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Abstract 

This research investigates seismic analysis of concrete gravity dams subjected to synthetic ground motions 

in the uncertainty framework. Many studies focused on only epistemic randomness due to material 

properties of concrete gravity dams and the impact of aleatory randomness due to seismic excitation is 

neglected. The latter source of randomness can significantly affect the results of analyses. Hence, in the 

current study, uncertainty due to earthquake excitation is tackled using synthetic ground motions. In 

addition, probabilistic characteristics of materials are taken into account along with artificial ground 

motion to form the seismic probabilistic-based analysis. The dam-reservoir-foundation model is employed 

for the uncertainty analysis. Generation of synthetic accelerogram utilized in this study is an iterative 

process based on Fourier transformation and target spectrum as well as baseline and PGA correction. Latin 

Hypercube sampling is utilized for the purpose of reliability analysis because of its lower computational 

cost relative to crude Monte Carlo Simulation for the same accuracy. The utmost goal of this research is to 

determine the exceedance probabilities of defined limit-state functions as well as the probability 

distribution function of the dam’s response. 

Keywords: Concrete Gravity Dam, Seismic Analysis, Reliability, Synthetic Ground Motion, 

Exceedance Probability. 

 

 

1. INTRODUCTION 
 

As the dams are considered one of the critical infrastructures, the safety level and accurate simulation 

of these infrastructures are of paramount importance. Simulation of seismic loading in analysis of concrete dams 

has received considerable attention in recent studies, as it is one of the main factors causing extensive damages 

[1-4]. On the other hand, there is a great deal of uncertainty in concrete dam modeling which have to be taken 

into account. Hence, the aforementioned problem can be tackled by employing reliability approaches [5, 6]. 

Utilizing reliability approaches provide information about the safety level of the structures under the defined 

loading conditions. The first step toward uncertainty analysis is to have the comprehensive understanding of the 

source of randomness. The randomness is categorized into aleatory and epistemic. The aleatory randomness is 

irreducible and is related to the nature of the phenomenon. The epistemic randomness is due to lack of 

information which can be reduced by gathering more information on the subject [7]. In a seismic analysis, a 

primary source of modeling uncertainty lies in the ground motion characteristics. As a deduction, synthetic 

ground motions are used in seismic analysis to consider more realistic simulation of earthquake along with 

inherent randomness existing in earthquake nature. Moreover, the uncertainty in the model parameters 

(epistemic randomness) is taken into account by assigning probabilistic characteristics to them. The probabilistic 

characteristics of input parameters are defined through experiments, probabilistic modeling or engineering 

judgment. 

Recently, the probabilistic analysis of concrete dams has received considerable attention from many 

researchers [8, 9]. Application of seismic reliability analysis to concrete dams with the consideration of 

epistemic randomness is reviewed in the literature [4, 10]. In these studies, the uncertainty due to seismic 

excitation was considered by applying a single record or a set of natural ground motion to the model. Moreover, 

the reliability method used in these researches was limited to crude Monte Carlo Simulation and the main 

drawback of this method is its high computational cost. By reviewing papers in the field of reliability methods, 

other approaches such as importance sampling, directional sampling, Latin Hypercube sampling (LHS), point-

estimate method, first-order and second-order reliability method were widely used [11, 12]. Although these 

approaches were employed for the purpose of reliability analysis of miscellaneous structures, there are few 

studies considering these methods in the field of dam engineering. Utilizing the new approaches will lead to 

more accurate results along with less computational cost. 
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In this research, the aforementioned issues are handled using effective reliability method which is LHS 

and generating synthetic ground motions. Furthermore, the effect of foundation is considered in this study. The 

epistemic uncertainty is tackled by defining dam and foundation properties as random variables. Concrete 

density and Young’s elasticity modulus of concrete and foundation are assumed as the source of epistemic 

randomness. Generation of synthetic accelerogram utilized in this study is an iterative process based on Fourier 

transformation and target spectrum as well as baseline and PGA correction. As the main potential failure mode 

of concrete gravity dams due under seismic excitation is due to tensile cracking, the performance function is 

defined by tensile overstressing of the dam body. The utmost goal of this research is to determine the 

exceedance probabilities of defined limit-state functions as well as the probability distribution function of the 

dam’s response. 

 

2. UNCERTAINTY APPROACH 
 

The risk in dam safety analysis is affected by the combined impact of failure scenario, probability of 

occurrence and the associated consequences [1]. Therefore, the risk analysis of dams firstly requires 

identification of potential failure scenarios, and then quantification of the conditional probability of these 

scenarios for different loading conditions. The failure scenario can be presented as limit-state inequality given 

by: 

( ) 0xg                                                                                                                                                                   (1) 

where g(x) is the limit-state (performance) function with the failure condition defined by the above inequality, 

and x is the vector of random variables in the problem. g(x) = 0 defines the failure or limit-state surface. The 

probability of occurrence of the failure scenario, Pf [g(x) ≤ 0], which is equal to the exceedance probability of 

the corresponding limit-state function, can be computed through the probabilistic framework [10] 

g( ) 0
[g( ) 0] ( ) ( )

x
x x xfP h d


                                                                                                                                     (2) 

where h(x) is the joint probability density function of the random variables. There are various statistical 

techniques to quantify the risk. These techniques, which are known as structural reliability methods, use 

different mathematical formulations. Assuming that the random variables are normally distributed, the reliability 

index, β, is defined as 
1( )fP                                                                                                                                                             (3) 

where Φ is the standard normal cumulative distribution function. 

The benchmark and most reliable method is sampling, such as Monte-Carlo method, which is used for 

its ease of application in problems formulated in terms of a performance function [12]. In Monte-Carlo method 

realizations of each random variable are generated, which form a simulation model, and then the model is 

analyzed to determine the thermal response. By repeating the process for thousands of sets of realizations, 

distribution of response results associated with the input random variables is determined [13]. The exceedance 

probability of failure scenario, Pf, is estimated by dividing the number of simulations where failure scenario 

occurred to the total number of simulations. While conceptually straightforward, the Monte-Carlo procedure can 

become computationally very intensive because the number of simulations performed should be large enough to 

capture the searched probability. The remedy can be using more efficient sampling methods, among them Latin 

hypercube sampling (LHS) is selected for this research because of its efficiency and simplicity. The LHS is a 

variance reduction sampling method that stratifies variable marginal distributions in order to fully cover the 

range of each variable in a more efficient way than pure Monte-Carlo sampling [14]. Unfortunately, the 

appropriate sample size N, cannot be formerly determined to achieve a certain confidence level. However, using 

a relatively high N that is substantially larger than the number of random variables will result in reasonably 

accurate estimates for practical purposes. 
 

3. GENERATING SYNTHETIC GROUND MOTION  
 

The calculation method used in this research is given by the algorithm which is described in the 

following [15]. The artificial accelerogram is defined starting from a synthetic one, compatible with the target 

spectrum, and adapting its frequency content using the Fourier Transformation Method. 

The correction of the random process is carried on at every iteration using the relationship below [16]: 

1( ) ( ) [ ( ) ( ) ]i i iF f F f SRT f SR f                                                                                                                     (4) 

where SRT(f) is the value of the target spectrum and SR(f)i is the value of response spectrum 

corresponding to the accelerogram of the current iteration for frequency f. F(f)i+1 and F(f)i are the values of the 

accelerogram in the frequency domain for the current and previous iteration respectively. At each iteration a 
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Fourier Transformation is applied to move from time domain to frequency domain, where the correction to the 

accelerogram is carried on. Then an Inverse Fourier Transformation is applied in order to return to the time 

domain, where the corresponding spectrum is calculated, convergence is checked and it is evaluated whether or 

not further correction is needed. A schematic summary is given below.  

 
Figure 1. Algorithm of generating synthetic ground motion 

 

In this calculation method framework, the Envelope Shape module is not explicitly shown to the user, 

since the procedure does not start from a random process, but rather from a synthetic accelerogram. The 

generation of the synthetic accelerogram starts from a Gaussian white noise which is multiplied by envelope 

shape and then adapted to a certain source spectrum [17]. The duration of the ground motion is calculated from 

the input parameters. 

 

4. CASE STUDY: DETERMINISTIC AND PROBABILISTIC MODELING 
 

In this study, Pine Flat concrete gravity dam is selected as the case study. The tallest monolith of the 

dam is used for the analyses. The geometry of the dam body and the finite element model of the dam-

foundation-reservoir system are illustrated in Figure 2. The foundation rock is assumed as a homogeneous, 

isotropic, viscoelastic half-plane media. The foundation is extended twice the structural height of the dam in 

vertical direction, and five times in horizontal direction. The length of reservoir was assumed five times the dam 

height and non-reflective planar boundary condition was assigned as far-end boundary condition. 

 

 
Figure 2. Geometry and the finite element model of the structure 
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The material and structural properties of the dam-foundation-reservoir system is given in Table 1. In 

the current research, concrete density and the Young’s elasticity modulus of the dam and foundation are 

assumed as random variables. The probabilistic characteristics of these random variables are shown in Table 1. 

 

Table 1- Material and structural properties 

 Mean Value 
Distribution 

Type 

Coefficient 

of Variation 

Concrete 

Young’s modulus (GPa) 30 Lognormal 10 % 

Poisson’s ratio 0.2 NA  

Density (kg/m3) 2400 Lognormal 15 % 

Rayleigh damping coefficients 
1.64   

0.0012   
NA  

First and third mode damping (%) 5 NA  

 

Foundation 

Rock 

Ratio of rock’s Young’s modulus to concrete 

Young’s modulus 

0.625 

Range: [0.25-1] 
Uniform 34.64 % 

Poisson’s ratio 0.33 NA  

 

Water 
Density (kg/m3) 1000 NA  

Bulk modulus (GPa) 2.07 NA  

 

For the purpose of generating synthetic ground motion with the method described in previous section, 

Taft ground motion, Kern County, 7/21/1952, Taft Lincoln School, 111, is utilized. The spectrum of this record 

is employed so synthetic accelerogram can be generated as considering this target spectrum. Seven synthetic 

ground motions are generated and their statistics along with the characteristics of the target ground motion, Taft 

record, can be found in Table 2. As it can be noticed from Table 2, the mean error are below 10 percent and the 

arias intensity values are varied from 0.334 to 0.552. 

 

Table 2- Statistical characteristics of generated ground motion 

Synthetic 

Record No. 

Mean Error 

(%) 
CoV (%) 

PGA 

(g) 

PGV 

(cm/sec) 

PGD 

(cm) 

Arias Intensity 

(cm/sec) 

Significant 

Duration (cm) 

1 7.68 10.22 0.151 63.607 
102.44

5 
0.522 14.67 

2 9.28 9.48 0.145 29.028 61.114 0.375 11.58 

3 9.34 11.39 0.187 13.582 5.681 0.387 8.91 

4 9.13 10.23 0.157 25.971 19.265 0.415 9.62 

5 9.30 10.09 0.156 24.026 35.197 0.393 8.40 

6 9.40 10.14 0.179 13.739 13.572 0.334 9.02 

7 9.57 9.91 0.179 19.642 15.445 0.390 8.81 

Taft Record - - 0.180 18.626 9.352 0.599 28.78 

 

The only considered failure scenario for this model is the tensile overstressing which is quantified 

using the following limit-state function: 

( )x tg TS                                                                                                                                                         (5) 

where TS is the concrete tensile strength, and σt is the peak value of the maximum principal (tensile) stress of 

the dam body. The performance index of this limit-state function can be in the form of: 

( ) 0xg                                                                                                                                                                  (6) 

which represents the exceedance of the maximum tensile stress in one or more elements within the dam body 

from the threshold value TS. Additional analyses have shown that the compressive overstressing is not a critical 

limit-state for the concrete gravity dam models under the seismic loading. 

 

5.  RESULTS 
 

The exceedance probabilities for the defined limit-state are calculated using LHS with 1,000 

realizations and the results are presented in Figure 3. The analyses are repeated for seven synthetic records and 

the probabilities are determined for different thresholds of the limit-state function. In the aforementioned figure, 

the exceedance probability curves illustrated for all synthetic records along with the mean, 84 th and 16th 
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percentile values. The 84th and 16th percentile indicate the confidence interval and they are the mean value plus 

standard deviation and mean value minus standard deviation, respectively. It is concluded from exceedance 

probability curves that there are slight differences between the results for threshold values below 3 MPa. As the 

threshold values are increased, the differences are more obvious. The reason for this observation is since the 

larger thresholds values result in lower probabilities, the accuracy of the results are lower in the tail of the 

distributions which low probabilities are located there. 

 

 

Figure 3. Exceedance probability curves for artificial records applied to the finite 

element model 
 

Moreover, the results indicate that the confidence interval illustrated in Figure 3. encompass the results 

of all synthetic records. This means the further interpretation of the results will be more accurate considering the 

aforementioned confidence interval. In addition to these results, the histogram of the dam responses is depicted 

in Figure 4. These histograms indicate 1,000 results of the time history analysis of the Pine Flat dam under 

seven generated synthetic records. As mentioned earlier, the results are based on maximum tensile stress in the 

dam body under seismic excitation. The histograms imply that the maximum tensile stress in the dam body 

varies between 2 to 7 MPa. 
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Synthetic Record No. 5 Synthetic Record No. 6 Synthetic Record No. 7 

 

 

 

Figure 4. The histograms of the maximum tensile strees obtained by LHS under 

synthetic ground motion excitation. The horizontal and vertical axes are the tensile 

stress (MPa) and number of observation, respectively. 
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Although the histograms reveal different pattern but the fitted distributions express identical results. 

The probabilistic characteristics of the results along with their fitted probability distribution are shown in Table 

3. For the purpose of the goodness of fit tests, Anderson-Darling test is utilized. This procedure is a general test 

to compare the fit of an observed cumulative distribution function to an expected cumulative distribution 

function. Anderson-Darling test is the most standard way to control goodness-of-fitting for distributional 

models. According to the fitting results, the first three distributions which fit the observation the best is 

presented in Table 3. As it is obvious, Beta distribution is the best fitted distribution for all the results of the 

model under seven synthetic ground motions. 

 

Table 3- Probabilistic characteristics and fitted distribution of the outputs 
 

Synthetic 

Record No. 
Mean (MPa) Standard Deviation 

Fitted Distribution 

1st rank 2nd rank 3rd rank 

1 3.827 0.972 Beta Gumbel Max Lognormal 

2 3.444 0.808 Beta Gumbel Max Lognormal 

3 3.733 0.865 Beta Gumbel Max Lognormal 

4 3.490 0.862 Beta Gamma Lognormal 

5 3.977 1.274 Beta Gumbel Max Lognormal 

6 3.607 0.948 Beta Weibull Normal 

7 3.937 1.226 Beta Gumbel Max Lognormal 

 

6. CONCLUSIONS 
 

In this research, seismic reliability analysis of concrete gravity dam subjected to artificially generated 

earthquake is investigated. The aleatory randomness due to earthquake nature along with epistemic randomness 

is taken into account. The synthetic records are generated using a target spectrum with the algorithm based on 

Fourier transformation and target spectrum as well as baseline and PGA correction. The epistemic uncertainty is 

tackled by defining concrete density, Young’s modulus of concrete and the ratio of Young’s modulus of 

concrete to foundation rock as random variables. The dam-foundation-reservoir system is considered in this 

study. As the potential failure mode of concrete gravity dam due to ground motion is tensile cracking, the limit-

state function is defined based on maximum tensile stress. The reliability methods employed in this 

investigation is Latin Hypercube sampling. With one thousands realizations, the exceedance probabilities of the 

defined thresholds are calculated and depicted as exceedance probability curves. Moreover, the histograms of 

the outputs are determined. The Anderson-Darling goodness of fit test indicates that for all outputs, the best 

fitted distribution is Beta. The results indicate that the confidence interval determined using exceedance 

probability curves, encompass the results of all synthetic records. This means the further interpretation of the 

results will be more accurate considering the aforementioned confidence interval. 
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