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Abstract 

Reservoir routing is one of the most important issues in reservoir management. Estimating outflow from a 

dam outlet, which is the target of reservoir routing, is significantly vital since unpredicted floods can bring 

about severe damages to infrastructures and human beings downstream of storage reservoirs. In essence, 

general analytical computation of storage and outflow may be impossible in practice and subsequently, 

application of numerical methods seems to be inevitable for reservoir routing. However, analytical relations 

for temporal variation of water storage in a typical reservoir for several cases of inflow hydrographs 

including triangular, abrupt wave, flood pulse and broad peak hydrographs are derived in this paper. . In 

these scenarios, an orifice was assumed for reservoir outlet. According to the literature, presented analytical 

solutions for the last three cases are proposed for the first time. The applicability of these analytical solutions 

is tested using four numerical examples while a robust numerical scheme, i.e., fourth-order Runge-Kutta, is 

also applied for solving these examples. The obtained results demonstrate that the recommended analytical 

solutions have a good agreement with the corresponding results of the utilized numerical scheme for all 

examples.  
Keywords: Reservoir Routing, Analytical Solution, Inflow Hydrograph, Fourth-Order Runge-Kutta 

Scheme. 

 

 

1.  INTRODUCTION 
 

Effective reservoirs which are decisive factors in water supply system in many communities usually have 

periodic high water levels. In order to not only maximize water usage but also prevent severe damages, hydraulic 

engineers are supposed to predict reservoir responses under various circumstances especially for high water levels 

[1]. From this point of view, reservoir routing is the process of determining the propagation corresponds to inflow 

hydrographs through reservoir [2]. Level pool routing is a robust tool for computation of outflow hydrograph from 

a single reservoir based on inflow hydrograph and the characteristics of the system [3]. In this regard, clarification 

of the hydraulic head equation with respect to time and detailed descriptions of hydrological characteristic related 

to the system play a key role in designing efficient reservoirs [4].  

Various routing approaches can be classified into two main categories including (1) hydrologic routing 

and (2) hydraulic routing methods. The former employs continuity equation exclusively while the latter utilizes 

the continuity equation together with equation of motion [5-9]. This paper focuses on the hydrologic routing 

method which uses the nonlinear first-order ordinary differential equation.  

The governing equation for level pool routing which is named as continuity equation is shown in Eq. 1: 

dS
I Q

dt
   (1) 

where S , I  and Q  are storage, inflow and outflow at time t , respectively.  

Although there are numerous numerical solutions for the above mentioned equation [10-11], this 

equation can be analytically solved with some assumptions such as the hypothesis of power function for the 

storage-outflow relationship [12]. Furthermore, Paik [13] studied routing for a triangular inflow hydrograph in 

2008. However, no recommendation is available for treating other types of inflow hydrographs in literature. In 

this study, it is tried to determine the analytical solution of outflow hydrograph for four common functions of 

inflow including triangular, abrupt wave, flood pulse and broad peak hydrographs. 
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The remainder of this paper is structured as follows: The methodology and governing equations of 

reservoir routing for various types of inflow hydrograph are developed in section 2. Afterwards, a comparison 

between obtained analytical solutions and numerical solutions of Runge-Kutta method is conducted for four 

numerical examples in section 3. Conclusion is given in the final section. 

 

2.  METHODOLOGY 
 

The storage of a typical reservoir with constant area A  may be computed as illustrated in Eq. 2. 

S Ah  (2) 

where h is the hydraulic head of water.  

The outflow from an orifice outlet can be computed using Eq. 3: 

2Q Ca gh  (3) 

where  is the orifice formula error correction factor, C is the orifice coefficient, a is the total cross-sectional 

area of orifice outlet, and g is the gravitational acceleration.  

By substituting Eq. 2 and Eq. 3 into the continuity equation (Eq. 1), a general form of routing equation of 

reservoirs with orifice outlets will be obtained, as shown in Eq. 4. 

2
dh

A I Ca gh
dt

   (4) 

The inflow hydrograph may have various types [14]. The solution of outflow hydrograph for 4 types of 

inflow hydrograph is proposed which are triangular, abrupt wave, flood pulse and broad peak. In the following, 

the analytical equations for hydraulic head and outflow of these inflow hydrograph are derived:  

 

2.1.  TRIANGULAR INFLOW HYDROGRAPH 
 

The triangular inflow hydrograph (Fig. 1) function is expressed as follows: 

 

 

Figure 1. Triangular inflow hydrograph 
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Thus, the outflow hydrograph can be divided into 3 parts: 0 ,dt t  d dt t t    and dt t . By 

substituting inflow for the first part into Eq. 4, the governing equation obtained as: 

2
p

d

Idh
A t Ca gh

dt t



   (6) 

Eq. 6 is in form of Abel differential equation [15]. By applying the initial condition of no initial storage ( 0h   at 

0t  ), the analytical solution of water head can be achieved as: 
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 (7) 

Implementing Eq. 7 into Eq. 3 yields the analytical solution of first part of outflow hydrograph as: 

2

2

4( )
1 1

2 ( )

p

d

AICa g
Q t

A t g Ca



 

 
    
  

 (8) 

Eq. 8 reveals that the discharge from the orifice outlet increases linearly with respect to time t in the ascending 

limb of inflow hydrograph. 

For the second part of outflow hydrograph, the governing equation is 

1 Ca 2
1

p

d

Idh t
A gh

dt t




 
   

  
 (9) 

The initial condition of this part is the head water at time dt t which is: 

2
2 2

2
( ) 2

4
( )

8d

pd
t t

d

AIg t
h Ca Ca

t gA



 




 
   
 
 

 (10) 

The analytical solution of this equation is not available but routing results from numerical methods show that the 

outflow hydrograph is nonlinear in this part.  

Finally, the analytical solution of outflow hydrograph of third part is obtained by putting 0I   in Equ. 4 as 

1
2

2

g Ca
h t J

A


     (11) 

where J is a constant that can be found by the initial condition of the third part, i.e., the head water at time dt t

. Substituting Eq. 11 into Eq. 3 will result in a linear hydrograph similar to the first part.  

 

2.2. ABRUPT WAVE INFLOW HYDROGRAPH 
 

The mathematical expression of this type of hydrograph, which is shown in Fig. 2, is as follows 

 

 

Figure 2. Abrupt wave inflow hydrograph 
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 (12) 

First and third parts of this hydrograph are similar to the third part of triangular inflow hydrograph. Thus, 

1
2

2

g Ca
h t J

A


    (13) 

where J can be determined by initial condition of each part which are ( 0) 0th   and ( )dt t dh h  , respectively.  
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The head water at time dt can be found by solving the equation for second part of hydrograph. Similar 

to the second part of triangular hydrograph, there is no analytical solution for this part of hydrograph and it can 

be determined by numerical methods. 

 

2.3. FLOOD PULSE INFLOW HYDROGRAPH 
 

Third inflow hydrograph discussed in this paper is flood pulse hydrograph (Fig. 3). Similar to the 

previous types, it can be divided into 3 parts. 

 

Figure 3. Flood pulse inflow hydrograph 
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Substituting Eq. 14 into Eq. 4 will yield to analytical solution of each part of outflow. The first and third parts of 

this hydrograph are same as last part of triangular hydrograph with different initial conditions. Thus the analytical 

solution of head water is similar to Equ. 13. The initial conditions of these parts are 
1( ) 1t th h   and ( )dt t dh h 

. Eq. 15 and Eq. 16 are simplified equations of head water in the first and third part of hydrograph, respectively. 

1/2 1/2
1 1( ) h

2

g Ca
h t t

A


    (15) 

1/2 1/2( ) h
2

d d

g Ca
h t t

A


    (16) 

Substituting the above equations into Eq. 3 will result in the linear relations for outflow which increase with time. 

The middle part of hydrograph with constant inflow results in Abel differential equation of the second kind [12]. 

Solving this equation results in the following equation  

1/2 1/22
ln

2 2 2

p pI ICa g
t h h J

A Ca g Ca g



 

 
     

 
 

 (17) 

where J is a constant that can be determined by the one of the initial conditions mentioned in this section. 

However, because the natural logarithm argument is always negative, there is no analytical solution for this part 

of outflow hydrograph and should be determined by numerical methods. 

 

2.4. BROAD PEAK INFLOW HYDROGRAPH 
 

The last type of hydrographs discussed in this study is broad peak hydrograph which is shown in Fig. 4. 

Unlike three other types, this hydrograph should be divided into 4 parts (Equ. 18). 
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Figure 4. Broad peak inflow hydrograph 
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By substituting inflow relation of each part into Eq. 4, the relation of outflow hydrograph can be obtained. The 

first part is same as the first part of triangular hydrograph with initial condition of ( 0) 0th    (Equ. 19). 

 

2

2 2

2
1

4

8

pAIg
h Ca Ca t

t gA
 

 
   
  

 (19) 

The second part is similar to the middle part of flood pulse hydrograph. Thus, there is no analytical solution for 

that. 

As mentioned earlier, the descending limb of triangular hydrograph has not analytical solution. The 

descending part of Fig. 4 is same as the one in Fig. 1. Thus, the analytical solution of this part is not available and 

its outflow hydrograph is highly nonlinear. 

Finally, the last part of inflow hydrograph which lies down on zero line, is like the last part of triangular 

hydrograph. The analytical solution of this part can be obtained by implementing the initial condition ( ) 0
dt th  

to Eq. 13 as 

 1/2

2
d

g Ca
h t t

A


   (20) 

 

3.  BENCHMARKS 
 

In this section, the applicability of proposed formulations is demonstrated using four examples, one for 

each of inflow hydrographs. The analytical solutions are compared with results of a robust numerical method 

named as fourth order Runge-Kutta method which has shown good results in the literature [17]. Parameters of the 

orifice outlet and reservoir are listed in Table 1. 
 

Table 1- Parameters of the model 
 

Parameter Value 

λ 1 

C 0.6 

a (m2) 2 

A (m2) 12000 

Δt (s) 200 
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First, the triangular hydrograph with peak of 
3 /50m s

and total time of 7200s
and 0.5   is assumed as 

input of the model (Gray dots in Fig. 5). As described in section 2, the ascending and zero limbs of inflow 

hydrograph result in linear outflow. Since there is no analytical solution for the second part of hydrograph, the 

results of the numerical solution in the result chart are used.  

 

 
Figure 5. The outflow of triangular inflow hydrograph 

 

Thereafter, hydrograph has zero value until 3600s
. In the second part, it reduced linearly from peak of 

3 /50m s
to 0  and again it has zero value. According to the section 2, the first and third parts have analytical solution 

(Equ. 11) and there is no analytical solution for the second part.  

 
Figure 6. The outflow of abrupt wave inflow hydrograph 

 

Flood pulse hydrograph composed of three constant parts. However, because the second part has non 

zero value, no analytical solution can be established and the numerical result is used for this part.  

 

 
Figure 7. The outflow of flood pulse inflow hydrograph 

 

The last inflow hydrograph shape is the broad peak hydrograph. It is a general trapezoid with an extended 

peak of 
3 /100m s

between a linear rise and descending parts. As an example, the hydrograph of two reservoirs in 

the historical 1997 flood of California can be approximated into this type of hydrograph [18].  
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Figure 8. The outflow of broad peak inflow hydrograph 

 

As illustrated in the above figures, the analytical solutions have very good agreement with numerical 

results. This good agreement indicates that the presented analytical solutions can be confidentially utilized for 

reservoir routing in cases in which the inflow hydrograph has similar shapes.    
 

4.  CONCLUSIONS 
 

In this paper, analytical solutions for reservoir routing for several types of inflow hydrograph have been 

developed. According to the results, those parts of outflow hydrograph which has analytical solution are linear 

while those with no analytical solution are highly nonlinear. Compared with the results of Runge-Kutta method 

for four numerical examples, the analytical solutions have good agreement with the numerical method used for 

validation. It is obvious that general form of outflow hydrograph cannot be derived in practice. However, it may 

be possible to obtain analytical solution for special cases of inflow hydrograph and outlet conditions. Although, 

analytical solutions for four common types of hydrographs have been derived in this paper, seeking for analytical 

solution of other especial inflow hydrograph cases is suggested for future researches. 
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