Proceedings of the OAGM&ARW Joint Workshop 2017

DOI: 10.3217/978-3-85125-524-9-07

Task-Dependent Configuration of Robotics Systems

Alexander Pagonis' and Clemens Miihlbacher' and Gerald Steinbauer! and Stefan Gspandl? and Micheal Reip?

Abstract—To solve a task, a robotics system uses several
different hardware and software components. Each of these
components solves a specific subtask to allow the overall task
to be solved. Thus, the proper selection of the set of components
is crucial for the success of performing a task. This selection
can become complex if one needs to consider that each of these
components has its own dependencies which need to be fulfilled
to work properly. Due to this complexity, the proper selection of
components is time-consuming and error prone. Additionally,
domain knowledge is necessary to consider all dependencies
correctly.

To proper choose the components without the need of a
domain expert one can follow a model based approach. In this
paper, we show how such a model-based approach can be used.
We present a tool that, based on a domain model, automatizes
the selection of the necessary components to implement a set
of given tasks. Due to this automatic selection mechanism, one
can either simply check if a robotic system can perform a task
or which components need to be added to allow the robot to
perform the given task.

I. INTRODUCTION

A robotics system consists of several hardware and soft-
ware components which interact with each other to achieve
a given task. The selection of the hardware and software
components is often done by a domain expert, ensuring
that the task can be fulfilled with the given selection. This
is a time-consuming task, as one needs to know which
dependency each component has, e.g. a computer vision
algorithm depends on a camera but does not specify which
camera exactly. Additionally, one possible needs to consider
many possibilities how a dependency can be met to find
an optimal selection. Following simple scenario is used to
highlight these difficulties: The task the robot must fulfill is
to localize itself. One could now use a localization which
is based on a laser or a localization which is based on
the camera. In case there is a Kinect camera [1] available
but no laser, a camera-based localization approach would
probably be preferred. But one could use the depth image
to simulate a laser scanner and thus use also the localization
based on a laser scanner. This simple example already shows
that one needs to consider several possibilities and necessary
dependencies to allow a robot to solve a task.

LAlexander ~ Pagonis, Clemens Miihlbacher =~ and Ger-
ald Steinbauer are with the Institute for Software Tech-
nology, Graz University of Technology, Graz, Austria.

{apagonis, cmuehlba, steinbauer}@ist .tugraz.at
This work is partly supported by the Austrian Research Promotion Agency
(FFG) under grant 843468.

2Stephan Gspandl and Michael Reip are with incubedIT, Hart bei Graz,
Austria. {gspandl, reip}@incubedit.com

32

Instead of choosing the hardware and software compo-
nents manually, one can follow a model-based approach for
the robotic system as it was outlined in [2]. The idea is to
use a model that describes the task as well as the available
hardware and software components, their capabilities and
dependencies. By using this model one can automatically
generate a list of components that are necessary to fulfill a
task. The model does not only allow to generate a list of
components to fulfill a task but it also allows the robot to
check if a task can be executed with the given hardware
and software. Furthermore, the robot can use the model to
decide which alternative software and hardware modules to
use if one part of the system does not work correctly. Such a
reconfiguration is of special interest if one considers complex
tasks which can be achieved through several means.

In this paper, we present a tool which allows perform-
ing such a model-based configuration of a robotic system
automatically. The tool can be used to derive which set of
components needs to be present to allow fulfilling a task.
Furthermore, the tool allows checking if a given robotic
configuration can fulfill a task. Additionally, all possible
component compositions that allow solving the given task
can be viewed. This allows checking which alternatives
are possible and which components are redundant in the
system. To allow an easy configuration the tool does not
only suggests possible configurations but also allows to
interactively vary the given configuration. This makes the
configuration process easy and allows for a quick decision
on the best fitting set of components.

The remainder of the paper is organized as follows. In the
next section, we discuss the design of the configuration tool.
This description comprises the used knowledge base, the
method which is used to derive a correct configuration, and
the description of the user interface. The proceeding section
discusses a simple example scenario and presents how the
tool can be used. This is followed by a section discussing
the limitations of the approach. Afterward, we will discuss
some related research. Finally, we conclude the paper and
point out some future work.

II. THE CONFIGURATION TOOL

As we motivate above using a model one can automate the
generation of a configuration for a given task. This generation
uses the model to determine the dependencies between
software component and hardware component. Furthermore,
the model describes the different possibilities to resolve a
dependency. To ensure that the model can answer a query in
a timely manner and to allow still the model to be expressive

we use an Ontology for the model. With the help of the
model, the tool can derive the dependencies which need to
be met to fulfill a task.

To derive which configuration fulfills the dependencies
a separate reasoning process is performed. This separate
reasoning process uses the data contained in the model to
yield a minimal configuration. Through this separation, the
model can be capped simply by avoiding the “complex”
reasoning for a minimal configuration.

Using the information from the ontology and the reasoning
to derive a minimal configuration the tool can present a
possible configuration to the user through a graphical user
interface. The interface allows selecting tasks to perform,
which components are used as well as which configuration
would be minimal. In the remainder of the section, we will
discuss each part in more detail.

A. Ontology

To model the relationships between tasks and necessary
components, an ontology describing this relationship is
needed. The ontology we use for the implementation is an
open-source knowledge base and can be found at [3]. In this
ontology, tasks are referred as capabilities. Each capability
can be comprised of other basic capabilities. The ontology
also describes the relationship of capabilities to hard- and
software components that are needed for their implementa-
tion. Some of these components may be compulsory and do
not include alternatives while others may be chosen from a
pool of similar components that may all be used to fulfill the
same task.

The information, stored in the ontology can be loaded
and queried with an appropriate tool. We use the framework
Jena [4] to load the ontology into a model. The model can
be queried using the SPARQL query language. The Jena
framework allows multiple ontologies to be loaded into a
single model. The base ontology we use already contains
references to the sub-ontologies, including descriptions of
robot components. Therefore, it is enough to load the base
ontology as all sub-ontologies will be loaded into the model
automatically by the framework.

B. Calculation of Configuration

With the help of the ontology mentioned above, we can
define the dependencies which need to be met to perform
a task. The above calculate gives as a set of capabilities
Cap, which can be requested to be fulfilled directly or
indirectly. We use the variables X and Y in the remaining
subsections for variables with the domain of capabilities
dom(X) = dom(Y) = Cap. Besides the capabilities, we
have additionally the set of components Comp. These com-
ponents describe a software component, e.g. a laser-based
localization or a hardware component, e.g. a laser scanner.
We use the variable Z in the remainder of the subsection for
variables with the domain of components dom(Z) = Comp.
As the description of the components is rather abstract
one needs a concrete implementation/realization of such a
component, e.g. a Sick LMS100 for a laser scanner. To

33

describe this implementation/realization of components the
ontology above yields the set ImplComp. In the remainder of
the subsection, we use the variable W for variables with the
domain of the implementations of components dom (W)
ImplComyp.

Beside the sets of possible capabilities, components and
their implementation we additionally have four different
functions describing the dependencies which need to be
fulfilled for a capability, component and its implemen-
tation. The function capReqCap Cap — 299 de-
scribes which set of capabilities needs to be fulfilled by
the robot to implement a certain capability. For example,
the capability liftObject depends on two other capabili-
ties moveArm, graspObject which is described as follows
capReqCap(liftObject) — {moveArm, graspObject}. To
describe the dependencies between capabilities and com-
ponents the function capReqComp : Cap — 2°°™P is
used. For example, the capability liftObject depends on
two components arm, gripper which is described as fol-
lows capReqComp(liftObject) — {arm, gripper}. Each
requested component can be implemented differently to link
a component and an implementation we use the predicate
implComp Comp x ImplComp — {T,L}. Like a
capability a component can depend on capabilities, we use
the function compReqCap : Comp — 2°P to describe this
dependency. Additionally, a component can depend on other
components which define through the following function
compReqComp : Comp — 2¢°™P _ Using this functions
and the predicate we can define the dependencies which need
to be met to implement a certain capability.

As we are interested in a configuration of the system
which is minimal we need a specific reasoning to derive
such a configuration. This is done by first extracting all
dependencies of a task together with every possibility to meet
this dependency. The model does not store all dependencies
in a single level. Instead, some dependencies may result
from other dependencies. Therefore, a recursive extraction
of dependencies must be performed.

Once all these dependencies are extracted, a constraint
problem can be defined to find (all) minimal configurations
which fulfill the dependencies. This is done as follows. For
each capability Y which is required the predicate reqCap(Y")
is used to describe the capabilities and components which are
needed by the robot.

reqCap(Y) —

A

X€capReqCap(Y)

A

ZecapReqComp(Y)

reqCap(X)A

reqComp(Z)

Through this equation, one can simply resolve the recursive
dependencies on the capabilities. Some of these capabili-
ties might need components. As several hard- or software
instances can implement a specific component we use an
equation for the required capabilities to resolve components.
If a component W implements a required component Z we

define the following constraint.
reqComp(Z) — implComp(Z, W) A comp(W)

Like capabilities, components can have dependencies. Thus,
to model these dependencies we use another constraint.

A

X €compReqCap(W)

A

z€compReqComp(W)

comp(W) — reqCap(X)A

reqComp(z)

Using the ontology, we can instantiate the constraints
automatically. The instantiated constraints are gathered in the
set C. As we want to derive a minimal configuration for a
given task X we first need to add reqCap(X) to the set C.
Afterward, we need to find a minimal set of components W
to fulfill this requirement. This is achieved by the following
minimization problem.

argmin ([{W|comp(W) AW € W}|) s.t.C
w

The solution to this minimization problem is a minimal set
of components to use to guaranty that all dependencies are
met.

With the above-defined constraint problem, the minimal
configuration can be generated. To realize these constraints
in an efficient manner the constraint solving is split into two
parts. The first part is the parsing of the ontology to extract
the minimal dependency for one component. The second part
uses this extracted data to find a minimal configuration in a
very efficient way through a constraint solver.

The first part is done by extracting the minimal set of
necessary capabilities, for a chosen task, by recursively
traversing the referenced capabilities of the chosen tasks.
Using the resulting set of capabilities all mandatory com-
ponents are extracted. Additionally, during the recursion one
creates a separate set of mandatory components for each al-
ternative realization. After this extraction, the minimal set of
necessary capabilities, as well as the mandatory components,
are already determined. Therefore, only the extraction of the
various combinations of alternative components, such that
the required tasks still can be fulfilled, must be done. We
solved this problem by using the constraint solver choco
[5]. To represent the constraints, we generated a matrix H.
Each row in the matrix represents one abstract component
descriptions. Each row vector V describes a component that
can implement these abstract component descriptions. With
the help of this representation the data can be modeled as
follows:

e For all entries ¢ of all vectors V' in the matrix H, a
variable £(i) is generated

The domains of these Variables £(i) are restricted,
based on the component they implement. It is limited to
the domain {0, B(V)*(*)+1} where B()) denotes the
maximum number of entries of all vectors V and KC(H)
is the index of the vector V within the matrix H.

34

With this model all combinations of alternative components
that are necessary to fulfill the given task can be determined
using the following constraint:

N(H)-1 M(H)

> E= 3 BOYY

Here, N/() denotes the total number of entries of all vectors
V within H while M(#H) denotes the number of rows within
the matrix #. This ensures that all values of £() are zero,
except for a single entry between all entries £(7) that share
the same domain. This single non-zero entry is equal to
the chosen component among all component alternatives
that implement the same main component. To retrieve the
components represented by the values £(4) the index 7 is used
as an index in an array containing the component names.

C. User Interface

In this section, the relevant components of our graphical
user interface are described. The GUI itself is structured into
separate tabs which all fulfill different tasks.

1) Defining Source Ontologies: The GUI features a tab
that empowers the user to load any desired ontology (Figure
1). The definition of more than one ontology will result in a
single model that contains all relationships. For this, the user
is provided with a list that contains all ontologies added so
far at the top of the tab. At the bottom, there are two buttons,
one to add another ontology and another button to load the
defined ontology files. Upon a click on the Load button,
the ontologies will be loaded and scanned for capabilities,
components and other important information. For this, the
user may define keywords that identify components and
capabilities, within the ontology, in the Settings tab. This
generic approach should guarantee that the software can also
incorporate different ontology sets.

0@

Main

TDRSC

Capabilities Available Components Overview >

JKnowRob /knowrob. owl

/KnowRohb /srd|2 -cap.owl

Add

Load

Fig. 1. The Sources tab of the GUI. Here the user may define the paths
to the ontologies which are to be loaded into the model.

2) Defining Capabilities: After having loaded the desired
ontologies, the user may define the desired tasks. There may
be multiple of them or just one. This can be configured in
the Capabilities tab as depicted in Figure 2. In this tab,
desired tasks may be added using the Add button at the

bottom. This will add a combo box with all the previously
extracted capabilities, of which the desired one may be
chosen. Additionally, the list of chosen capabilities may be
saved to disk.

Main

TDRSC
Sources Available Components

Overview

Opening A Door

o |

Add
Save Compound

Load Compound

Fig. 2. The Capabilities tab of the GUI. Here the user may define tasks
the robot should be capable of.

3) Defining Available Components: This tab is structured
exactly like the capabilities tab. Here the available compo-
nents (hardware as well as software) may be defined.

4) Feedback: Our program automatically analyses the
situation anytime the user makes a change to the task require-
ments or available components. The result of this analysis is
depicted in the Overview tab (Figure 3). It is divided into
two sections including tree views. The left tree depicts the
relationships between the chosen tasks and any subtask that
describes parts of it. Also, it shows which components are
necessary to implement these subtasks. On the right side,
the user is provided with an overview of all components that
need to be available to implement the desired tasks. In case
the program could find several components that can be used
to implement the same task, the component may be expanded
and checked for the available options. In this view, missing
components are depicted in red while available components
(as defined within the Components tab) appear in green color
(Figure 4).

ece TDRSC
Main Sources Capabilities Available Components Compositions Query Settings
Setup Components
v [Opening A Door Capability » [Object Recognition Component
v [Object Recognition Capability Object Recognition Model
Object Recognition Component v [& Manipulation Entity

Object Recognition Model
v Gripper Motion Capability
Manipulation Entity
¥ [Arm Mation Capability

Pressing Manipulation Entity
Gripper Component
Hand Companent

Arm Component DIr Hit Hand
Arm Motien Controller v [Arm Component
Pr2Arm
Kuka Lwra

» [Arm Motion Controller

You are still missing at least 4 component(s) to implement this project!

Fig. 3. The Overview tab of the GUI. Here the user gets a feedback about
the given situation.

5) Configuration Proposals: As the desired tasks, may be
implemented with a wide variety of different constellations

35

® TDRSC
Main Sources Capabilities Available Components |[BOIR00| Compositions ~ Query Seftings
Setwp Components
v Opening A Door Capability > [Object Recognition Compenent
¥ [5 Object Recognition Capability Object Recognition Model
‘Object Recognition Component v [Manipulation Entity
‘Object Recognition Model Pressing Manipulation Entity
v [Gripper Motion Capability Gripper Component
Manipulation Entity Hand Component
v [Arm Motion Capability |
Arm Component Add to available Components?
Arm Motion Controller v B Pr2Gripper
TPrZATm &
Kuka Lwr4

» [Arm Motion Controller

You are still missing at least 4 component(s) to implement this project!

Fig. 4. Adding available components from within the Overview tab, using
a pop-up menu.

of components, the GUI also features a tab that suggests
possible component setups that fulfill the desired tasks. This
is depicted in Figure 5.

Main

TDRSC

Sources Capabilities

Minimum Component Compositions

Object Recognition Model , Kuka Lwré ,

Available Components Settings

Overview Query

Dir Hit Hand , Arm Mation Controller , Shape Based Object Recognition

Object Recognition Model , Kuka Lwr4 , Hand Component , Arm Motion Controller , Shape Based Object Recognition

Object Recognition Model , Kuka Lwr4 , Gripper Component , Arm Motion Controller , Shape Based Object Recognition
Object Recognition Model , Kuka Lwr4 , Gripper Compenent , Arm Motion Controller , Image Feature Based Object Recognitic
Object Recognition Model , Kuka Lwr4 , Hand Component , Arm Motion Controller , Image Feature Based Object Recognition
Object Recognition Model , Kuka Lwrd , DIr Hit Hand , Arm Motion Controller , Image Feature Based Object Recognition
Object Recognition Model , Kuka Lwr4 , Gripper Component , Arm Motion Contraller . S IF Thased Object Recognition

Object Recognition Model , Kuka Lwrd , Hand Component , Arm Motion Controller , § IF Thased Object Recognition

Object Recognition Model , Kuka Lwr4 , Dir Hit Hand , Arm Motion Controller , S IF Thased Object Recagnition

Object Recognition Model , Kuka Lwr4 , Pr2Gripper , Arm Motion Controller , S IF Thased Object Recognition

Object Recognition Model , Kuka Lwr4 , Pr2Gripper , Arm Motion Controller , Shape Based Object Recognition

Object Recognition Model , Kuka Lwrd , Pr2Gripper , Arm Motion Controller , Image Feature Based Object Recognition
Object Recognition Model , Pr2Arm , Hand Component , Arm Metion Controller , Shape Based Object Recognition

Object Recognition Model , Pr2Arm , Pr2Gripper , Arm Motion Controller , Shape Based Object Recognition

Object Recognition Model , PrzArm , DIr Hit Hand , Arm Mation Controller , Shape Based Object Recognition

Fig. 5. The Compositions tab of the GUI. Here the user is provided with
a list of all configuration that can solve the desired task.

6) Manually Query Data: To manually query the loaded
data, the GUI also features a Query tab (Figure 6). In this
tab, the user may define custom queries on the loaded model.
For convenience, the program extracts all available prefixes
that can be added with just a few buttons clicks. The result
of the query will be displayed in a separate pop-up window
as depicted in Figure 7. 5.

[JoX] TDRSC
< Available Components Overview Compositions Settings
PREFIX cap: <http://ias.cs.tum.edu/kb/srdl2-cap.owl#>
SELECT DISTINCT ?capability
'WHERE {
?capability a Ptype. Type query here
FILTER(STRSTARTS(STR(?capability),stricap:)))
}
Add Prefix

Query

Fig. 6. The Query tab of the GUI The user may query the data manually
using this tab and the SPARQL query language.

Query Result

(capability = <http://ias.cs.tum.edu/kb/srdI2-cap.owl#LocalizationCapability >)

(7capability = <http:/ /ias.cs.tum.edu/kb/srd|2-cap.owl #ClosingAContainerCapability>)

(%apability = <http:/ /i tum. —cap.owl#C apability>)

(7capability = <http:/ /ias.cs.tum. ~cap.owl#C apability>)

(7capability = <http:/ /ias.cs.tum.edu/kbysrd|2-cap.owl #OpeningAContainers)

(capability = <http://ias.cs.tum.edu/kb/srdI2-cap.owl#CollisionCheckCapability>)

(?capability = <http://ias.cs.tum.edu/kb/srdI2-cap.owl#ClosingAContainer>)

(%apability = <http:/ /i tum. —cap. ji i

(7capability = <http:/ /ias.cs.tum.edu/kb/srd|2-cap.owl#GraspingCapability>)

(7capability = <http:/ /ias.cs.tum.edu/kbjsrd|2-cap.owl#hasCapability>)

(7capability = <http:/ /ias.cs.tum —cap.owl#C

(7capability = <http:/ /ias.cs.tum —cap.owl#Navigati

(capability = <http:/ Jias.cs.t —cap.owl#C apability>)

(?capability = <http:/ /i tum. —cap.s pability>)

(2capability = <http:/ /ias.cs.tum apability>)

(7capability = <http://ias.cs.tum.edu/Kkbjsrd|2-cap.owl#PerceptionCapability>)

(7capability = <http://ias.cs.tum.edu/kb/srdI2-cap.owl#move_arm> }

(capability = <http:/ Jias.cs.t —cap.owl#C apability>)

(%apability = <http:/ /i tum, MCapability>)

(7capability = <http:/ /ias.cs.tum.edu/kb/srd|2-cap.owl #ObjectRecognitionCapability>)

(7capability = <http:/ /ias.cs.tum.edu/kb/srd|2-cap.owl#point_head_action>)

(7capability = <http://ias.cs.tum. ~cap.owl#Pr DownAnObjectCapability>)

(7capability = <http:/ /ias.cs.tum. —cap. ing ingCapability>)

(Zcapability = <http:/ /ias.cs.t ~cap.owl apability>)

(7capability = <http://ias.cs.tum.edu/kb/srdI2-cap.owl#Capability>)

(7capability = <http:/ /ias.cs.tum. —cap. ipper_action>)

(7capability = <http:/ /ias.cs.tum.edu/kbysrd|2-cap.owl#OpeningADoorCapability>)

OnCapability>)

apability>)

ieceOfF oodCapabilitys)
avigationCapability>)

pability>)

apability>)
apability>)

(capability = <http://ias.cs.tum.
(capability = <http:/ Jias.cs.t

(7capability = <http:/ /i tum.
(7capability = <http:/ /ias.cs.tum.

—cap. p
~cap.
~cap.owl#Cutting,
—cap.owli#C

Fig. 7. The result of a user defined query is depicted in this pop-up window.

III. EXAMPLE SCENARIO

Before we discuss the related research, we will discuss
a simple running example, showing the different steps of
a configuration. If one wants to know the minimal set of
required components, necessary to implement a robot that
can open a door one can use our program through performing
the following steps:

o In order to identify the necessary components (hard-
ware as well as software) using our program, first the
ontology stated in section II-A, using the Source tab
as depicted in Figure 1 must be loaded. After the
loading process is done, the program has identified
the capabilities and components, defined in the given
ontologies. For the example, we use the ontology of [6]
which contains all necessary capabilities.

Now the capability ”Open a door* should be available
for selection in the Capabilities tab. It can be selected,
by using the Add button at the bottom of the tab and
selecting it in the newly created combo box as depicted
in Figure 2.

The program analyses the given situation online. There-
fore, now, the user can already check for the necessary
components to achieve the task in the Overview tab. If
one has already components in mind which should be
used, one may define them in the Available Components
Tab. Assumed there is a “Pr2Arm“ component that
should be used. One can add these components before
or after checking the necessary components.

Now the user may want to check the necessary com-
ponents to implement this task. If the "Pr2Arm* was
added in advance the output of the Overview tab will
be as depicted in Figure 3. There is also a possibility
to add available components directly from within this
overview. For this one may simply right-click the de-
sired component and click the pop-up menu (Figure 4)
Alternatively one may also check all possible con-
stellations to implement this task by looking at the
Compositions tab as depicted in Figure 5.

36

Optionally, custom SPARQL queries on the loaded model
may be performed using the query tab. An example query
to retrieve all available capabilities of the loaded model is
depicted in figure 6. The result (all available capabilities) is
shown in a pop-up as shown in Figure 7.

IV. LIMITATIONS OF THE APPROACH

The approach presented allows an easy specification of
the robotics requirements and its resulting configuration.
Additionally, one can generate a minimal configuration for
the robot. These calculations are based on an ontology which
describes the necessary dependencies to perform a task. Due
to this specification, one may encounter several problems.

First, the ontology used in the example specifies the
requirement for a home like an environment. The require-
ments may differ in a factory environment or on a planetary
mission. To cope with this problem one could argument
the requirements with a specification which environment the
robot is operating in. Thus, one could add the information
of the environment to the ontology to derive the proper set
of requirements.

Another important limitation is the abstraction of the
ontology. Let’s consider the example which specifies that one
needs a robotic arm to fulfill the task. Thus, one can choose
an arbitrary arm which may not be possible in practice as
the arm does not allow to create enough force to perform the
task or is too heavy to be placed on the robot. To tackle this
problem one need to add additional constraints which need
to be considered like the force which needs to be applied,
maximum weight, Such constraints may not be simply
integrated into the ontology reasoning. Instead one may add
an additional layer of reasoning to check these constraints.
Thus, one could find a configuration per the ontology and
afterward check the additional constraints to rule out not
applicable configurations.

V. RELATED RESEARCH

We start our discussion of related research with the seman-
tic robot description language (SRDL) published in [7]. The
description language allows describing the capabilities of the
robot as well as the hardware and software components.
Furthermore, dependencies of the capabilities and the com-
ponents can be described. This description allows the robot
to check if the dependencies are met for a specific capability.
Additionally, the robot can enumerate all components which
are missing for a specific capability. Thus, the first step for an
automatic configuration of the robot is possible. To use this
description in a robotic system SRDL was integrated into a
general knowledge base for a robot through KnowRob [8].
This integration was used in the RoboEarth language [6] to
allow an easy transfer of action recipes to perform a task.
With the help of the SRDL, the robot could check if a certain
action recipe to perform a task can be used. In this paper,
we used SRDL as a basis for our tool to allow the derivation
of a minimal configuration. Thus, instead of just checking if
a robot can perform a capability our tool also allows getting

a minimal configuration such that the robot can perform a
capability.

Another method which uses an ontology to describe the
environment was presented in [9]. The method uses a de-
scription of the environment which is based on an ontology
together with a description of skills the robot can perform.
Using this description, the robot can plan a sequence of skills
which need to be executed to perform a certain task. Such
a task was presented in [10] where the robot had to place
parts of an industrial kitting operation.

To plan which robot can perform which task in a het-
erogeneous group of robots the method outlined in [11]
can be used. The method defines capabilities which have
preconditions which need to be met to allow the execution
as well as information which need to be provided by the
robotic system to allow the capability to be executed. Thus,
the robot can plan which capabilities need to be executed to
perform a task. Furthermore, the robot can use the hardware
description to check if such an execution is possible. As
many capabilities, e.g. grasp an object, may only work under
certain restrictions, e.g. size of the object, one can add an
approximation description to each capability which defines
which conditions need to hold approximately to allow the
execution of the capability. This allows to define capabilities
in more detail and thus allow a better distribution of tasks
among the robotic group. The method outlined in [11] focus
on distributing tasks in a group of robots whereas the tool
we present in this paper focuses on the configuration of
the robotic system during the design phase. Thus, instead
of planning which capabilities to use to fulfill a task, we
show which different minimal configurations of the robotic
system allow the robot to execute the capability. This allows
the developer of the robotic system to choose the best fitting
set of capabilities.

The method presented in [12] extends AutomationML [13]
to allow the modeling of a robotic system. This is done by
extending the given concepts with robotic specific concepts
such as actuators or sensors. Furthermore, the method allows
an automatic conversion of AutomationML specifications
into an ontology which can be used to check for consistency.
This can be used to model a robotic system with Automa-
tionML and afterward check through the transformation to
an ontology if every dependency is met or if a component
is used which does not solve any given task. Beside these
checks, further checks can be applied to verify that this
system can be realized with the help of ROS [14]. This
allows the developer to ensure that the modeled robot can
be realized. After these checks are performed one can apply
a model-to-text transformation to generate code stubs which
ensure proper communication and operation per the modeled
system. This allows a faster creation of a robotic system
following a model-based approach like the method outlined
in [2]. In contrast to our approach, the method does not offer
the possibility to check which components are necessary to
perform a capability. Thus, the method presented in [12] is
also not able to specify a minimal configuration which fulfills
the need for a specific capability as our tool can.

37

Besides the description of tasks for configuration, such a
description is also often used to assign a task, e.g. in a multi-
robot system. One such example is which uses an ontology
to assign tasks is presented in [15]. The method uses an
ontology per robot to describe which roles can be performed
and how these roles are performed. Additionally, tasks are
described in the ontology and how they can be executed
through a role which is assigned to a robot. The system uses
this ontology to find a matching robot and assigns different
roles for different robots to fulfill the specified task.

VI. CONCLUSION AND FUTURE WORK

The proper configuration of a robotic system for a given
task is a time consuming and tedious task. Especially one
needs an expert to perform this task to consider all possibil-
ities as well as all dependencies. To address this problem, in
this paper we presented a tool for the automatic configuration
of a robotic system for a given task. The tool uses an
ontology-based knowledge base, allowing to reuse publicly
available knowledge bases, to describe which dependencies,
exist between a task and software and hardware components.
Furthermore, we have presented a method to derive a min-
imal set of software and hardware components to fulfill a
certain task. This allows the user to simply find a possible
configuration of the robotic system, that allows the robot to
fulfill its task. To allow an easy interaction the tool has a
graphical user interface which allows the user to select tasks
as well as used components. Thus, the user can specify the
currently used components on the robot to check if a new
task can be achieved by the robot, or which components need
to be added to allow the robot to achieve a given task.

Currently, the tool can only be used by a human to decide
which components to use to allow the execution of a specific
task. It is left for future work to allow the robot itself
to use the tool. This would open the possibility that the
robot finds alternative solutions to a task during runtime.
Thus, the robot could reconfigure itself to react to a fault or
changes in its task. Furthermore, currently only a minimal
number of components is searched for the configuration,
neither computation costs nor investment or development
costs are considered in the configuration. It is left for future
work to integrate these costs to allow to find a configuration
which minimizes the computation effort or to minimize the
investment costs.

REFERENCES

[11 Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE multimedia,
vol. 19, no. 2, pp. 4-10, 2012.

[2] G. "Steinbauer and C. Miihlbacher, “Hands off - a holistic model-
based approach for long-term autonomy,” in Workshop on Al for Long-
Term Autonomy, 2016 IEEE International Conference on Robotics and
Automation (ICRA).

[3] Knowrob.org. Capability ontology - knowrob. [Online]. Available:
http://knowrob.org/kb/srd12-cap.owl

[4] Apache.org. Jena framework - apache. [Online]. Available:
https://jena.apache.org/

[5] choco solver.org, “choco-solver.” [Online]. Available:

http://www.choco-solver.org/

[6]

[10]

[11]

[12]

[13]

[14]

[15]

M. Tenorth, A. C. Perzylo, R. Lafrenz, and M. Beetz, “The roboearth
language: Representing and exchanging knowledge about actions,
objects, and environments,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on. 1EEE, 2012, pp. 1284-1289.

L. Kunze, T. Roehm, and M. Beetz, “Towards semantic robot de-
scription languages,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on. 1EEE, 2011, pp. 5589-5595.

M. Tenorth and M. Beetz, “Knowrob: A knowledge processing infras-
tructure for cognition-enabled robots,” The International Journal of
Robotics Research, vol. 32, no. 5, pp. 566-590, 2013.

F. Rovida and V. Kriiger, “Design and development of a software
architecture for autonomous mobile manipulators in industrial envi-
ronments,” in Industrial Technology (ICIT), 2015 IEEE International
Conference on. 1EEE, 2015, pp. 3288-3295.

A. S. Polydoros, B. Grofimann, F. Rovida, L. Nalpantidis, and
V. Kriiger, “Accurate and versatile automation of industrial kitting
operations with skiros,” in Conference Towards Autonomous Robotic
Systems. Springer, 2016, pp. 255-268.

J. E. Buehler, “Capabilities in heterogeneous multi robot systems.”
in Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI)
Doctoral Consoritum. AAAI 2012, pp. 2380-2381.

Y. Hua, S. Zander, M. Bordignon, and B. Hein, “From automationml
to ros: A model-driven approach for software engineering of industrial
robotics using ontological reasoning,” in Emerging Technologies and
Factory Automation (ETFA), 2016 IEEE 21st International Conference
on. IEEE, 2016, pp. 1-8.

R. Drath, A. Luder, J. Peschke, and L. Hundt, “Automationml-the glue
for seamless automation engineering,” in Emerging Technologies and
Factory Automation, 2008. ETFA 2008. IEEE International Conference
on. 1IEEE, 2008, pp. 616-623.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

F. Amigoni and M. A. Neri, “An application of ontology technologies
to robotic agents,” in Intelligent Agent Technology, IEEE/WIC/ACM
International Conference on. IEEE, 2005, pp. 751-754.

38

