
A Robust and Flexible Software Architecture
for Autonomous Robots in the Context of Industrie 4.0

Marco Wallner1, Clemens Mühlbacher1, Gerald Steinbauer1, Sarah Haas2, Thomas Ulz2 and
Jakob Chrysant Ludwiger3

Abstract— The next industrial revolution should allow the
production of individually configured items at the cost of a
currently mass-produced commodity. To make this possible,
autonomous robots play an essential role. These robots use
their knowledge about the world and the task as well as sensor
information to derive the next action to achieve a common goal.
To give research in this area the possibility to test novel methods
and algorithms for the next industrial revolution, the RoboCup
Logistic League was established. The league uses a small shop
floor environment wherein a group of robots has to produce
customized goods within a given time-frame.

In this paper, we present a software framework for a group
of autonomous robots which deal with the problems of the
RoboCup Logistic League. The software is separated into three
distinct layers allowing modularity as well as maintainability.
The framework provides all the needed functionality starting
from creating plans for a fleet of robots, to the hardware skills
to detect machines, to move between locations and interact with
the physical world. To show the use of the software framework
a use-case is presented. This use-case is the exploration of an
unknown factory hall with a fleet of autonomous robots. All the
presented solutions in this paper were tested in the RoboCup
world championship 2016 in Leipzig. There the system showed
its robustness and its capability to solve issues arising with the
next industrial revolution.

I. INTRODUCTION

To increase customer satisfaction and sales, the industry
tries to fulfill the desire of the customer for an individual
product to the price of a product created by mass-production.
As current methods in industrial production cannot pro-
vide these low costs for highly customized products, new
approaches need to be developed. This is done through
an ongoing automation in the industry which leads to the
so-called Industrie 4.0 [1]. This term, originated by the
German government, describes the abstract shape of the next
generation in industry. One of the manifestations of this
vision is the idea of a fully autonomous fabrication with
smart machines.

To create such a smart factory two parts are essential.
On the one hand, there are configurable smart machines
necessary which are capable of performing the manufactur-
ing steps. On the other hand, an intelligent delivery system

1Marco Wallner, Clemens Mühlbacher and Gerald
Steinbauer are with the Institute for Software Tech-
nology, Graz University of Technology, Graz, Austria.
{mwallner,cmuehlba,steinbauer}@ist.tugraz.at.

2Sarah Haas and Thomas Ulz are with the Institute of Tech-
nical Informatics, Graz University of Technology, Graz, Austria.
{thomas.ulz,sarah.haas}@tugraz.at.

3Jakob Chrysant Ludwiger are with the Institute of Automa-
tion and Control, Graz University of Technology, Graz, Austria.
jakob.ludwiger@tugraz.at.

between these devices is needed to allow the transportation
of intermediate products to produce compound goods. As
the usage of the machines and the scheduling can no longer
be statically determined for a production line but need to
adapt to the current requests, new algorithms need to be
developed. To test these algorithms, the RoboCup Logistic
League [2] was initiated as part of the annual RoboCup world
championship [3]. The idea is to create a simplified version
of a smart factory which serves as a testbed and a standard-
ized benchmark for novel algorithms and approaches. With
this, different aspects can be tested and evaluated regarding
distinct components as well as the complete framework.

In this paper, we present a software framework to solve the
challenges of the RoboCup Logistic League. The framework
allows to schedule the entire fleet of robots and to react to
changes in the environment in a reactive manner. Further-
more, the system is capable of reacting to faults during the
execution of a task assigned to a robot or even a full drop-
out of a robot in the fleet. To allow an efficient, modular and
maintainable implementation, the framework uses a layered
architecture. This approach allows to schedule the fleet on
the highest level while considering the reactive interaction
between the robot and its environment on the lowest level.
To show how this software framework is used we present
in this paper how the robotic fleet can explore an unknown
shop floor. With the help of this example, we will show
how the fleet is scheduled to cover the shop floor efficiently.
Additionally, we will demonstrate how the machines are
detected and identified.

The remainder of the paper is organized as follows. In
the next section, we will discuss the RoboCup Logistic
League in more detail. The proceeding section discusses the
layered architecture. Afterward, we will discuss the software
components which are used for the exploration of the shop
floor environment. Before we conclude the paper we will
discuss some related research. Finally, we conclude the paper
and point out some future work.

II. ROBOCUP LOGISTIC LEAGUE

RoboCup, proposed and founded in 1997, is an annual
international robotics competition. There, teams from all over
the world compete in different disciplines, such as humanoid
robots, soccer robots, rescue robots and the mentioned logis-
tics competition.

The logistics league simulates the problems arising in a
smart factory. Primarily it provides a standardized testbed
for test new algorithms and approaches for smart factories.

Proceedings of the OAGM&ARW Joint Workshop 2017 DOI: 10.3217/978-3-85125-524-9-12

61



Fig. 1. RoboCup Logistics game-field in the simulator. Two attending
teams with 3 robots and 6 machines each.

This is achieved by a controlled environment which contains
a modular production system and a fleet of robots which need
to be controlled. To allow fair conditions, a standardized
robot platform (Robotino by Festo [4], three per team) is
used for the mobile robots as well as standardized modular
production systems (MPS by Festo, six per side) for the
fabrication steps.

To emphasize the idea of a smart factory, the rules require
that the fleet performs its task completely autonomously.
Thus no intervention from humans is allowed. The idea is to
put a robot in a workshop and let it explore the environment
on its own, find machines to work with and produce products
according to arriving orders. For this, the whole scenario is
split into two phases, the exploration, and the production
phase.

A. Exploration Phase

In this first phase, the robots have no knowledge about
their environment. They have to explore the game-field (see
Figure 1, a screenshot of the RoboCup Logistic League
simulation [5]) and find the machines located there. To award
points for the detection of such a machine, the robots have
to report their observations to a central referee box. Each
report contains the type of the machine, the shown status
light as well as it is position in the field. If all the machines
have been found, or after some deadline has passed, the next
phase is invoked.

B. Production Phase

In this phase the actual production takes place. Random
orders are placed by the central referee box, and both teams
try to produce these as fast as possible.

1) Products: The products are mocked up as cups (base)
with a defined number of rings pressed on it and a cap. The
color of each part of the product is defined in the order.

2) Order: An order consists of the demanded product
(e.g. a red base cup with two rings, the first ring blue, the
second one yellow and a black cap) and its earliest delivery
time as well as the deadline for the delivery of this product.

3) Modular Production System: To produce the ordered
product, the mobile robots can use the six production systems
of their team. There are four types of these workstations:

• 1x Base Station: Providing bases in the demanded color.
• 2x Ring Station: Mounting a ring in requested color on

the provided base.
• 2x Cap Station: Mounting a cap in required color on

the provided base.
• 1x Delivery Station: Point to deliver a product in the

given time window.
As the mounting of a ring represents the addition of some
feature to a product, some ring colors require additional bases
as ”raw“ material. Thus also the need of deliveries for supply
material is modeled in this scenario.

III. SOFTWARE ARCHITECTURE

To solve the tasks of the Logistics League, we propose
the following software architecture. The software is split into
three distinct layers, namely high-level, mid-level and low-
level. Each layer is independent of the other layers within this
concept. The lower layers provide functionality to the upper
one [6]. Furthermore, higher layers command the actions of
the lower layers.

The highest level of our software architecture is respon-
sible for the connection of the different parts. It connects
to the central referee box as well as an arbitrary number of
connected robots as it can be seen in Figure 2.

To allow independent development and testing of each
layer defined interfaces are necessary. Additionally, to feature
different programming languages for each layer, Google’s
protocol buffers are used for these interfaces. This inde-
pendence is used as the high-level is written in Java, the
mid-level using a belief-desire-intention [7] engine (openPRS
[8], C) and the low-level is written in C++ using the ROS
(Robot Operating System [9]) framework. The communica-
tion scheme for one robot can be seen in Figure 3.

For each interface dedicated protocol buffer (protobuf)
messages are defined. With this structure, an increasing
abstraction of the physical world can be achieved from the
bottom up to the top. The message used between the high-
level to the midlevel can be seen as an example in Listing 1.

Listing 1. Protobuf message to communicate between the layers.
1 message Pr sTask {
2 r e q u i r e d Team teamColor = 1 ;
3 r e q u i r e d u i n t 3 2 t a s k I d = 2 ;
4 r e q u i r e d u i n t 3 2 r o b o t I d = 3 ;
5

6 o p t i o n a l E x e c u t i o n R e s u l t r e s u l t = 4 ;
7

8 o p t i o n a l Repor tMach inesTask r e p o r t T a s k = 5 ;
9 o p t i o n a l ExploreMachineTask e x p l T a s k = 6 ;

10 o p t i o n a l GetWorkPieceTask getWPTask = 7 ;
11 o p t i o n a l P repa reCapTask prepCapTask = 8 ;
12 o p t i o n a l Di sposeProdTask d i s p P r o d T a s k = 9 ;
13 o p t i o n a l D e l i v e r P r o d T a s k d e l i P r o d T a s k = 1 0 ;
14 }

The lowest layer is responsible for small tasks close to
the hardware, e.g. to move to a waypoint, grab an object,
detect an AR-tag or analyze the status light of a machine (see
Section IV-A.2 and Section IV-A.1 for further details). We
call the execution of these small tasks skills in the remainder

62



Fig. 2. Overall software architecture with links to the central refbox, the
team server and the connected n robots.

of the paper. These skills are provided to the next higher
layer, the mid-layer, via defined messages.

The mid-layer, therefore, can use these skills to perform
more complex tasks such as exploring a zone of the game-
field, get a base from the base station or deliver the product
holding in its gripper. Additionally, a first error detection
and recovery behavior are implemented here, e.g. the system
checks if there is a product in the gripper after the low-level
has successfully grabbed something. These complex tasks are
again provided via defined protobuf messages to our highest
layer, the team server.

Here a central knowledge-base is held and a game strategy
is derived (see Section IV-B for further details). This central
point enables the system to conclude a global optimal game
strategy for the complete robotic fleet. The global strategy
is derived using a simple planning system which uses a hi-
erarchical task network [10] to properly create the products.
Due to the centralized knowledge base one does not need to
deal with synchronization of knowledge bases of the robot
or distributed planning. Instead a “simpler” approach for
planning can be applied.

Fig. 3. Communication between the different layers for one robot using
Google’s protocol buffers.

IV. SELECTED SOFTWARE COMPONENTS

To get an idea of the functional interaction of our robot
system some selected components are presented. First of
all, two low-level modules necessary to detect and identify
a machine are presented in SectionIV-A. Additionally, the
scheduling algorithm (located at the high-level component of
our system) which manages the discovery of the unknown
game-field is presented in Section IV-B.

A. Machine Detection and Identification

To be able to gather information about the unknown envi-
ronment it is necessary for the robot to recognize elements
surrounding it. One important type of these elements is a
modular production system, i.e. the machines capable of
producing the ordered products. To identify the machines
AR-tags are used which are placed at two sides of these
machines.

63



Fig. 4. View of the robot in front of machine through the light detection
camera at the RoboCup 2016 in Leipzig, Germany.

1) AR Detection: To localize objects in a defined frame
of reference, it is first necessary to localize the robot itself.
For this, a laser scanner and the knowledge of the fixed outer
boundaries of the factory are used to infer the position of the
robot using an adaptive Monte Carlo localization approach
[11]. Using the particle filter also the confidence of the
current location can be inferred.

With the known location of the robot and the known
position of a camera mounted on the robot, it is possible
to infer the position and orientation of seen augmented
reality (AR) tags. For this, the open source AR-Tag tracking
library Alvar is used. These tags are of defined size (allows
derivation of distance to the tag) and are mounted at the
input and the output of each machine. Each machine has a
defined tag id for the input as well as the output. Using this
knowledge, the position of the machine can be calculated
having at least one of the tags seen. The accuracy and
reliability of this measurements are further improved using
a moving average filter. The filter is used to correct the
estimate of the machine position with the help of several
measurements. This raw data of the location of the machines
is used by the higher layers as described in Section IV-B to
determine which zone the machine is in. The information
about the occupied zone is then reported to the referee box
to earn points during the exploration.

2) Light Detection: To fully identify a machine, addi-
tionally to the AR-tag, the position and orientation of it,
as well as the shown light pattern, needs to be reported. The
light pattern is used to uniquely identify the machine. For
this, the robot moves to a point in front of the machine.
Afterwards, the robot captures an image of the machine.
The captured image can be seen in Figure 4. These views
have random backgrounds with arbitrary components, colors,
and structures in it. Therefore, a detection of the light with
the help of a blob detection is difficult to configure and is
unreliable. Instead, one can exploit the fixed structure of the
traffic lights. All of them have the same geometry regardless

Fig. 5. Cropped traffic light by the histogram of oriented gradients detector.

of the shown light pattern. They have a defined ratio between
length and height, are sectored in three parts and are always
upright.

This knowledge could be exploited by applying different
manually generated and adjusted rules to determine the
position of the traffic light in the image. Instead of these
manually created rules, our approach uses a machine learning
approach allowing the method to be more reliable, easy to
configure and adapt to new environments with no effort. We
use the static feature of the structure to train a histogram of
oriented gradients (HOG) detector as described by [12]. This
detector exploits that the mentioned static features manifest
in a static gradient pattern.

Using the results of the HOG detector, a region of interest
(ROI) can be extracted. The result of this cropping can be
seen in Figure 5. Here the cropped traffic light is shown for
all possible light combinations. The HOG detector has the
advantage of almost no false-positive detections, i.e. if a ROI
is found, there is a traffic light in it with a high probability.

To report the type of shown light pattern, a mapping from
the traffic light image (which light is on and which is off)
to a representing number is needed. For this, the lighting
condition is encoded in a binary fashion, i.e. the representing
state is calculated as:

state = s(green)0 + s(yellow)1 + s(red)2 (1)

with

s(x) =

{
2, if x is on
0, else.

(2)

With this mapping, a feed forward artificial neural network
can be trained. We used the scaled conjugate gradient descent
algorithm described in [13] to train the network. With this
trained network, it is possible to map a newly seen image
to a vector of probabilities describing the likelihood of each
class as described in [14].

This gathered information can then be used by the higher
layers to build up a knowledge base about the environment
as described in Section IV-B.

The chain of a HOG-detector and a neural network was
chosen as none of these approaches need a lot of computing
power during the execution (only once at training time)
to avoid the tuning of several parameters. The used neural
network further increases the reliability as it can be trained
to be resilient to different lighting situations.

B. Scheduling Algorithm

The robots have no information about their environment
at the start of the game. Therefore, they have to use sensors

64



to observe the environment and to gather information. This
is achieved by using a laser scanner for localization and
cameras for machine detection.

To explore the game-field in an efficient manner with mul-
tiple robots, a scheduling algorithm has to be implemented.
For this, our software architecture described in SectionIII
comes into play. With the centralized team server, it is
possible to generate a global exploration strategy and to
combine the information delivered by all the robots into one
reliable and consistent database.

During the exploration phase, all robots have the non-
blocking task to report all seen machines, i.e. the zone,
orientation (in discrete steps) and light pattern as well as
the corresponding confidence. These updates are sent to
the team server if parts of the information changes (e.g.
orientation is corrected), new information is added (e.g. a
light pattern is detected) or the confidence of a property rises.
This information is then collected at the team server as an
observations database.

To start the exploration with no observed date (i.e. at the
beginning of the exploration phase) the default task for the
first robot is to explore the top most left zone of the game
field if the team starts at the right start box or the top right
zone of the game field if the team starts at the left start box
(see Figure 1). Using this simple strategy, the probability
is very high that on the way to the destination zone the
robot observed other machines and reported them to the team
server. As soon as another robot is ready for a task or the
first robot has finished its navigation, the robot gets the task
assigned to visited a zone. During the visiting of a zone, the
robot detects if a machine is within the zone. If a machine is
present, the robot performs a light detection of the machine.
If no machine position is reported so far, the robot gets a
backup task to visit a randomly chosen zone which was not
visited before. Otherwise, the robot is sent to a zone with
a high probability that a machine is in this zone (one robot
has reported that there should be a machine) but was not
visited before. If all zones are visited, the zone with the
lowest confidence is chosen as the next task. This allows
maximizing the confidence of the machine information. The
simplified algorithm can be seen in Algorithm 1.

With the start position in the team boxes (as it can be seen
in Figure 1) it is very likely that at least one machine is seen
already in the start position. Thus the usual procedure is that
the first robot directly reports at least one machine at start-
up. The team server creates a task for this robot and sends
it to discover the light state and the correct orientation. On
its way, the robot reports other machines, and so the other
robots can be sent to zones with machines too. Thus the
backup solution to drive to some randomly chosen zone is
rarely used.

This dynamic scheduling allows a very efficient and fast
exploration of the whole game field. This is necessary as the
game field is rather large (12m×6m) for the low speed these
robots are able to move.

Another advantage of the global view of the team server
can be used here too. The machines are distributed at the

Algorithm 1: Exploration Algorithm
Input: observations, notVisitedZones, #MPS, thresh
Output: task

1: if observations = ∅ then
2: if oppositeZone ∈ notVisitedZones then
3: return exploreZone(oppositeZone)
4: else
5: zone = chooseRandom(notVisitedZones)
6: return exploreZone(zone)
7: end if
8: else
9: if numZonesNotVisited(observations) > 0 then

10: zones = zonesNotVisited(observations)
11: zone = getZoneWithLowestConfidence(zones)
12: return exploreZone(zone)
13: end if
14: if mFound(observations, thresh) < #MPS then
15: zone = chooseRandom(notVisitedZones)
16: return exploreZone(zone)
17: else
18: zones = zonesNotVisited(observations)
19: zone = getZoneWithLowestConfidence(zones)
20: return exploreZone(zone)
21: end if
22: end if

game-field in a symmetric fashion to allow fair conditions
for both teams. This constraint can be used for a sanity check
of the reports, i.e. before the final result is sent to the referee
box, it is checked if it makes sense and the most probable
consistent set of observations is reported.

After the exploration phase, the set of reliable machine po-
sitions and orientations is then broadcasted to the connected
robots to allow them to work during the production phase
with the gathered information. Also if one robot has to be
restarted during the production phase, the information about
the position of the machines is provided as a new (or in this
case restarted) robot connects to the team server.

V. RELATED RESEARCH

In the previous section we have discussed our software
architecture how to solve the challenges in the RoboCup
logistic league. Within this section we will discuss another
approach to solve the problems in RoboCup Logistic League.
We will compare our approach to the Carologistics Team
which won the world championships several times. As the
Carologistics Team describes in its team description paper
[15], they also use a three-layer architecture.

A. Carologistics

The main difference is that no central coordinator is used.
Instead a distributed, local-scope and incremental reasoning
approach [16] is chosen. This has the advantage of no single
point of failure but also the disadvantage that no optimal
global strategy can be derived. To keep a consistent view of

65



the physical world, a permanent synchronization of the robots
is needed. For this purpose, one of the agents is chosen to
act as a leader responsible for collecting and distributing a
view of the world and manages reservation of resources.

1) Software Architecture: The function of each robot
is separated into the three distinct layers responsible for
deliberation (high level), i.e. decision making and planning,
a reactive skill engine (mid-level) and low-level components
for e.g. motion and vision.

The reasoning and planning component is implemented
using a CLIPS rule engine [17]. This allows an incremental
reasoning to derive at any time-point for each of robot a local
optimal decision. The mid-level is designed as a Lua-based
behavior engine [18]. With this, simple and complex skills
can be modeled as a hybrid state machine. This modularity
allows tuning and optimization of skills for specific tasks.
The underlying robot framework used is Fawkes [19]. This
framework is an alternative to ROS and provides several low-
level functionalities as e.g. AMCL, hardware interfaces to the
Robotino base and navigation plugins.

2) Light Detection: The light pattern detection (described
in Section IV-A.2) is solved by the Carologistics Team using
a more complex and more configuration-intense way. The
region of interest (ROI) is cropped using the fusion of the
camera and the laser scanner. The robot is aligned with the
use of the mounted AR-tag. As this tag can be mounted
arbitrarily on the machine, this only allows a course align-
ment. With the use of the laser scanner and the knowledge of
the type of machine (via the AR-tag), the relative position of
the mounted traffic light can be calculated. For this, the exact
location of the light for each side of the machine is necessary
with respect to the machine base. After this, the region of
interest can be restricted a first time. With the knowledge of
the position of the laser scanner as well as the camera, it is
possible to calculate the position of this ROI in the image
frame. Here several heuristics are used to find the shown
traffic light, e.g. the fixed width to height ratio, that there
have to be three distinct lights stacked in a vertical manner
and much more. Having this, the state of the traffic light is
determined using the color of the ROIs for the red, orange
and green image section. This is done using a defined space
for off and on in the YUV color space.

Our approach avoids the need for all the configuration
by using the HOG-detector and the neural network. The
detector eliminates the need for geometric heuristics and
knowledge about the machine, and the neural network gen-
eralizes enough (trained with several lighting conditions) to
detect the state of the traffic light without the need of a tuned
color model. This allows more robustness as e.g. different
lighting, or a displacement of the mounted camera or the
laser scanner would lead to wrong classifications with the
solution presented by the Carologistics team.

VI. CONCLUSION AND FUTURE WORK

With the help of the next industrial revolution, it should
be possible to produce individual configured products to the
price of current mass-production. This ambitious scheme

requires smart factories with modular machinery and an
intelligent and flexible transportation system. Such transport
can be provided by a fleet of autonomous robots. To offer
a standardized testbed for different aspects of such smart
factories the RoboCup Logistic League was established.

In this paper, we presented a software architecture which
can be used to solve various problems appearing in the
context of the RoboCup Logistic League. The software ar-
chitecture consists of three layers which interact with clearly
defined interfaces. The top layer manages the entire robotic
fleet, generates an optimal global schedule, and is responsible
for error detection and correction. For this, it uses the mid-
layer which provides complex tasks (e.g. explore a zone,
deliver a product). Here these skills are decomposed, and
the mid-layer commands simple skills (move to a waypoint,
open the gripper) to the lowest layer.

The software was successfully tested at the RoboCup
world championship 2016 and allowed us to rank among
the top three teams [20].

Besides the general software architecture, we described in
this paper several components in more detail. These com-
ponents allow the robot to explore an unknown factory. The
presented components range from a scheduling mechanism to
distribute the work onto the entire fleet down to mechanisms
to detect the type of the machine defined by a signal light
pattern.

The system is designed in such a way that faults are
detected. Thus the system can react to faults properly. This
allows the system to reliably to execute its task. To improve
the reliability of our system even further the next step is
to implement an online diagnosis system as described in
[21]. This system can use different measures (e.g. publishing
frequency of particular topics, time to respond to actions) to
detect abnormal system behavior and furthermore calculate
a diagnosis.

REFERENCES

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0,” Business & Information Systems Engineering, vol. 6, no. 4, p.
239, 2014.

[2] T. Niemueller, D. Ewert, S. Reuter, A. Ferrein, S. Jeschke, and
G. Lakemeyer, “Robocup logistics league sponsored by festo: A com-
petitive factory automation testbed,” in Automation, Communication
and Cybernetics in Science and Engineering 2015/2016. Springer,
2016, pp. 605–618.

[3] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “Robocup:
The robot world cup initiative,” in Proceedings of the first international
conference on Autonomous agents. ACM, 1997, pp. 340–347.

[4] U. Karras, D. Pensky, and O. Rojas, “Mobile robotics in education
and research of logistics,” in IROS 2011–Workshop on Metrics and
Methodologies for Autonomous Robot Teams in Logistics, vol. 72,
2011.

[5] F. Zwilling, T. Niemueller, and G. Lakemeyer, “Simulation for the
robocup logistics league with real-world environment agency and
multi-level abstraction,” in Robot Soccer World Cup. Springer, 2014,
pp. 220–232.

[6] E. Gat et al., “On three-layer architectures,” Artificial Intelligence and
Mobile Robots, vol. 195, p. 210, 1998.

[7] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge, “The
belief-desire-intention model of agency,” in International Workshop on
Agent Theories, Architectures, and Languages. Springer, 1998, pp.
1–10.

66



[8] F. F. Ingrand, R. Chatila, R. Alami, and F. Robert, “Prs: A high level
supervision and control language for autonomous mobile robots,” in
Robotics and Automation, 1996. Proceedings., 1996 IEEE Interna-
tional Conference on, vol. 1. IEEE, 1996, pp. 43–49.

[9] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: An open-source robot operating
system,” in ICRA Workshop on Open Source Software, vol. 3, no. 3.2.
Kobe, 2009, p. 5.

[10] K. Erol, J. A. Hendler, and D. S. Nau, “Umcp: A sound and complete
procedure for hierarchical task-network planning.” in AIPS, vol. 94,
1994, pp. 249–254.

[11] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localiza-
tion: Efficient position estimation for mobile robots,” AAAI/IAAI, vol.
1999, no. 343-349, pp. 2–2, 1999.

[12] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005,
pp. 886–893.

[13] M. F. Møller, “A scaled conjugate gradient algorithm for fast super-
vised learning,” Neural networks, vol. 6, no. 4, pp. 525–533, 1993.

[14] J. S. Bridle, “Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition,”
in Neurocomputing. Springer, 1990, pp. 227–236.

[15] T. Niemueller, T. Neumann, C. Henke, S. Schönitz, S. Reuter, A. Fer-
rein, S. Jeschke, and G. Lakemeyer, “Improvements for a robust
production in the robocup logistics league 2016.”

[16] T. Niemueller, G. Lakemeyer, and A. Ferrein, “The robocup logistics
league as a benchmark for planning in robotics,” in WS on planning
and robotics (PlanRob) at Int. Conf. on Aut. planning and scheduling
(ICAPS), 2015.

[17] R. M. Wygant, “Clipsa powerful development and delivery expert
system tool,” Computers & Industrial Engineering, vol. 17, no. 1-4,
pp. 546–549, 1989.

[18] T. Niemüller, A. Ferrein, and G. Lakemeyer, “A lua-based behavior
engine for controlling the humanoid robot nao,” in Robot Soccer World
Cup. Springer, 2009, pp. 240–251.

[19] T. Niemueller, A. Ferrein, D. Beck, and G. Lakemeyer, “Design prin-
ciples of the component-based robot software framework fawkes,” in
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots. Springer, 2010, pp. 300–311.

[20] S. Haas, D. Keskic, C. Mühlbacher, G. Steinbauer, T. Ulz, and
M. Wallner, “Robocup logistics league tdp graz robust and intelligent
production system grips,” 2016.

[21] S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran, “An
integrated model-based diagnosis and repair architecture for ros-based
robot systems,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on. IEEE, 2013, pp. 482–489.

67


