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Abstract— In this paper, we tackle the problem of geo-
localization in urban environments overcoming the limitations
in terms of accuracy of sensors like GPS, compass and
accelerometer. For that purpose, we adopt recent findings in
image segmentation and machine learning and combine them
with the valuable information given by 2.5D maps of buildings.
In particular, we first extract the façades of buildings and their
edges and use this information to estimate the orientation and
location that best align an input image to a 3D rendering of
the given 2.5D map. As this step builds on a learned semantic
segmentation procedure, rich training data is required. Thus,
we also discuss how the required training data can be efficiently
generated via a 3D tracking system.

I. INTRODUCTION

Accurate geo-localization of images is a very active area
in Computer Vision, as it can potentially be used for appli-
cations such as autonomous driving and Augmented Reality.
As the typically available GPS and compass information are
often not accurate enough for such applications, we recently
proposed a method that builds only on untextured 2.5D maps
[3]. In general, 2.5D maps hold the 2D information about
the environment, more precisely the buildings’ outlines and
their heights. However, this approach is limited in practice,
as it heavily relies on the often unreliable and error prone
extraction of straight line segments to find the re-projections
of the corners of the buildings.

To overcome this limitation, as shown in Fig. 1, we
replace this step by semantic segmentation (i.e., [4] and
[5]) to extract the visible façades and their edges, which
is described in more detail in Sec. II. Since learning the
necessary model requires a large amount of training data,
as detailed in Sec. III, we use a 3D tracking algorithm
to semi-automatically label the huge amount of required
training images. In order to estimate the correct pose, we
introduce two strategies. The first strategy samples random
poses around the initial pose given by the sensors and selects
the best one. The second strategy builds on a more advanced
search algorithm by using CNNs to iteratively update the
pose. Both approaches are discussed in Sec. IV.

II. SEMANTIC SEGMENTATION

Given a color input image I, we train a fully convolutional
network (FCN) [5] to perform a semantic segmentation. FCN
applies a series of convolutional and pooling layers to the
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Fig. 1. Overview of our approach: Given an input image (a), we segment
the façades and their edges (b). We can either sample poses around the
pose provided by the sensors or use CNNs to move the camera starting
from the sensor pose (c), and keep the pose that aligns the 2.5D map and
the segmentation best (d).

input image, followed by deconvolution layers to produce
a segmentation map of the whole image at the original
resolution. In our case, we aim at segmenting the façades and
the edges at building corners or between different façades.
Everything else is referred to as “background”. We therefore
consider four classes: façade, vertical edges, horizontal edges
and background. We use a stage-wise training procedure,
where we start with a coarse network (FCN-32s) initialized
from VGG-16 [6], fine-tune it on our data, and then use
the thus generated model to initialize the weights of a more
fine-grained network (FCN-16s). This process is repeated in
order to compute the final segmentation network having an
8 pixels prediction stride (FCN-8s).

III. ACQUISITION OF TRAINING DATA

Deep-learning segmentation methods require a large num-
ber of training images to generalize well, however, man-
ual annotation is costly. We therefore use a 3D tracking
system [3] to easily annotate frames of video sequences.
First, we create simple 3D models from the 2.5D maps.
Then, for each sequence, we initialize the pose for the first
frame manually, and the tracker estimates the poses for the
remaining frames. This allows us to label façades and their
edges very efficiently. More precisely, we recorded 95 short
video sequences using a mobile device. In order to ensure an
accurate labeling, in particular for the edges, we only keep
frames in which the re-projection of the 3D model is well
aligned with the real image, and remove those frames that
suffer from tracking errors or drift.
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Fig. 2. Iteratively pose refinement from an initial sensor estimate: (a) Test image with overlaid ground truth pose, (b) initial noisy sensor pose,
(c) segmented image, (d) finally pose obtained with our method.

IV. 3D LOCALIZATION

Building on the same segmentation approach trained using
the training data as described in Secs. II and III, we proposed
two different approaches for pose estimation.

A. Direct Pose Selection [1]

Given a coarse initial estimate p̃ of the pose provided by
the sensors and a 2.5D map of its surrounding, the goal is
to finally estimate the correct pose p̂. Therefore, we sample
poses in a regular grid around p̃ and estimate

p̂ = argmax
p

L (p) , (1)

where L (p) is the log-likelihood

L (p) = ∑
x

logPc(p,x)(x) . (2)

The sum runs over all image locations x, where c(p,x) is
the class at location x when rendering the model under pose
p, and Pc(x) is the probability for class c at location x where
Pc is one of the probability maps predicted by the semantic
segmentation.

B. CNN-based Refinement [2]

As this brute-force strategy is not very efficient, we addi-
tionally proposed a CNN-based approach for iterative pose
refinement. To refine the location, we discretize the directions
along the ground plane into 8 possible directions and train a
network to predict the best direction to refine the currently
estimated location. We also add a class that indicates that
the estimated location is already correct and should not
be changed. Thus, given the semantic segmentation of the
current input image and a rendering of the 2.5D map from
the current pose estimate, the network, denoted by CNNt ,
yields a 9-dimensional output vector:

dt = CNNt(RF,RHE,RVE,RBG,SF,SHE,SVE,SBG) , (3)

Here, SF, SHE, SVE, and SBG denote the probability maps
computed by the semantic segmentation for the classes
façade, horizontal edge, vertical edge and background, re-
spectively; RF, RHE, RVE, RBG are binary maps for the same
classes, created by rendering the 2.5D map for the current
pose estimate.

In addition, we train a second network to refine the
orientations:

do = CNNo(RF,RHE,RVE,RBG,SF,SHE,SVE,SBG) , (4)

where do is a 3-dimensional vector, covering the probabilities
to rotate the camera to the right, to the left or not rotate it
at all.

Starting from the initial estimate p̃, we iteratively apply
CNNt and CNNo and update the current pose. These steps
are iterated until both networks are converged and predict
not to move. In particular, there are two main advantages of
having two networks: (a) As the networks for translation
and orientation are treated separately, we do not need to
balance between them. (b) The two detached problems are
much easier to solve, reducing both, the training and the
inference effort.

V. RESULTS AND SUMMARY

Two illustrative results obtained by the approach described
in Sec.IV-B are shown in Fig. 2. It clearly can be seen that the
initial sensor poses (Fig. 2(c)) does not cover the groundtruth
(Fig. 2(a)) very well, whereas the finally estimated poses
(Fig. 2(c)) using the segmentation results (Fig. 2(b)) perfectly
fit the buildings. Overall, this demonstrates that adopting
ideas from semantic segmentation in combination with con-
volutional neural networks and the information provided by
2.5D maps can successfully be used for estimating the poses
of buildings and thus their exact location. For more details,
we would like to refer to [1] and [2].
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