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Abstract— Accurate outdoor localization and orientation de-
termination using the Global Positioning System (GPS) usually
works well as long as the GPS antenna receives signals from a
sufficient number of satellites. Especially in agricultural appli-
cations, the respective lines of sight are frequently obstructed
due to the presence of trees. In this paper, we investigate
the applicability of an alternative method for position and
orientation estimation that is based on a stereo-camera system
and Visual Odometry (VO). We have experimentally validated
our approach in a logging road scenario. Based on the results
of the position and orientation estimation, we discuss challenges
of VO in such a non-trivial environment.

I. INTRODUCTION

Localization of a vehicle is a very important task and
hence a research topic for decades. In general, localization is
possible with sensors like GPS, rotary encoder, IMU (Inertial
Measurement Unit), laser scanner or a camera. Of course,
there exist even more sensors and each one has its own pros
and cons in terms of accuracy, drift, price, etc. The area of
application highly depends on these properties. In this paper,
we focus on outdoor localization in natural terrain. This is
an important topic for precision farming [4], for example.
Hereby, the question is always the same: Which sensors are
suitable for the application?

As discussed in [25], a GPS antenna always needs intervis-
ibility to several satellites to guarantee an accurate position
estimation. This is sometimes impossible in areas like in a
forest where trees occlude the satellites. The usage of wheel
odometry via rotary encoders is not suitable as well due
to problems with inaccuracies of the wheel geometry and
slipping situations. In comparison, an IMU allows a good
estimation of the orientation but not for the position because
the double integration of the acceleration results in a high
drift over time. A laser scanner has a very high position
accuracy on the one hand but it is very expensive and not so
well proofed for high vibrations on the other hand. Thus,
just the camera remains of the sensors mentioned above.
This sensor is relatively cheap but a position and orientation
estimation via VO is normally linked with high computing
demand and continuous growth of the drift per number of
used images. Furthermore, overexposed images and other
problems like branches that occlude cameras need a robust
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implementation of a VO to be able to get a valid pose
estimation. However, this paper shall show the applicability
of Visual Odometry to estimate position and orientation
in different wooden environments with ambiguous natural
structures.

This paper is structured as follows. Section II gives an
overview of related work. Visual Odometry and all its com-
ponents are explained in Section III. Finally, the experiments
are shown in Section IV. Last but not least, Section V
contains the conclusion as well as some remarks about future
work.

II. RELATED WORK

Visual Odometry (VO) is the incremental estimation of the
pose (position & orientation) via examination of the changes
on images due to motion induction [24]. The research
on VO already started in the early 1980s and one if its
advantage is that no prior knowledge about the environment
is necessary. A good example is the implementation of Cheng
et al. [6], [21], which was used in the rover of the NASA
Mars exploration program. Since then VO was continuously
under research, which means that the literature about Visual
Odometry is huge. Therefore, this section just contains an
overview about relevant literature of VO for the localization
of a vehicle in an outdoor environment.

Nister et al. [22] proposed one of the first real-time VO
which was capable of a robust pose estimation over a long
track. They use a stereo-camera system and detect Harris
corner features [15] in the images. 3D points are estimated
through triangulation of the corresponding features in a
stereo pair. In a next step Nister et al. use these 3D points
and the features of a following image to estimate the pose
via a 3D-to-2D algorithm as described in [24]. RANSAC
(Random Sample Consensus) [12] removes outliers in the
motion estimation step. Regarding to Scaramuzza et al. [24],
this VO procedure was a high improvement to previous
implementations and is still used by many researcher.

Comport et al. [7] use a similar procedure but estimate
the motion using 2D-to-2D instead of 3D-to-2D feature
correspondences. With reference to Scaramuzza et al. this
results in a more accurate pose because triangulation is not
needed.

In [26], [17] or [27] bundle adjustment is applied to further
reduce the drift of the Visual Odometry. Bundle adjustment
optimizes the latest estimated poses using features over more
than just two stereo pairs. Konolige et al. [17] show that this
step reduces the final position error about a factor of two to
five.



Fig. 1: Tllustrated VO problem of a stereo system
(relative transformations T¢,,_1c2, Temem1 /
absolute transformations Tcac1, Tem-1c1> Temct)

Furthermore, the usage of additional sensors like GPS,
laser scanner or IMU can improve the pose estimation. For
example, in [1], [23], [17] or in [27] the integration of an
IMU reduces the error in orientation. In [17] Konolige et al.
achieve with their implemented real-time VO a maximum
relative position error of just 0.1 % over a 9km long track.
Another good result is shown by Tardif et al. [27] over a
5.6km long track. This dataset was acquired by a tractor
driving next to an orange grove and on a street for the return
to the garage.

III. VISUAL ODOMETRY

As discussed in Section II, Visual Odometry incrementally
estimates the pose. Figure 1 shows this for a typical case
using a stereo-camera system. The calculation of a relative
homogeneous transformation Tc,,c,.1 € SE(3) of an image
pair {m — 1,m} with camera centers / camera coordinate
systems C,,_; and C,, is done via features in the images. As
shown in the figure, the coordinate system of the left camera
is the reference point of a transformation Tc,,c,,—1, Which
transforms from C,,_; to C,. The rigid body transformation
is given by

Remem1 cmtemem

TC,mC,mfl = 0 1 (D
where Re.c.o1 € SO(3) is the orthogonal rotation matrix
and cutemem 1 € R3 the translation vector, represented in
the coordinate system C,. The concatenation of all rela-
tive transformations results in the absolute transformation
Tcmetr = Temem1Tem-1cy from Cy to C,,.

Therefore, the main task of a VO is to calculate the relative
transformations Tc,,c,.—1 and finally to concatenate them to
get the full camera trajectory Tc,.ci = {Tcacis---> Temen}
between the camera centers C; and C,,.

The structure of our VO approach is similar to the one of
Nister et al. [22] and it starts with the feature detection and
description but it uses the more distinct features A-KAZE [2]
instead of Harris [15]. The next step is to match features
between a stereo pair and one consecutive image, either left
or right. Then, the triangulated stereo correspondences and
the matched 2D features are used for the pose estimation.
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At the end, key frames are selected and windowed bundle
adjustment [28] is applied to further optimize the previous
calculated poses [27].

A. Feature Detection and Description

Feature detection is one of the most important steps
in a feature-based Visual Odometry system. Regarding to
Fraundorfer [13], important properties of features are detec-
tion repeatability, localization accuracy, robustness against
noise as well as computation efficiency. In [8], Cordes et
al. compare many different detection algorithms and the
detector A-KAZE [2] proofs to be the best candidate in terms
of localization accuracy and suitable number of detected
features. This detector is implemented in OpenCV [5] and
is an extension of the algorithm KAZE [3] to detect blobs.
In general, these features are image patterns with different
intensity, color and texture compared to its adjacent pixels
and they are more distinctive than corners [13]. This is
especially important in natural environment with ambiguous
structures like branches or leaves. In our case, A-KAZE
detects blobs in a nonlinear scale space with four octaves
and the same amount of sub-levels.

In addition to the detection algorithm, A-KAZE also
provides one for the description of a feature, which is
implemented in OpenCV as well. It converts the area around
a feature into a binary descriptor which has a length of
486bit. Every comparison between two areas results in
three bit. The description algorithm of A-KAZE is called
M-LDB (Modified-Local Difference Binary) and is rotation
and scale invariant. According to Alcantarilla et al., A-KAZE
allows efficient and successful feature matching, which are
mandatory properties of a good descriptor.

B. Feature Matching

The task of this step is to find feature correspondences
among images. The easiest way to achieve matching between
two images is to compare all feature descriptors of the first
image with every other descriptor of the second one. This
search is quadratic in the number of features. Fortunately,
the usage of epipolar or motion constraints simplifies this
task and reduces the computation time drastically. This is
necessary to facilitate an online VO system, which could be
used on a vehicle like a tractor during its operation in a field
or forest.

Our stereo VO relies on rectified images, which are
remapped image pairs with horizontal and aligned epipolar
lines to each other (see [13]). Thus, epipolar matching just
allows a match between features which lie on the same
horizontal epipolar line or rather image row.

Descriptors of two consecutive left or right images can
be matched via a motion constraint. As proposed in [10],
we assume a constant velocity model between two frames.
Using the known motion, we can project the 3D point of a
already matched stereo correspondence into the other image.
A constant window of 2-35 x 2-35 pixel around the projected
position defines the allowed area of possible features and
therefore reduces the computing time.



The comparison between two binary descriptors itself is
done via calculating the Hamming distance [14], which is the
number of different bits and a very efficient operation. Nor-
mally, the descriptor with the minimum Hamming distance
is chosen as the best match. To improve the robustness of
the matching, we additionally apply the distance-ratio-test as
proposed in [20]. It just accepts a match if the ratio between
the two closest neighbors is below a threshold 7, € R with
0 < rpar < 1. Using binary descriptors, the ratio ry € R
between two descriptors is defined as

rqg = —= < max, (2)
dup
where dy 1 € N and dp > € N are the Hamming distances of
the two closest neighbors, respectively. In our case, we use
an empirical threshold of r,,,x = 0.71 which helps to remove
ambiguous matches that can occur at repeatable structures
like branches.

C. Motion Estimation and Key Frame Selection

In this step, the calculation of the relative camera motion,
i.e. the relative transformation Tc¢,c,_; between an image
pair {m — 1,m}, takes place. Therefore, we use calibrated
stereo-cameras and two sets of corresponding features F;,_|
and F;, of the images m — 1 and m, respectively.

For the 3D-to-2D algorithm, the features of F,,_; are
defined by 3D points in C,_; and the one of F,, by 2D
image points [24]. Normally, we use 2D features of the left
image with coordinate system v,,. Alternatively, if the motion
estimation fails due to less feature matches, features of the
right image with coordinate system v/ can also be used
to prevent a failure of the VO. The estimation of the 3D
points is done via the linear triangulation method of Hartley
and Zissermann [16], which is implemented in OpenCV
[5]. Using a function dg to calculate the Euclidean distance
[11], the transformation Tc¢,c.-1 can be found through
minimizing the image reprojection error of all features

n

min Z dE (v.mtv.mx.h v.mtvmxj(TC,mC.m—l )) 2 .

TC.mC,m—l i=1

3)

Thereby, ,,,ty.x; 1S the 2D coordinate vector of the image
point x; and v),,,fv‘mxﬁi the image coordinate vector of the 3D
point X;, which is observed in C,_; and projected through
Tcmem1 and the corresponding camera projection matrix
[16] into image m. Equation (3) can be solved using at least
three 3D-to-2D correspondences, is known as P3P (Perspec-
tive from three Points) and returns four solutions. Therefore,
at least one another point is necessary to get a single and
distinct solution. PnP-algorithms (Perspective from n Points)
like EPnP (Efficient PnP) [18] use n > 3 correspondences
to solve the problem. Normally, these methods just calculate
accurate results if the used correspondences are correct. If
this is not guaranteed, the well known procedure RANSAC
(Random Sample Consensus) [12] should be used to remove
wrong correspondences, so called outliers. In [13], such
a robust motion estimation using RANSAC is explained
more in detail. Our VO uses EPnP for the pose estimation
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and a preliminary non-minimal RANSAC with five points
to acquire trustworthy results of the outlier removal as
suggested by Fraundorfer et al. [13].

If the first motion estimation with the left image fails due
to less feature matches, or the motion is implausible (position
or orientation is unrealistic), then the estimation is retried
with 2D features of another image as a backup. The order
of these images is the following. Firstly, the right image
of the actual stereo frame is used. If the motion estimation
with the features of this image is also unsuccessful, then a
consecutive still unused left or right image is used until the
motion estimation step is successful. This procedure avoids
a failure of the VO with high probability.

The selection of key frames is another important compo-
nent of our VO. In general, the drift of a VO increases with
every frame, i.e. every relative motion, which is used for the
update of the absolute motion. Therefore, the concatenation
of small motions should be avoided to keep the drift as low as
possible. This means that the transformation T¢ ,,c,,—; should
not be used to update the absolute transformation T¢ ¢, if
the motion between the image pair {m — 1,m} is small or
even zero. Instead, we should stay with Tc,,_c-

We define a stereo frame m as a key frame m if its relative
transformation is used for the absolute motion update. Our
defined requirement is that the relative change in position is
bigger than 2 m or the relative angle of rotation [9] is bigger
than 20°.

D. Bundle Adjustment

Windowed bundle adjustment [28] is the last important
step in our feature-based VO system. It is used to optimize
the relative transformations of the most recent M key frames.
For simplicity, we assume n 3D-points i € {1,...,n}, which
are seen in a window of M < key frames j € {m,...,m}.
Hereby, the index of the oldest stereo frame in the window
is defined as m = (m—M +1). To reduce the computation
demand, our VO just uses a window with the most recent
M =2 key frames, i.e. in total the features of four images
are used for the optimization.

Bundle Adjustment is, like in (3), again the minimization
of the image reprojection error and is given by

n m

. 2 2
min Z dg (v,jtv,jx,n v.,jtv,jx‘,i(TC,jC,h C,ltCJX,i>) .
Tc,jc1,c1tcax,i =1 j=m
“4)

Thereby, , t, ;x; and jfvﬁ ixi are, respectively, the vectors of
the observed and estimated 2D coordinates of point i in
key frame j. Due to the projection of the point X; into the
image plane, the estimated coordinates are dependent on the
absolute transformations Tc ¢, the 3D coordinate vector
citcix; and the corresponding camera projection matrices.
The camera parameters are assumed as constant and known
via a prior calibration. The minimization of (4) is done using
the sparse bundle adjustment library of Lourakis et al. [19].



Fig. 2: Vehicle with measurement setup and DGPS-receiver

IV. EXPERIMENTAL VALIDATION

Our realistic dataset shows the performance of our VO on a
track through a forest. It contains GPS data as well as images
during a drive of a truck on a logging road. The vehicle used
for the measurement is further discussed in Section IV-A and
sample images of the road can be seen in Section IV-B.

A. Setup

A small truck, equipped with a stereo-camera system, was
used for the measurement. The cameras are mounted on the
back of the driver‘s cab via aluminum profiles and magnets.
This mounting position guarantees a good viewpoint back-
ward without having unwanted objects within the field of
view. In addition to the cameras, a DGPS-unit (Differential
Global Positioning System) is used for ground truth although
the signal strength lacks inside the dense forest.

The vehicle and its measurement setup is shown in Fig. 2.
The cameras are mounted parallel on an aluminum profile at
a distance of approximately one meter. The 12V battery of
the truck powers both cameras inside the wired box. Two
Gigabit Ethernet cables facilitate the data transfer of the
stereo-camera system, which operates at 10Hz. A higher
sample rate of the cameras is unsuitable due to the high
computing time of the VO. We used the following sensors
and devices:

e 2x JAI GO monochrome-cameras (JAI GO-5000M-
PGE) with a maximal sampling rate of 22Hz with the
full resolution of 2560 x 2048 pixel

¢ 1x DGPS-system with open sky localization error of
ca. 2cm/0.1°

e 1x Xsens MTi-30 IMU with 400Hz sampling rate
(additional sensor for further experiments)

o Lenovo Thinkpad S540 with Intel Core i7-4510U CPU
@ 2.00GHz and 16 GB RAM
Windows 7 Professional SP1 - 64 Bit

The JAI GO cameras allow a maximum resolution of

2560 x 2048 pixel. Due to lots of bumps on the logging road,
the long exposure time of the cameras might blur images
at darker areas of the forest. Therefore, we use 2 x 2 pixel
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(b)

(@
Fig. 3: Sample images of the driven logging rode

(a) Left stereo image

(b) Right stereo image

Fig. 4: Stereo image pair with branch occlusion

binning and a resulting resolution of 1280 x 1024 pixel to
decrease the exposure time. The resolution of the images is
further decreased to 640 x 512 pixel by software to reduce the
computing time of feature detection and description. After
the decrease of the resolution, a rectification of these images
is also done.

B. Experiments

Our dataset contains two different drives of the presented
vehicle on a logging rode and illustrates a realistic perfor-
mance of our VO system. Figure 3 shows some road sections
of our scenarios. Widespread areas and overexposed images
may result in an inhomogeneous distribution of features,
which is a big challenge for the VO.

The first scenario of our dataset is a 3 X 75m long test
drive on the part of the logging road, which is shown in Fig.
3a. In this dense forest area, our proposed VO demonstrates
its robustness against overexposed images and occluded
cameras like shown in Fig. 4, where a branch occludes the
left camera entirely. The implementation is robust enough
to handle such situations and still estimates a valid pose.
The results of our test drive are presented in Fig. 5. The
starting point is marked with a circle. Due to the low signal
quality of the GPS, the reference position exhibits some
inconsistencies. The plotted coordinate system is the one of
the GPS with X pointing to East, Y to North and Z upwards.
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Fig. 5: Scenario 1 — Comparison of the estimated trajectory with GPS

As shown in Fig. 5, the estimated pose of the first 75 m
fits very well with ground truth. The estimated trajectory
of the return slightly deviates from the GPS reference.
The inaccurate estimation of the orientation happens due
to occlusions of the left camera like it is shown in Fig. 4.
However, our robust VO prevents a total failure and still
allows a valid but slightly inaccurate pose estimation via
using images of the right camera instead. The third track of
the logging road is estimated well as a straight line again.

Using the mentioned laptop, the computation time of our
off-line VO of this scenario is about 0.529 s per stereo pair.
This time duration is increased due to the occlusion of the left
camera, which acquires the additional processing of the right
image instead of just the left one. This problem especially
happens at the return of the vehicle because the cameras are
mounted on the back of the driver‘s cab.

The second scenario of our dataset is a 3 x 2169m long
drive of the presented vehicle on a logging road. This
scenario should deliver an answer about the drift behavior of
our implemented VO. Figure 3b represents the first image of
this sequence. The results are shown in Fig. 6. The estimated
trajectory is inconsistent with the ground truth and just the
first 2169 m long loop can be identified somehow. Then, the
trajectory continuously deviates from the driven track. If we
look closely at the start of Fig. 6, it shows that distances are
estimated too large in general. The whole trajectory seems
to be scaled compared to the original track.

For a better understanding of the results, it is helpful
to further investigate the 3D-trajectory illustrated in Fig. 7.
Referring to the estimated VO path of this figure, from the
beginning the truck starts to move downwards and also to
twist sideways. This results in a distorted trajectory instead
of a more or less planar movement of the truck.

The explanation of the occurrent problem can be found
with a closer look at the features, which are used for the pose
estimation. Figure 8 shows the detected A-KAZE features
of Fig. 3b, and the sweeping area only contains a few key
points. Most of them are found at the treetops in the upper
half of the image. In the worst-case scenario, for example if
all trees have the same height, all features are just on one line
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Fig. 7: Scenario 2 — Comparison of the estimated 3D-trajectory with GPS

instead of being well distributed in the image. The outcome
of this is an ill-conditioned pose estimation and hence an
inaccurately estimated distance and pitch-angle. The problem
of this scenario is that image positions hardly change by a
further increase of the distance.

However, as shown in Fig. 9, the yaw angle can be
estimated well because a planar rotation definitely changes
the image positions of these features. The figure clearly
illustrates every turn of the track and the good consensus
of the yaw angle for each loop. Just some minor deviations
due to different drive behavior and drift can be seen. This
means that Fig. 9 shows the potential of our implemented
VO for applications which mainly rely on a good estimation

Fig. 8: Features of two left images used for pose estimation
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of the yaw angle like it‘s necessary for agricultural vehicles.

Using the given laptop, in average the computing time of
the pose estimation takes 0.349 s per stereo pair. This equates
to approximately three pose estimations per second.

V. CONCLUSION AND FUTURE WORK

We developed a Visual Odometry system that is based on
a stereo-camera pair and capable of estimating the position
and orientation of an agricultural vehicle in GPS-obstructed
environments. We deployed our system on a small truck
and carried out measurements for two different logging road
scenarios. The results show that an insufficient distribution of
features can lead to an ill-conditioned pose estimation, and
hence to an inaccurately estimated distance and pitch angle.
Due to the incremental concatenation of relative motions,
this results in an increased error in position. However, our
robust VO system is highly capable of estimating the orien-
tation (yaw angle) with acceptable accuracy in unstructured
environment. This is especially shown in the first scenario in
the dense forest where the signal quality of GPS lacks.

Future work includes the improvement of the distribu-
tion of features and hence the pose estimation. Uniformly
distributed features could be achieved via using different
detector parameters for the upper and lower half of the
image.

Another goal is to reduce the computing time of the VO
to facilitate an online system. This can mainly be done via
the parallelization of repeatable tasks like feature detection
and description.

Furthermore, the next steps include the incorporation of
the data of an IMU that were recorded simultaneously during
our measurements. We plan to use a data fusion algorithm
such as a Kalman Filter to improve the overall accuracy by
combining the VO with the IMU data.
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