

Animals [19, 
20] 

        

Carbon footprint [21]      [22]   
Concepts about 
Climate Change 

[23–
28] 

[29]  [30]      

Energy 
consumption 

  [31, 
32] 

   [33, 
34] 

  

Heritage Sites [35, 
36] 

        

Land use and Urban 
Planning 

  [37] [38–
40] 

[43] [38–
43] 

[44, 
45] 

 [45] 

Landscape 
visualization 

[46–
48] 

 [49] [50–
53] 

 [51, 
53] 

[47, 
54, 55] 

  

Multiple 
environmental 
scenarios 

[56, 
57] 

     [58–
64] 

[60]  

Risk assessment / 
management 

 [65] [65] [66]   [67–
70] 

 [69, 
70] 

Sea rise  [71]  [72]  [72] [73]   

U:Understanding; E: Emotion; A: Action. 

3.1 Distribution, Target Audience and Medium 

Most of the studies are from US institutions (12 papers), followed by United Kingdom 
(11), Australia (9) and Canada (6). Germany and The Netherland count with four 
publications each. The following countries count with two publications each: Austria, 
China, Hong Kong, Israel, Italy, New Zealand and Spain. Finally, there is one 
publication of each of the countries: Denmark, France, Greece, Norway, Portugal, 
Republic of Korea and Sweden. The papers’ publication date ranges from 2005 to 2018, 
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with a peak of publications in 2010 (9), followed by 2015 (11), as showed in Figure 1. 
Maybe the increased interest EdCom in Climate Change in 2009 is due to the 
Copenhagen Climate Change Conference held in December by the United Nations. 

 
Fig. 1. Publications’ year 

Most of the studies in Plan target researchers and/or decision makers, as expected. 
Studies in EdCom target mostly students, with a balanced distribution among the school 
levels. Many studies focus in technological solutions and outcomes and do not specify 
the audience for which they are intended. Figure 2 shows the Target Audience 
distribution. 

 
Fig. 2. Target Audience  

Most of the studies used single screen (as desktop monitor) as the medium to project 
3D images or animations, followed by Augmented Reality and HMD (Figure 4). 

 

Fig. 3. Medium  

3.4 Outcomes 

Outcomes are summarized according to: Understanding, Emotion and Action. 
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Understanding: studies reveal positive outcomes in climate change understanding, 
especially direct and indirect impacts and awareness of strategies to mitigate climate 
change [20, 28, 47, 57], higher engagement on the topic [19, 23, 25, 27, 46] and on 
related community problems [25] and greater ease in collecting and correlating data on 
climate change when using AR applications [47]; with the Plan category, papers prior 
to 2011 [30,38-40,43,53] focused on describing the technical infrastructure and value 
of using advanced forms of visualization of spatial data and information to support land 
use planning, landscape design and scenario exploration, with minimal attention to the 
describing or measuring the utility and value of these visualizations to the users, with 
the notable exception of [52]. From 2014 onward [41-42,50-51,66,72], the papers 
related to land use planning and landscape design bring up theoretical areas like 
“presence,” which demonstrates co-development with theories in the field of immersive 
technologies. IVEs have the potential to advance climate science through immersive 
and interactive interfaces that democratize access to data models and simulations to 
scientists from a broad array of discipline and beyond, to the general public and citizen 
scientists. This utility has been demonstrated through a range of applications spanning 
health care, business, climate change, and natural disaster [61]. Broadly, they allow 
users to interact with complex scientific models without prerequisite training with the 
background and tools necessary to convert raw data into visualizations. The feeling of 
realism, demonstrated by examples such as VR-Ocean [73] allow users to gauge the 
impact of melting ice from complex global data sets such as altimeter and ice surface 
data. Furthermore, 4D models allows users to understand the past through climate 
reconstruction models [55] and to ‘live’ the future effects of sea level rise on their 
communities [70]. However, the current state of the science is biased towards Western, 
English speaking nations and powerful interests that shape our mediated experiences 
of climate change through the media [60]. 

 
Emotion: the use of IVE promotes occupant engagement in energy-saving building 

design [31]; also, people demonstrate increased willingness to engage with climate 
change issues in conjunction with rich media visualization[29]; Although virtual field 
trips can be expensive they generate  positive engagement and feedback from students 
[23]. Teachers and students report that AR authoring is motivating and engage students 
beyond climate change issues, to issues within their communities [25].  An interactive 
flooding 3D simulation increased the motivation to evacuate from the virtual polder 
(low-lying, flood-prone, tract of land protected by dikes) as well to buy flood insurance 
[71]. The use of immersive and virtual environments for Planning addressed 
understanding and action, but emotion was not raised as a focal dimension. The 
emotional impacts of these visualizations can be mixed, on one hand they provide a 
lens to the scientific state-of-the art for laypersons without formal training; however, 
reports describing frightening case studies in sea level rise can be alarming to observers 
[73]. For instance, a thirty-five year simulation of sea level rise presented 348 South 
Florida home homeowners revealed that 75% of the participants were willing to support 
the costs of adaptation projects; however, many of the participants reported an interest 
in moving out of the region in an emotional response to seeing potential climate impacts 
[70]. 
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Action: an experiment done in an immersive virtual environment (HMD) using 
vivid images suggests that it can elicit pro-environment behavior[32]. A study 
comparing avatars to voice and text found that avatars in the IVE are more effective 
than voice and text to promote pro-environment compliance [37]. Also, a study 
suggests IVE may increase awareness of strategies to mitigate negative impacts of 
climate change [56]. Our theoretical concept of action was introduced from the 
perspective of an individual, but the papers also described VR and immersive 
visualizations as a way to engage stakeholders in process oriented VR experiences that 
were participatory and collaborative [41]. Platforms such as SUNPRISM [62] add an 
additional level of interactivity by allowing users to visually design application 
scenarios with limited or no coding experience.  

Others reported that these interactive and extensible platforms would allow scientist 
to spend more time on their core research interests rather than database and processing 
challenges [61]. Among sectors that stand to mitigate or reduce the potential impacts 
of climate change, advances in IVEs are allowing designers to simulate and control 
energy chains via IVEs at the district level, coupling real time data from sensors with 
advanced simulations to assess the energy performance of buildings [33]  Across the 
building sector, 4D IVEs are facilitating prototyping during project planning for 
construction projects to minimize carbon emissions [22] Again advances in IVEs are 
democratizing complex 3D building and power grid modeling, simulation, and logistics 
exercises for a wide range of users in sectors critical to mitigating climate change. 

3.5 Future Studies  

With regards to the technical medium used, some studies suggest the use of VR 
headsets to richly communicate cultural paradigms and important contextual factors 
[23]. For visualizations and imagery, it is suggested that additional psychological 
research on climate change perception and behavior is necessary, using controlled 
visual landscape imagery[49] and emotional, social and intellectual support to lead to 
deeper behavioral changes [24].; standardization across platforms[36, 46]; to 
investigate what kind of images best represent the scientific information to be 
communicated, how the audience is influenced by these images [29] and what scientific 
monitoring of real-world projects would help model future scenarios [49]. Also, one 
study suggests developing a low-cost VR platform for displaying forest monitoring data 
to support analytical reasoning and decision making [48]. When using IVE for energy-
saving building, authors highlight the importance of future studies to identify 
prospective occupants [31], using avatars to enhance the communication between 
buildings and their occupants to support pro-environmental behavior [37].  Finally, 
others recommend integrating AR games into the daily life of students [25] and the 
need for strategies to compensate for GPS failure in dense vegetation locations [47].  

In planning, considerations of realness, verisimilitude, and uncertainty were cited 
as focal points for future study [52-53]; Variability in the availability of VR hardware, 
and lack of standardization were listed as barriers to wider use of VR in environmental 
planning [41]. A number of studies cited the need to increase access to objects data and 
code [62] to facilitate extending the tools to other research and applied domains. Others 
stated that the tools they were developing could be readily extended to interdisciplinary 
audience if the codebooks for were made more accessible [60]. While many studies 
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employed commodity hardware, there was the sense that new tools and algorithms 
would advance the state of the experience, the ability to extend the capabilities, 
incentivize climate investigation through gamification, and introduce semi-automation 
to shift data generation and analysis beyond form-filling and selective technologies 
with a high technical barrier to entry [47]. 

4 Discussion and Conclusions 

There was a relative paucity of papers on the design and testing of IVEs to support 
climate change awareness, mitigation, and adaptation (n = 55), and only twenty two 
related to education and communication. Engagement and motivation were key 
outcomes in many of the studies. The limited number of publications indicates the need 
to understand how IVEs may be leveraged to support public engagement with climate 
change. 

Ockwell, Whitmarsh & O’Neill [5] speak of engagement as a three-part construct 
(understanding, emotion and action), and argue that all three parts are necessary to elicit 
change in public perspectives related to climate change. There are compelling 
arguments how IVEs might influence all three; some of the research papers evaluated 
more than one of these dimensions [38–40, 43, 45, 51, 53, 56, 60, 65, 69, 70, 72], but 
none studied all three parts. Could rich immersive virtual experiences potentially tap 
into all dimensions? 

A number of studies focused on the potency of visual aspects of the experience, 
especially images and details in the visual display. This is not surprising, given that 
IVEs tend to be richly visual spaces. More innovative are the studies that focused on 
new forms of interaction that are enabled by IVEs. A number of the experiences drew 
on user input and interaction, requiring users to interact with virtual objects or data, 
thus activating a sense of agency in the virtual space. Also, in some cases, designers 
integrated forms of simulated social interaction by using avatars to personify data. 
These forms of kinesthetic and social interactions warrant further research, as the work 
presented here suggests these can provide powerful contexts for eliciting motivation, 
self-efficacy, and action. 
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