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Abstract 

The widely known CFD-toolbox “OpenFOAM” is a well-designed C++ library that allows the numerical 

simulation of various Engineering problems. Owing to its object-orientated structure and the open source 

code concept, it is very flexible and can be adjusted to very specific problems. Therefore, the code analysis 

and its manipulation are possible. In general, the library is designed for tackling complex physical 

problems which can be described with the means of Partial Differential Equations (PDEs). These PDEs are 

then discretized on the basis of the Finite Volume Method (FVM) in space and with a Finite Differences 

Scheme in time. However, inappropriate documentation and the lack of a graphical user interface make the 

usage in the beginning more difficult than most commercial software. The aim of this study is to show the 

functionalities and capabilities of the toolbox for hydraulic engineering applications, including a short 

description of the meshing process, boundary condition and the numeric of the solvers. Therefore, a short 

overview of the applicability and the limitations of the solver “TwoPhaseEulerFoam and InterFoam” 

which is most commonly used in hydraulic Engineering are presented. 
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1.  INTRODUCTION  
 

Computational Fluid Dynamics is essentially a method for solving a set of partial differential equations 

that represent a fluid system. These typically include equations representing the principles of conservation of 

mass, momentum and energy, as well as auxiliary equations to represent other physical phenomena or sources 

e.g. porous medium, heat exchangers, actuator discs, magnetic fields, etc. Additional transport equations can 

also be included within a CFD solution to model the transport of a given property such as species concentration 

in the case of combustion modelling, or turbulent quantities such as the turbulent kinetic energy k and its 

dissipation rate  when modelling turbulence using the standard k-  model. 

The three most common methods for numerically solving partial differential equations are the Finite 

Difference (FDM), Finite Element (FEM) and Finite Volume (FVM) Methods. Common to all of these is that 

the computational domain is divided into smaller regions with a computational grid, and the differential 

equations are approximated at discrete points using algebraic equations. Different schemes can be used for 

approximation and interpolation, usually trading complexity and computational costs for accuracy. For CFD the 

standard method is FVM, which is rarely used for other purposes. In FVM the domain is divided into control 

volumes (CV) and the integral form of the conservation equations are applied to each of them. The variables are 

defined at the centres of the CVs and are interpolated to the CV boundaries. Importantly for CFD, conservation 

is built into the method. Other reasons for its popularity are that it can be applied to any kind of computational 

mesh, as the mesh only defines the boundaries of the CVs – instead of the computational nodes as in FDM – and 

all the variables have a clear physical meaning (Ferziger and Peric, 2002). Open source software is an 

attractive CFD tool for academic and research purposes. Unrestricted access allows detailed insight into the 

algorithms used and limitless customization for specific purposes. In CFD applications, the lack of licensing 

fees makes massively parallel computations economically feasible, provided that the parallelization of the solver 

is efficient. The widely known CFD-toolbox “OpenFOAM” (Open Field Operation and Manipulation) is a well 

designed C++ library that allows the numerical simulation of various engineering applications. Through its 

object-orientated structure it is very flexible and can be adjusted to very specific problems. Since the code is 

open source, code analysis and manipulation are possible. In general, the library is designed for tackling 

complex physical problems, which can be described with the means of partial differential equations (PDEs). 

These PDEs are then discretized on the basis of the Finite-Volume-Method (FVM) in space and with a Finite-
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Differences-Scheme in time. With its specific data types for describing the PDEs and the usage of operator 

overloading, OpenFOAM allows formulating the equations in a way that resembles the mathematical 

formulation (Weller et al. 1998). Thus, operators like divergence, gradient or laplacian can be simply written as 

div1, grad and laplacian. A Message-Passing-Interface based parallelization concept is embedded seamlessly 

which enables highly effective massive parallel computing. As the code is open source, parallel computing with 

OpenFOAM is limited by the hardware resources available and not by the number of licenses available. But, as 

the parallelization is based on a domain decomposition approach, the efficiency of parallelization is only given, 

if the problem size is large enough (Hinkelmann 2003).The class based structure divides the software into the 

smallest possible units, where each is designed for performing one specific task. Through the object orientated 

structure the maintenance of the code and development of extensions are generally made easier, as it is possible 

to add functionality at the outer layers of the code without the necessity to know everything about the inner 

layers of the libraries. Furthermore, code duplication is avoided, since all parts of the library can be used at 

multiple positions. With its ingenious concept for the discretization, which is described below, the software 

allows the usage of arbitrarily shaped cells in the mesh. Besides the official release some forks and adaptions are 

available. One noteworthy release is the community-driven distribution by the “extend- project”, which aims to 

“open the OpenFOAM CFD toolbox to community contributed extensions in the spirit of the Open Source 

development” (www.extend-project.de). Containing various valuable user-developed extensions, it is widely 

used by many researchers. With the ongoing developments the differences between the two main release 

branches are growing, therefore switching between different versions is not recommended. The following 

description refers to the official version 2.2.2. The program package can be installed or compiled for most Linux 

distributions; versions for Mac OS are available. Running OpenFOAM on Windows is possible but entails 

several restraints. For post-processing results of OpenFOAM simulations, the open source software ParaView or 

other common post-processing tools like Tecplot or Gnuplot can be used. With ParaView, even domain 

decomposed cases (that were calculated in parallel on several CPUs and are stored in separate directories for 

each domain), can be post-processed without reconstructing the case. In contrary to most CFD programs, 

OpenFOAM is not delivered with a graphical user interface for performing the pre- and post-processing of the 

simulations. Settings and data are saved in ASCII text files, where the names of the files and folders have to 

correspond to a predefined structure. Simulation results are saved in folders named according to the time-step or 

iteration (Schulze & Thorenz.,2014). 

 

2. FINITE VOLUME DISCRETION IN OPEN FOAM 
 

Since an analytical solution of the PDEs is rarely possible, the solution has to be approximated. For 

this, the FVM is used here. The discretization process can be can be done as follows: 

 

2.1. EQUATION DISCRETIZATION 
 

To solve the equations that describe the flow transport, a transformation from partial differential 

equation to linearized algebraic equation is to be performed. For a generic transport equation this can be done as 

follows (Jasak 1996). 

The generic transport equation for the field variable 𝜙 in integral form can be formulated as: 
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All terms are integrated over the time step ranging from 𝑡 to 𝑡 + Δ𝑡 and the control volume pv : 
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By using the Gauss theorem, volume integrals can be converted into surface integrals, which can then be written 

as sums over the regarded control volume: 
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𝜌 represents the density, U is the velocity field, through which the variable 𝜙 is transported through the domain, 

Γ describes the diffusion coefficient and 𝑆 includes all source terms. Index P denotes the midpoint of the control 

volume, index f indicates the value at the surface of the control volume. 
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The first term accounts for the temporal variation of the generic variable 𝜙, the second term describes 

the convective transport, the third term quantifies the diffusive transport and the right hand side in the equations 

specifies sources and sinks. The exact way of discretization is defined through the chosen discretization scheme. 

Since the discretization in OpenFOAM works on a “per operator basis”, different schemes (e.g. upwind or 

different TVD schemes are available) for each operator can be chosen during runtime. As described below, this 
choice has a large influence on the accuracy of the results and must therefore be handled with care. 

The order of accuracy is also of first order, but the time-step restrictions are much less severe. For achieving 

second order accuracy, the discretization can be blended between the implicit and the explicit scheme. In 

standard literature an equally weighted blending between implicit and explicit calculation is labelled as Crank 

Nicolson Method (Ferziger und Perić 2002), however in Open- FOAM the user can blend between a 50:50-

weighting and the fully implicit method. That means, the entry ddtSchemes {default CrankNicolson 0;} refers to 

a fully implicit temporal discretization, whereas ddtSchemes {default CrankNicolson 1;}implies the standard 

Crank Nicolson scheme with 50 % implicit and 50 % explicit discretization(Schulze & Thorenz.,2014). 

 

3. MESHING 
 

Mesh generation is a mandatory process phase in typical CFD, structural and acoustic simulations and 

analyses. Although being just requirement for performing calculation it has an important impact on efficiency 

and accuracy of computation; element or cell shape and size does matter on both computation speed and 

numerical accuracy. 

The mesh is an integral part of the numerical solution and must satisfy certain criteria to ensure a valid, 

and hence accurate, solution. During any run, OpenFOAM checks that the mesh satisfies a fairly stringent set of 

validity constraints and will cease running if the constraints are not satisfied. By default OpenFOAM defines a 

mesh of arbitrary polyhedral cells in 3-D, bounded by arbitrary polygonal faces, i.e. the cells can have an 

unlimited number of faces where, for each face, there is no limit on the number of edges nor any restriction on 

its alignment. A mesh with this general structure is known in OpenFOAM as a polyMesh. This type of mesh 

offers great freedom in mesh generation and manipulation in particular when the geometry of the domain is 

complex or changes over time. The OpenFOAM toolbox includes a meshing toolbox that allows the generation 

and manipulation of structured and unstructured meshes. The meshing generation is performed with two main 

utilities: blockMesh and snappyHexMesh. blockMesh allows the generation of block structured, bodyfitted 

meshes. On the basis of coordinates, the boundaries of the domain are defined. In the further settings, the names 

of the boundaries and the size of the cells can be specified. In general, all meshes are created in three 

dimensions. For a two-dimensional mesh, the mesh gets only one cell in the third dimension and the faces 

normal to the third dimension get a specific boundary condition (“empty”). With the snappyHexMesh utility the 

mesh can be adapted to complex external geometries. The mesh generation is based on a blockMesh grid and 

consists of three successive steps (see Figure 1): 

 

Figure 1. Grid generation steps with the native OpenFOAM meshing tools: a) 

blockMesh grid, b) snappyHexMesh castellated, c) snappyHexMesh snapped, d) 

snappyHexMesh addLayers 

 
 

Castellated mesh generation: In the first step, the input mesh is locally refined according to the 

predefined settings. Cells close to the surface of the external geometries and cells in predefined regions are 

refined by orthogonal division of the block structured cells. Afterwards, all cells that overlap the external 

geometry are deleted from the mesh. This results in the so called castellated mesh. 
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Snapping: In the second step, cells that are intersecting with the geometry surface are deformed such 

that the mesh fits the external geometry. This process is performed in an iterative manner to assure that the 

shape of the surface resembles the external geometry’s surface and fulfills the required mesh quality parameters. 

Cells on the inside are deformed, too, in order to avoid too distorted cells. 

Addition of boundary layers: The third step adds boundary layers to the mesh. This is done by first 

shrinking the existing mesh and then inserting stretched block structured cells at the surface of the external 

geometry. These layers have the purpose of improving the modelling of boundary layer flow. If local head 

losses are dominating the flow and friction losses can be neglected, the creation of boundary layers can be 

avoided. As the creation of boundary layers in snappyHexMesh often results in a decreased mesh quality, the 

necessity of boundary layers is to be thought over before the simulation setup. The snappyHexMesh grid 

generation can be performed in parallel. This is advantageous, if large meshes are to be created. With 

OpenFOAM it is also possible to use meshes that are not created with the native tools. For the conversion of 

these meshes, several tools are available (e.g. fluentToFoam, starToFoam etc. (Schulze & Thorenz.,2014). 

 

4. CASE SETUP 
 

After the meshing, solver settings, calculation settings and boundary conditions have to be defined. For 

that, a case must contain at least the following subfolders: 0, constant, system. In the 0 folder, files with the 

boundary and initial conditions of all primary variables are stored. The constant folder contains all constant 

parameters like gravity, surface tension and the mesh data. In the system folder, the chosen discretization 

schemes, iterative solving methods and parameters that control the solution process like the time-step size or the 

maximum Courant number are defined. The system folder will be read during runtime, which means that a 

change of settings in this folder is immediately effective. Since appropriate choice of boundary conditions and 

discretization schemes are crucial for a successful simulation setup, more details on these topics are given 

below. 
 

4.1. BOUNDARY CONDITIONS 
 

In OpenFOAM boundary conditions are defined per variable at each boundary patch. It is possible to 

define generic type boundary conditions like fixed values (Dirichlet) or fixed normal gradients (Neumann), 

additionally derived boundary condition types are available that combine several generic conditions with 

additional restrictions. It is necessary that the conditions for various variables at one patch match, so that the 

boundary conditions result in a physically sound combination. 
 

4.2. DISCRETIZATION SCHEME AND ITERATIVE SOLVERS 
 

In the fvSchemes file the user has to define, which discretization schemes are to be used. As explained 

before, the discretization of the equation is based on a per operator basis. This means that one discretization 

scheme can be chosen for each operator. With the choice of the schemes, stability and accuracy of the 

calculation are strongly influenced. Therefore, a lot of effort should be put into the choice of the schemes. The 

chosen schemes in the official tutorials of the toolbox are mostly chosen such that the simulation runs fast and 

stable (i.e. using upwind schemes) whereas for real world applications higher accuracy (higher order schemes) is 

needed in most cases. 

The fvSolution file specifies the iterative solvers and limiters that should be used for solving the PDE 

systems. The choice for the iterative solvers strongly affects the simulation time but only has small influence on 

the actual results, if the error tolerances of the different solvers are set to the same order. 

 

5. MULTIPHASE SOLVERS 
 

In OpenFOAM, multiple multiphase solvers are available. These are namely: 

- InterFoam, LTSinterfoam InterDyMFoam: Solvers that are based on the Volume-of-Fluid Method (as 

explained below). These are useful for simulations, where a sharp and well-defined interface between the fluid 

phases exists. 

- TwoPhaseEulerFoam, multiphaseEulerFoam, and multiphaseInterFoam: Solvers that are based on the 

Eulerian-Eulerian approach (for detailed information refers to Rusche, 2002). 

For hydraulic engineering applications, the first three are of most relevance, whereas the last three are rather 

used for applications where small-scale flow regions (i.e. as in chemical engineering) are considered. In the 

following the interFoam and TwoPhaseEulerFoam solver is analysed in detail. The interFoam solver is made for 
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simulating flow of two inmiscible fluids, which share an interface that is significantly larger than the cell size. 

The continuous fluid regions should contain a multitude of cells. In this approach, only one mass and one 

momentum conservation equation is solved for both fluids. For that, density and viscosity of both fluids are 

averaged according to the volume fractions in the cell. Mass and momentum transfer between the phases is 

neglected (Schulze & Thorenz., 2014). On the other hand, two incompressible fluid phases with one phase 

dispersed are solved using TwoPhaseEulerFoam solver. Both the phases are described using the Eulerian 

conservation equations and thus it is referred as Euler-Euler model. Each of the phases is treated as a continuum 

in this approach. 
 

5.1. INTERFOAM SOLVER BASIC EQUATIONS 
 

The Volume of Fluid (VoF) method is used for tracking the position and shape of the interface through 

solving an additional advection equation for the volume fraction in each cell. Together with the Navier- Stokes 

equations this results in the following set of equations that has to be solved for each cell during each time step: 
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With 𝜌 = density; U = velocity; t = time; p−𝑟𝑔ℎ = 𝑝 − 𝜌𝑔 ∙ 𝑥 = modified pressure, obtained by subtraction of 

the hydrostatic pressure from the pressure; 𝑥 =special position vector ; μ= dynamic viscosity; g=gravity; S = 

interface between the phases; 𝜎 = surface tension coefficient; 𝜅 = curvature of the surface; 𝛿 = dirac delta;  

(𝑥 − 𝑥𝑠) = distance from the considered point to the surface; n = normal vector on the interface; 𝛼 = volume 

fraction of the first phase (water); 𝑈𝑟 = compressive velocity counteracting numerical diffusion. The first 

equation accounts for the conservation of mass, the second represents the momentum Conservation equation and 

the third describe the transport of the volume fraction 𝛼. For counteracting numerical diffusion in the VoF 

equation, an artificial compression velocity 𝑈𝑟 is introduced. This term creates a flux in the direction of the 

gradient of the volume fraction ∇𝛼, e. g. the smeared interface is artificially compressed. It only acts within the 

zone of the interface as it becomes 0 where 𝛼 = 0 or 𝛼 = 1. 

 

5.2. TWOPHASEEULERFOAM SOLVER BASIC EQUATIONS 
 

 TwoPhaseEulerFoam is a two-fluid, Euler-Euler method solver for incompressible two- phase turbulent 

flows. It has been included in OpenFOAM releases since version 1.3 with small variations. The 

twoPhaseEulerFoam is based on a solver called bubbleFoam, which is a result of Henrik Rusche’s work for his 

PhD thesis “Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions” (2002) 

and on further development (Weller, 2002, 2005) of the algorithm developed for the BRITE II project at 

Imperial College. TwoPhaseEulerFoam differs from bubbleFoam by the addition of models for particle- particle 

interaction. Two alternative approaches are included. Firstly, with a particle normal force, i.e. a powder modulus 

model as suggested by Gidaspow et al. (1983; 1985) and Bouillard et al. (1989) and secondly, using the kinetic 

theory for granular flow (KTGF) model. 

Two incompressible fluid phases with one phase dispersed are solved using this solver. Both the phases 

are described using the Eulerian conservation equations and thus it is referred as Euler-Euler model. Each of the 

phases is treated as a continuum in this approach. 
The Eulerian conservation equations are used to describe both the phases in the two-fluid model. Each 

of the phase is treated as continuum and inter-penetrating each other and is represented by averaged equations. 

The equations implemented in OpenFOAM solver are given here. The equations for two fluid modeling 

approaches in OpenFOAM are implemented from “Computational Fluid Dynamics of Dispersed Two-Phase 

flows at high phase fractions” by Henrik Rusche. The averaged inter-phase momentum transfers term accounts 

for the transfer of momentum between the two phases. The averaged momentum and continuity equations for 

each phase φ can be written as: 
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Where the subscript φ denotes the phase, α is the phase fraction, 
effR the combined Reynolds (turbulent) and 

viscous stress, M is the averaged inter-phase momentum transfer term. Combining the second equation for the 

two phases when φ = a and φ = b yields the volumetric continuity equation and can be formulated as an implicit 

equation for pressure. 

The inter-phase momentum transfer can be calculated by adding the forces acting on the Dispersed Phase 

particles. The drag, lift and the virtual mass forces are considered as the main contribution. The other forces 

such as Basset or history forces are neglected. 

The volumetric continuity equation is: 
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This equation is recast into a pressure equation: 
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The phase continuity equation solved is: 
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whereU is as given above and rU is the relative velocity between the phases. 

 

5.3. DISCRETIZATION WITH APPROPRIATE SCHEMES 
 

Since the numerical solution of advection equations tends to produce numerical diffusion and thereby 

smear discontinuities, a special solution technique for the VoF equation is available in OpenFOAM. To 

guarantee a bounded solution with sharp interface between the phases, the total variation dimishing scheme 

“interGamma” (Jasak 1996) is, used mostly in combination with the flux corrected transport approach 

“MULES” (MUltidimensional Limiter for Explicit Solutions) (Damian 2013). However, other advection 

schemes for the flux calculation can also be used. The experience showed that for free-surface hydraulic 

engineering simulations, the choice of the divergence schemes for the VoF equation has significant impact on 

the quality of the results. In particular, the usage of the Minmod scheme for the discretization on the convection 

term div (alpha, phi) and the interface Compression for the artificial compression term div (alpha, phir) showed 

good results. For the discretization of the momentum transport div (U, rho) it is absolutely necessary to use 

discretization schemes of higher order, as first order upwind discretization smears the results (Schulze & 

Thorenz.,2014). 
 

5.4. PRESSURE-VELOCITY COUPLING 
 

For the mass and the momentum conservation equation incompressibility is assumed, therefore the 

densities of the phases do not change over time. The equations of the system are strongly coupled; therefore, a 

special solution algorithm is needed. In the interFoam solver, a segregated approach is adopted for the pressure 

velocity coupling. For this, the PISO (Pressure Implicit Splitting of Operators (Issa 1986)) algorithm is applied. 

To avoid the “checkerboarding” phenomena, an interpolation method “in the spirit of the Rhie Chow method” is 

used (Peng Kärrholm 2006). In particular, the complete solution procedure of the interFoam solver consists of 

the following steps (Damian 2013), when the standard PISO algorithm is set: 1 Solve VoF equation on basis of 

the old velocity field from the previous time step. This gives new values for the volumetric phase fraction and 

the dependent density in each cell. 2 Perform the momentum predictor step, where the new momentum is 

calculated on basis of the previous velocities which are interpolated as fluxes from the cell midpoints to the cell 

faces, the old pressure values and the new density distribution from step 1. 3 The predicted (2.) or the old 

velocities from the previous timestep are used to set up a linear equation system for solving the new pressure 

values. 4 The new pressure is calculated. 5 In the last step the predicted velocities are corrected, so that 

continuity is fulfilled. The momentum predictor step (2.) is not mandatory, but it can reduce the calculation time 
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in some cases. The last two steps are performed several times within one time-step; the number of cycles is user-

defined and can be set in the fvSolution file for each case. The fact, that the volume fraction is solved on the 

basis of the old velocity field, results in a solution where the variables are “temporally staggered”. This could be 

avoided when an additional correction of the volume fraction variable would be performed after the PISO 

algorithm. Since the PISO algorithm is based on the assumption, that the time-step size is small (Co<1) (Jasak 

2006), the temporal offset can be neglected. Alternatively, the SIMPLE or PIMPLE algorithm can be selected 

instead. PIMPLE (in other software this is called SIMPISO) is an extension of the SIMPLE algorithm which 

performs only one momentum corrector step but applies a more detailed treatment for the pressure gradient 

arising from non-orthogonality similar to the PISO algorithm (Aguerre et al. 2013). When the non-orthogonal 

correctors are set to unity, PIMPLE reduces to the PISO algorithm. 
 

5.5. BOUNDARY CONDITIONS FOR HYDRAULIC ENGINEERING APPLICATIONS 
 

In the standard toolbox of OpenFOAM, the available generic boundary conditions are often not 

practical for hydraulic engineering investigations. Only with some work around it is possible to set a fixed water 

level or a specific water inflow condition, when simulating with the VoF-solver interFoam and Eulerian-

Eulerian solver TwoPhaseEulerFoam. This was the motivation to develop a set of boundary conditions for 

hydraulic engineering purposes. In particular, a boundary condition for a fixed water level (to be used primarily 

at the downstream side of a model) and one for a fixed flow rate of water independent from the water level (to 

be used at the upstream side) were developed amongst others at the Federal Institute for Waterway Engineering 

and Research. A more detailed description of this code extension can be found in Thorenz und Strybny (2012). 

A release of the code to the public is planned in the near future. 

 

6. APPLICABILITY AND LIMITATIONS OF INTERFOAM AND TWOPHASEEULERFOAM 
 

As with every CFD simulation, the accuracy and credibility of the results is highly dependent on the 

grid resolution. With a too coarse grid important effects of the flow can get lost. For some aspects, models can 

be applied, which compensate the lost information. In hydraulic engineering turbulence and free-surface 

modelling is essential. Due to the program structure of OpenFOAM, all available turbulence modeling 

approaches can be combined with almost every solver. OpenFOAM’s VoF-solver interFoam is a valuable tool 

for many hydraulic engineering investigations. Through the volume of fluid approach it is suitable, when the 

free surface between water and air is of interest. However, the user must be aware, that the interface between the 

fluids can only be represented with a limited accuracy that is mainly dependent on the size of the cells. Bubbles 

or droplets, which are smaller than the control volumes, cannot be represented appropriately. Therefore, air 

entrainment or bubble transport and detrainment cannot be modelled in most hydraulic engineering simulations 

(Schulze & Thorenz.,2014). 

TwoPhaseEulerFoam is Solver for a system of 2 incompressible fluid phases with one phase dispersed, 

e.g. gas bubbles in a liquid including heat-transfer, Therefore, air entrainment or bubble transport and 

detrainment can be modelled in most hydraulic engineering simulations. In general, the computation time and 

the stability of the interFoam and TwoPhaseEulerFoam simulations are strongly dependent on the mesh size and 

quality, the chosen numerical schemes and matrix solvers.  

 

7. CONCLUSIONS 
 

In this paper, the CFD software OpenFOAM is introduced. It has been highlighted that OpenFOAM is 

a powerful tool which offers an extensive range of features to model fluid flow, from incompressible to 

compressible flows, as well as multi-phase flows. OpenFOAM is distributed with a large number of models, 

including laminar and turbulence models within the RANS, LES and DNS simulation/modelling frameworks. 

The included meshing tool and the solvers allow the modelling of complex systems, which can be post 

processed with tools like ParaView, Gnuplot or similar software. Due to the sophisticated structure of the library 

massive parallel computing is possible, which is almost only limited to the available hardware resources. The 

experience shows, that the above described interFoam solver is a suitable tool for typical hydraulic engineering 

questions based on the investigation of water levels, velocities, pressures etc. The named solver is capable of 

simulating turbulent two-phase flow, with long, stretched water-air interfaces. On the other hand, 

TwoPhaseEulerFoam solver is a suitable for a system of two incompressible fluid phases with one phase 

dispersed; therefore, air entrainment or bubble transport and detrainment can be modelled in most hydraulic 

engineering simulations. The quality of the results is mainly dependent on the grid quality and the chosen 

discretization schemes. In comparison to many commercial CFD software packages OpenFOAM is very 
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sensitive concerning the grid quality; it is therefore advisable to put effort into the grid generation. Further, the 

user should be aware, that the chosen discretization schemes have a great influence on the stability of the 

calculation and the quality of the results. As usual in numerical simulations, the definition of the domain extent, 

the definition of the boundary condition as well as the adjustment of all other settings is also crucial for getting 

plausible results. As only little user-friendly documentation and no graphical user interface exist, the start with 

Open-FOAM might be not as easy as with commercial CFD software.  
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