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Abstract
We study the time evolution of an integrable many-particle system, described by the q-

boson Hamiltonian in the limit of strong bosonic interactions q →∞. It is shown that, for a
particular class of pure initial states, the analytical calculation of certain observables simpli-
fies considerably. Namely, we provide exact formulas for the calculation of the Loschmidt-echo
and the emptiness formation probability, where the computational time scales polynomially
with the particle number. Moreover, we construct a non-local mapping of the q-boson model
to the XX spin chain, and show how this can be utilized to obtain the time evolution of vari-
ous local bosonic observables for translationally invariant initial states. The results obtained
via the bosonic and fermionic picture show perfect agreement. In the infinite volume and
large time limits, we rigorously verify the prediction of the Generalized Gibbs Ensemble for
homogeneous initial Fock states.

1 Introduction
The study of time evolution in isolated quantum many-body systems has become a leading

direction of research within both experimental and theoretical condensed matter physics
[1, 2]. One of the main questions to be answered is whether unitary time evolution can lead to
a local thermalization of the system and what are the characteristics of the relaxation towards
this stationary state. Particularly interesting is the case of integrable quantum systems where
the dynamics is severely constrained by an extensive set of conservation laws. In order to
take these constraints into account, an extended notion of thermalization is required and a
statistical ensemble under the name of Generalized Gibbs Ensemble (GGE) was put forward
for the description of the stationary state [3].

One way of testing the validity of the GGE is by monitoring the asymptotic time evolution
of local observables, which is a notoriously hard task for genuinely interacting Hamiltonians.
One possibility is to resort to purely numerical techniques such as the time evolving block
decimation method [4, 5] applied in [6], or to develop special tools based on integrability.
From the analytical side, one of the most successful approaches to give predictions for the
long time limit of observables is the so-called quench action technique [7]. It provides a means
of capturing the stationary state emerging from the unitary time evolution of a Bethe Ansatz
integrable model from a pure initial state. The method has been successfully applied for some
simple initial states of the 1D Bose gas [8] and the infinite XXZ chain [9, 6]. Remarkably, in
the latter case it has been found that the stationary state can only be described by a GGE
that is supplemented by a new family of quasi-local conserved charges [10]. Recently, some
generalizations to finite size chains have also been reported [11].
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Despite the success of the Quench Action method, its scope is mainly restricted to the
asymptotic regime of the time evolution. Indeed, the technique relies on selecting a repre-
sentative Bethe state of the interacting Hamiltonian via a saddle point analysis, which in
turn encodes all the information about the time-evolved state for t→∞. However, if one is
interested in early or intermediate time-scales, the summation over the complete set of Bethe
states, contributing to the time evolution of a specific observable, can not be avoided. In order
to overcome the limitations of summing over an exponentially large set of eigenstates, one
needs some prior knowledge about the importance of the contributions from many-particle
states, which is a crucial ingredient behind Bethe Ansatz based numerical methods [12, 13].
Although such an importance sampling is feasible for some integrable models [14], it is not
yet clear whether strict analytical results could be obtained using this technique.

On the other hand, within the field of Bethe Ansatz integrable systems, there has always
been an immense theoretical interest in devising exact analytical techniques. Indeed, several
successful approaches exist for the computation of equilibrium properties of these models, in
particular the Heisenberg XXZ chain and the 1D Bose gas [15]. Important achievements in-
clude the computation of the asymptotics of space and time dependent correlation functions
(see [16] and references therein) and the derivation of effective, factorized formulas for the
ground state and finite temperature local correlators of the XXZ model (see [17] and refer-
ences therein). In view of these remarkable achievements the question naturally arises whether
some progress can be made for the far-from-equilibrium physics of integrable systems. Such
studies are also motivated by the fact that in certain quenches of the XXZ chain and the
1D Bose gas exact results have been obtained for the stationary states [8, 9, 18, 19, 10, 20].
Ideally, one would like to have exact formulas for the full time evolution, such that the pre-
viously mentioned results could be obtained simply by taking the long time limit. Whether
or not such program can be carried out is not clear at the moment.

Motivated by these long term goals, in the present paper we set a somewhat simpler
objective: we consider time evolution in the q-boson Hamiltonian in the q → ∞ limit, also
known as the phase model [21, 22, 23, 24]. In this limit the bosonic interactions are strong,
there is non-trivial scattering between the particles, but the scattering is simple enough
so that manageable exact expressions can be obtained for the observables. Therefore, the
complexity of this lattice hopping model is somewhere between that of free theories and a
generic Bethe Ansatz solvable model. The quantities of interest are the return probability
(or Loschmidt echo) and the emptiness formation probability (EFP) of the time evolved
state. The EFP is probably the simplest local observable for which efficient closed-form
expressions can be found for integrable models [25, 26]. On the other hand, the calculation of
the Loschmidt echo mainly serves as an introductory example to demonstrate our method.
Namely, we show that, due to the simple constraints between rapidities and for a specific
class of initial states, the sums over exponentially many Bethe states can be turned into a
simple sum over the total momentum and an auxiliary variable. Hence, we obtain an exact
analytical expression for the Loschmidt echo where the number of terms to be summed scales
at most linearly in both the system size and the number of particles. Interestingly, it turns
out that the form factors of the EFP have again the properties which allow the same trick
to be carried out, i.e. the exponential sums over intermediate states can again be replaced
by an expression in which the number of terms scales polynomially.

The huge simplification in the computational efforts of the above quantities suggests
that there might be some deeper connection between the q-boson Hamiltonian and a non-
interacting model. In fact, such a mapping to the XX spin chain (which is equivalent to
a free-fermion hopping model) was already pointed out in an earlier work [24]. Here we
show that, although some boundary terms spoil an exact correspondence, the mapping can
be symmetrized such that the two models become equivalent in the zero-momentum sector
even for finite chain sizes. Furthermore, even though the mapping is non-local, we show that
the average EFP’s are exactly mapped onto each other. Thus, for translationally invariant
bosonic initial states, the calculation of the time evolution of the EFP further simplifies
using the free-fermion representation. Moreover, the fermionic methods allow us to compute
other observables (such as the local bosonic occupation probabilities) that were previously
inaccessible with the bosonic approach.

In the following, we first introduce the q-boson model in section 2 and describe its Bethe
Ansatz solution in the limit q = ∞. In section 3 we report our main results about the
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analytical calculation of the time evolution of the Loschmidt echo and the EFP for a simple
class of initial states. Sec. 4 describes the non-local mapping from the q-boson Hamiltonian to
the XX chain and introduces the free-fermion formalism for the calculation of the EFP. Some
particular translation invariant states are considered in Sec. 5 where the numerical results
on the EFP from our new Bethe Ansatz approach are cross-checked to analytical formulas
obtained via the fermionic representation. Our concluding remarks are found in Sec. 6. The
paper is supplemented with two appendices where some details of the analytical calculations
are given.

2 The model and its Bethe Ansatz solution
Consider a bosonic chain of length L. The Hilbert space is spanned by Fock states

|n1, n2, . . . , nL〉 = |n1〉1 ⊗ |n2〉2 ⊗ · · · ⊗ |nL〉L, (2.1)

where nj ≥ 0 represent the local occupation numbers.
The q-boson model at q =∞ (also called the phase model) is given by the Hamiltonian 1

HB = −
L∑
j=1

(φ†jφj+1 + φ†j+1φj − 2Nj), (2.2)

where the operators φj , φ
†
j are defined by their action

φj |n〉j =

{
|n− 1〉j , for n > 0

0, for n = 0,
and φ†j |n〉j = |n+ 1〉j (2.3)

on local bosonic states and the Nj are the standard local number operators. In (2.2) periodic
boundary conditions are assumed. Note that the φ, φ† operators do not coincide with the
standard bosonic creation/annihilation operators, in particular they satisfy the somewhat
unusual exchange relation

[φj , φ
†
k] = δj,kδnj ,0.

Although there is no explicit interaction term in the Hamiltonian (2.2), it is not free: due to
definition (2.3) the physical hopping amplitudes depend on the local occupation numbers.

The q-boson model can be solved by the different versions of the Bethe Ansatz. The
Algebraic Bethe Ansatz (ABA) solution was first derived (for general q) in the papers [28,
29, 30], whereas equilibrium correlation functions were calculated in [21]. Afterwards, the
coordinate Bethe Ansatz wave functions were given in [22, 24]. The phase model is also
related to the enumeration of plane partitions [22, 23, 24, 31].

In the present work we refrain from discussing the ABA solution as all our results can be
obtained from the known real space wave functions. We write the N -particle eigenstates of
the system as

|{a}N 〉 =
∑

1≤x1≤x2≤...xN≤L

CN (x1, . . . , xN )φ†x1
. . . φ†xN |0〉B. (2.4)

It was derived in [22] that the coefficients can be expressed as

CN (x1, . . . , xN ) = det
N

(
(ak)j+xj

)
, ak = eipk , (2.5)

where the pk variables in (2.5) can be identified as quasi-momenta of the interacting particles.
We note that our formula (2.5) differs from the conventions of the ABA literature in both
the overall norm and the phase of the vector. In particular, there is a sign depending on the
ordering of the parameters aj , however this drops out from the actual calculations. Also, we
will assume for simplicity that N and L are even. Odd values only affect certain signs in
intermediate results, but not the physical observables.

1In the present work we do not treat the model for general q. The reader who is interested in the general case
is referred to [27] and references therein.
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In a Bethe Ansatz wave function a simple phase arises when we exchange two particle
positions, and this is interpreted as the physical S-matrix of the particles. In the present
case we can read off (2.5) that this phase is

S(p1, p2) = −ei(p1−p2). (2.6)

Periodicity of the wave function implies the Bethe equations:

eipjL
∏
k 6=j

S(pj − pk) = 1.

In the phase model this gives

(aj)
L+N = (−1)N−1eiP , eiP =

N∏
k=1

ak, (2.7)

where eiP is the eigenvalue of the one-shift translation operator. Equation (2.7) shows that
the quantization condition is “almost free”: once P is fixed the momenta can be chosen
independently, as long as they satisfy the overall constraint on the r.h.s. of (2.7). However,
the exponent of the variable aj is L+N , whereas a free theory would give simply L.

If the BA equations are satisfied, the energy eigenvalues are given by

EN =

N∑
j=1

e(pj) where e(p) = 4 sin2(p/2). (2.8)

The norm of the Bethe states is simply

〈{a}N |{a}N 〉 = L(L+N)(N−1). (2.9)

This result was obtained in [21] using the Algebraic Bethe Ansatz, whereas in [22] it was
shown that it follows from certain properties of the Schur polynomials 2.

In the thermodynamic limit N,L→∞ and N/L = n it is convenient to work with root
and hole densities ρr(p) and ρh(p). In generic Bethe Ansatz solvable models these densities
satisfy linear integral equations, however in the present case the constraint for them reads
simply

ρr(p) + ρh(p) = 1 + n, (2.10)

which can be obtained directly from the Bethe equations (2.7).

3 Finite volume real time dynamics
In this section we present a new numerical method to study real time dynamics in the

phase model. Our method is similar to that of [21], where two-point functions were computed
in equilibrium.

In all cases below the setting is the following. At t = 0 the system of finite volume L
is prepared in a state |Ψ0〉, which can be a simple Fock state in the coordinate basis, or
some other state prepared according to certain rules. At times t > 0 the system is subject to
time evolution governed by the Hamiltonian (2.2) and our goal is to compute the physical
observables.

We consider a class of initial states where the unnormalized overlaps can be written as

〈Ψ0|{a}N 〉 = Z(N) detGj(ak), (3.1)

where Z(N) is a numerical constant, and G is an N ×N matrix where the kth column only
depends on the parameter ak. It is easy to see that pure Fock states in the coordinate basis
satisfy this requirement: the overlap can be read off from (2.5) and we get

Gj(ak) = a
xj+j
k , Z(N) = 1. (3.2)

In the calculations below we will keep G unspecified as long as possible, but in the actual
examples we will deal with G-matrices of the form (3.2).

2In [21, 22] the norm formula includes a Vandermonde determinant, which arises due to the different normal-
ization of the Bethe vectors.
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3.1 Exact result for the Loschmidt-echo
As a warm up we calculate the Loschmidt amplitude (or fidelity), which is defined as

L(t) ≡ 〈Ψ0|Ψ(t)〉 = 〈Ψ0|e−iHBt|Ψ0〉. (3.3)

Inserting a complete set of Bethe states and using the assumed form (3.1) we have

L(t) =
Z2(N)

L(L+N)N−1

∑
{a}

|detGj(ak)|2e−iE(a)t.

Our goal is to perform the summation over the a-variables without explicitly using the
functions Gj(a). First we give an explicit solution of the Bethe equations (2.7). Overall
momentum quantization gives

P = J
2π

L
, J = 1, . . . , L, (3.4)

and the a-variables can then be parametrized as

aj = eipj , pj = Ij
2π

N + L
+
π + P

N + L
Ij ∈ {1, . . . , N + L}, (3.5)

where the Ij are interpreted as momentum quantum numbers. These parameters can not be
chosen completely freely, because they have to satisfy a constraint which follows from∑

j

pj = P mod 2π. (3.6)

The central idea of our method is to introduce an auxiliary sum replacing the constraint so
that we can sum over the quantum numbers independently. We introduce the sum

1

A

A∑
α=1

eiα(
∑
j pj−P ), (3.7)

where A is an integer depending on N and L. If the momentum constraint is satisfied, then
the sum gives 1, whereas in all other cases

A∑
α=1

eiα(
∑
j pj−P ) = ei(

∑
j pj−P ) e

iA(
∑
j pj−P ) − 1

ei(
∑
j pj−P ) − 1

. (3.8)

We need to choose A so that the r.h.s. above is always zero. Using the solution (3.4)-(3.5)
we obtain the necessary and sufficient conditions (assuming N is even)

A

N + L
∈ Z,

AN

L(N + L)
∈ Z

A

2L
∈ Z. (3.9)

If we assume to have a fixed particle density, then A has to scale linearly with N . For example
if n = N/L = 1 then we can choose A = 2N to satisfy the conditions. However, depending
on the symmetries of the initial state in many cases A can be set to a fixed small number.
This will be discussed at the end of this section.

Now we are in the position to sum over the a-variables independently:

L(t) =
Z(N)2

AL(L+N)N−1

L∑
J=1

A∑
α=1

1

N !

∑
a1,...,aN

eiα(
∑
j pj−P )e−i

∑
j E(pj)t |detGj(ak)|2 . (3.10)

We expand the determinants as

|detGj(ak)|2 =
∑
σ,σ̄

(−1)σ(−1)σ̄
∏
j

Gσj (ak)G∗σ̄j (ak). (3.11)
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Each a variable appears exactly twice in a factorized form, therefore the summations over
them can be performed independently. By renaming the a-variables and reordering the factors
in the product we obtain a single sum and a factor of (N !). The resulting sum has the form
of a determinant, we thus obtain

L(t) =
Z(N)2

AL(L+N)N−1

L∑
J=1

A∑
α=1

e−iαP detM, (3.12)

with

Mjk =

N+L∑
I=1

eiαpIe−iE(pI)tGj(aI)G
∗
k(aI), (3.13)

where

aI = eipI , pI = I
2π

N + L
+
π + P

N + L
, P = J

2π

L
, (3.14)

and the energy is given by E(pI) = 4 sin2(pI/2). We stress that in (3.5) there are N a-
variables for each state and they correspond to the physical rapidities of the individual
states, whereas in (3.14) the a-variables form a list of the N + L possible particle momenta
for each overall momentum P . To distinguish the two different roles of rapidities we use
upper case indices for the non-physical rapidity variables.

Formula (3.12) expresses the Loschmidt echo as a sum of LA determinants, where the
summation variables are the overall momentum quantum number J and the auxiliary pa-
rameter α . Each matrix entering this sum can be written as

M = G̃ΛG̃†, (3.15)

where G̃ is an N × (L+N) matrix with elements given by

G̃jK = Gj(aK), (3.16)

and Λ is an (L+N)× (L+N) diagonal matrix with elements

ΛIK = δIKe
iαpKe−iE(pK)t. (3.17)

Note that G̃ only depends on J , whereas Λ depends on both α and J . Our derivation
of (3.12)-(3.15) can be regarded as a backwards application of the Cauchy-Binet formula,
which expresses the determinant of a product of non-square matrices as a sum over subsets
of the rows.

Depending on the situation, formula (3.12) can be transformed into more convenient
representations. One way to simplify it is to introduce the Fourier transform operator over
N points:

Vkl =
1√
N
e−iqkl qk =

2π

N
k +

π + P

N
. (3.18)

For later convenience we introduced a shift in the q-variables so that

(eiqk)N = −eiP , k = 1, . . . , N. (3.19)

It can be verified that V is a unitary operator. Inserting V and V † into (3.15) the Loschmidt
echo is written as

L(t) =
1

AL(L+N)N−1

L∑
J=1

A∑
α=1

e−iαP det
(
HΛH†

)
, (3.20)

where
HjK =

1√
N

∑
m

e−iqjmGm(aK). (3.21)

This form is particularly useful if the initial state is a pure local Fock state with G given by
(3.2), because in those cases we obtain a Fourier-like sum:

HjK =
1√
N

∑
m

e−iqjmeipK(xm+m). (3.22)
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If the initial state has periodic structure, then the matrix H can only have few non-vanishing
matrix elements. This makes formula (3.20) very effective. Note that the q-variables form
a set of N whereas the p-variables form a set of N + L, and they have different definitions
(3.18) and (3.14).

Depending on the initial state, many of the determinants in (3.20) can be equal, thus the
parameter A can be set to a fixed small number. Examples include periodic pure Fock states.
In appendix B it is shown that if xj are the initial positions of the particles in the Fock state
and a new Fock state constructed from the coordinates yj = j + xj has periodicity ν, then
it is enough to choose A = ν.

3.2 Exact results for the emptiness formation probability
Here we compute the time evolution of a simple physical observable, namely the m-site

emptiness formation probability (EFP). The EFP has been intensively studied in the ground
state of various integrable systems such as the XXZ chain [25, 26, 32, 33, 34, 35, 36, 37],
free-fermion Hamiltonians [38, 39, 40] as well as the q-boson model [21, 22, 23, 24]. Recently,
there has even been some progress on the time evolution of the EFP after a quench for free
fermions [41].

We define local projection operators Π0
j that project to the subspace with no particle on

site j. Then the position dependent m-site EFP is defined as

Em(j) =

m−1∏
k=0

Π0
j+k.

Inserting two complete sets of states the time evolution is computed as

〈Em(j, t)〉 = 〈Ψ0|{a}N 〉 〈{a}N |Em(j)|{b}N 〉 〈{b}N |Ψ0〉 e−i(Eb−Ea)t.

Matrix elements of the EFP operators were first derived in [21] using the ABA, but they
can be calculated from the coordinate BA wave functions too [24]. In our normalization the
matrix element between two un-normalized off-shell Bethe states reads

〈{a}N |Em(j)|{b}N 〉 = ei(P2−P1)j det

1−
(
bl
ak

)N+L−m−1

1− bl
ak

 , (3.23)

where

eiP1 =

N∏
j=1

aj eiP2 =

N∏
j=1

bj .

If two rapidities coincide then the corresponding matrix element has to be evaluated using
l’Hôpital’s rule.

The matrix on the r.h.s. of (3.23) has the property that its lth row (or kth column)
depends on bl (or ak), respectively. Together with the similar form of the overlap matrices,
this makes it possible to perform essentially the same steps as in the previous section. The
difference is that here we are faced with a double sum over intermediate states, leading to
two auxiliary sums. This yields the following final result:

〈Em(j, t)〉 =
Z2(N)

(AL(L+N)N−1)2

L∑
J1,J2=1

ei(P2−P1)j
A∑

α1,α2=1

e−iα1P1eiα2P2 detOm. (3.24)

Here J1,2 are the momentum quantum numbers, α1,2 are the auxiliary variables, and the
N ×N matrix Om is given by

Om = G̃1Λ1FmΛ2G̃
†
2, (3.25)

where G̃1 and G̃2 are N × (N + L), and Λ1,2 and Fm are (N + L)× (N + L) matrices with
elements

G̃1,lK = Gl(aK), G̃2,lK = Gl(bK), (3.26)

Λ1,IK = δIKe
iα1pK+iE(pK)t Λ2,IK = δIKe

−iα2qK−iE(qK)t, (3.27)
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and finally

Fm,IK =
1−

(
bI
aK

)N+L−m−1

1− bI
aK

.

The parametrization of the a and b variables reads

aI = eipI , pI = I
2π

N + L
+
π + P1

N + L
, P1 = J1

2π

L

bI = eiqI , qI = I
2π

N + L
+
π + P2

N + L
, P2 = J2

2π

L
.

(3.28)

In those cases where J1 6= J2 we can use the Bethe equations to write the matrix Fm as

Fm,IK =
1− ei(P2−P1)

(
aK
bI

)m+1

1− bI
aK

.

On the other hand, for J1 = J2 we obtain

Fm,IK = (N + L)δIK −
aK
bI

1−
(
aK
bI

)m+1

1− aK
bI

. (3.29)

Similar to the computation of the Loschmidt echo, we can insert the matrices V defined in
(3.18) into (3.24). This gives an alternative representation for the O-matrices:

Om = HΛ1FmΛ2H
†, (3.30)

with H given by (3.21).
Formula (3.24) is exact and it computes the EFP with O(L2A2(N + L)2N) ∼ O(N7)

steps. Although the power 7 is quite large, this is still a huge simplification over the original
exponential sums. Moreover, depending on the situation, many terms can be exactly identical
which can lead to substantial improvements of the numerical algorithm.

If we restrict ourselves to calculate the space averaged EFP, it is enough the keep terms
with J1 = J2:

〈
Ēm(t)

〉
≡ 1

L

L∑
j=1

〈Em(j, t)〉 =
Z2(N)

(AL(L+N)N−1)2

L∑
J=1

A∑
α1,α2=1

ei(α2−α1)P detOm, (3.31)

where the matrix Om is defined in (3.25) and it still depends on J and α1,2.
Further simplification is possible when the initial state is invariant under translations by

p ≥ 1 sites. In these cases the sum in (3.24) can be restricted to

J1,2 =
L

p
J̃1,2, J̃1,2 = 1, . . . , p.

In these cases the sum in (3.24) is more manageable because its computational cost is O(N5)
instead of the original O(N7). If full translational invariance holds (p = 1) then only the
zero momentum sectors contribute:

〈Em(t)〉 =
Z2(N)

(AL(L+N)N−1)2

A∑
α1,α2=1

detOm. (3.32)

If the initial state is a pure Fock state, with partial or full translational invariance, then
depending on its actual structure the number A can be set to a constant value, and the cost
of the resulting numerical calculations becomes O(N3). In appendix B we also show that in
these cases (3.32) can be transformed into a form which is identical to that obtained from
the mapping to the XX model introduced in the next section.
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4 Mapping to the XX chain
The XX chain is a spin-1/2 model that can be mapped to free fermions. It is defined

through the Hamiltonian

HXX = −
M∑
j=1

(σ+
j σ
−
j+1 + σ−j σ

+
j+1 − hσ

z
j ), (4.1)

where σ+
j , σ

−
j , σ

z
j are the Pauli matrices acting on site j.

In the following we describe two mappings between the phase model and two different
fermionic models . The first one connects the phase model with a slightly modified version
of the XX model; the modification consists of an extra non-local boundary term. The second
mapping connects the zero-momentum sectors of the phase model and the original XX model.
This mapping is exact, and there are no extra boundary terms. In both cases we will work
within a subspace with fixed total particle numberN . The length of the bosonic and fermionic
chains is L and M , respectively.

As a first step we introduce the notations for the basis vectors. In the same way as in
(2.1) the states will be labeled by listing the occupation numbers, but we add subscripts B
(Bosons) and F (Fermions) to distinguish the states of the two systems from each other:

|n〉B = |n1〉B ⊗ |n2〉B ⊗ · · · ⊗ |nL〉B,
L∑
j=1

nj = N

|m〉F = |m1〉F ⊗ |m2〉F ⊗ · · · ⊗ |mM 〉F,
M∑
j=1

mj = N.

In the fermionic case the allowed local Fock states are |0〉F and |1〉F.
Now we define the mapping from the phase model to a modified XX model. The main idea

of this mapping first appeared in [24], but the boundary conditions and the extra non-local
boundary term were not described there.

As a first step we introduce a mapping P from a local bosonic space to an arbitrary
product of fermionic spaces by the simple action

P |n〉B = |1〉F ⊗ |1〉F ⊗ · · · ⊗ |1〉F︸ ︷︷ ︸
n times

⊗|0〉F .

In particular P |0〉B = |0〉F.
The mapping can be extended to the full bosonic Hilbert space naturally:

P |n〉B = ⊗Lj=1

(
P |nj〉B

)
.

Examples are

P |2, 3, 0, 1〉B = |1, 1, 0, 1, 1, 1, 0, 0, 1, 0〉F P |0, 1, 0〉B = |0, 1, 0, 0〉F

Another way to establish the mapping is through the coordinates of the particles. If the
bosonic particles have coordinates xj , j = 1, . . . , N , such that xj ≥ xk for j > k, then the
positions on the fermionic chain are yj = xj + j−1. Note that this definition of the mapping
is suggested by the explicit wave function (2.5), which becomes a Slater determinant in the
new coordinates.

Note that P conserves the total particle number N and it connects the bosonic chain
with length L and the fermionic chain with length M = L+N . However, the last site of the
fermionic chain is not dynamic, its state remains fixed to |0〉F . Another way to formulate the
mapping is to delete the last site of the fermionic chain and then we would get a bijection
between the N -particle sector of the the phase model of length L and the N -particle sector
of the fermionic chain with length N + L − 1. However, for future convenience we keep the
last site as well.

Using the mapping P we pull back the q-boson Hamiltonian to the fermionic chain. We
show that in the bulk we obtain the XX model, and at the boundary a new term arises. The
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fermionic Hamiltonian will be established by fixing its matrix elements. In both the q-boson
and XX models the Hamiltonian is a sum of the hopping terms and the particle number
term. The mapping conserves number of particles, therefore the particle number operators
correspond to each other if the magnetic field in the XX model is chosen to be h = 2. On
the other hand, the hopping terms are more complicated.

A transition matrix element is non-zero in both models if and only if there is a one-site
hopping of one particle. On the bosonic side we consider a hopping from site j to site j + 1.
Let

|a〉B = |α〉B ⊗ |aj , aj+1〉B ⊗ |β〉B |a′〉B = |α〉B ⊗ |aj − 1, aj+1 + 1〉B ⊗ |β〉B.

Here |α〉B (or |β〉B) is a state of the segment of the chain from sites 1 to j − 1 (or j + 2 to
L), respectively. The Hamiltonian has a transition matrix element

B〈a|HB|a′〉B = −1.

Then

|a〉F = P |a〉B =
(
P |α〉B

)
⊗

∣∣∣∣∣∣∣ 1, . . . , 1︸ ︷︷ ︸
aj−1 times

, 1, 0, 1, . . . , 1︸ ︷︷ ︸
aj+1 times

, 0

〉
F

⊗
(
P |β〉B

)

|a′〉F = P |ã〉B =
(
P |α〉B

)
⊗

∣∣∣∣∣∣∣ 1, . . . , 1︸ ︷︷ ︸
aj−1 times

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
aj+1 times

, 0

〉
F

⊗
(
P |β〉B

)
.

Therefore
F 〈a|HXX|a′〉F = −1.

Note that even though the matrix elements are the same, the real location of the fermionic
hopping depends on the particle content of the states |α〉B and |β〉B.

Particle hoppings between the first and last sites of the q-boson model need special
treatment, and they result in new non-local terms in the fermionic Hamiltonian. Let us
investigate the two vectors

|b〉B = |b1〉B ⊗ |γ〉B ⊗ |bL〉B |b′〉B = |b1 − 1〉B ⊗ |γ〉B ⊗ |bL + 1〉B,

where |γ〉B is an arbitrary vector of the chain segment between sites 2 and L − 1. We have
the matrix element

B〈b|HB|b′〉B = −1.

On the other hand, the mapping gives

|b〉F = P |b〉B =

∣∣∣∣∣∣∣1, . . . , 1︸ ︷︷ ︸
b1 times

, 0

〉
F

⊗
(
P |γ〉B

)
⊗

∣∣∣∣∣∣∣1, . . . , 1︸ ︷︷ ︸
bL times

, 0

〉
F

|b′〉F = P |b′〉B =

∣∣∣∣∣∣∣ 1, . . . , 1︸ ︷︷ ︸
b1−1 times

, 0

〉
F

⊗
(
P |γ〉B

)
⊗

∣∣∣∣∣∣∣ 1, . . . , 1︸ ︷︷ ︸
bL+1 times

, 0

〉
F

.

Alternatively these two vectors can be written as

|b〉F = P |b〉B = U


∣∣∣∣∣∣∣ 1, . . . , 1︸ ︷︷ ︸
b1−1 times

, 0

〉
F

⊗
(
P |γ〉B

)
⊗

∣∣∣∣∣∣∣1, . . . , 1︸ ︷︷ ︸
bL times

, 0, 1

〉
F


|b′〉F = P |b′〉B =

∣∣∣∣∣∣∣ 1, . . . , 1︸ ︷︷ ︸
b1−1 times

, 0

〉
F

⊗
(
P |γ〉B

)
⊗

∣∣∣∣∣∣∣1, . . . , 1︸ ︷︷ ︸
bL times

, 1, 0

〉
F

,
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where U is the periodic shift operator by one site to the right. Therefore

F〈b|UHXX|b′〉F = −1. (4.2)

and in the N -particle sector we have the similarity relation between the Hamiltonians with
sites L and M = N + L given by

HB = P−1Hmod
XX P (4.3)

with

Hmod
XX = −

M−2∑
j=1

(σ+
j σ
−
j+1 + σ−j σ

+
j+1) + Uσ−M−1σ

+
M + σ+

M−1σ
−
MU

−1

+ 2N. (4.4)

Notice that Hmod
XX respects the constraint that the last site of the fermionic chain is fixed to

|0〉F .
Now we are in the position to establish a modified mapping P̃ which connects the zero-

momentum sectors of the phase and XX models. The idea is to symmetrize the original
operator P with respect to translations, both on the bosonic and the fermionic side. To
define P̃ we first need to fix a basis in the zero-momentum sectors. This can be achieved by
selecting vectors |ã〉B,F in the form of

|ã〉B,F =
1√
paB,F

[
|a〉B,F + U |a〉B,F + U2|a〉B,F + · · ·+ Up

a
B,F−1|a〉B,F

]
, (4.5)

where |a〉B,F are Fock states of the bosonic and fermionic chains that are invariant under
translation by paB,F sites. Typically paB = L and paF = N + L, but we also need to treat the
special cases with partial translational invariance. An example is the zero-momentum Néel
state in the fermionic chain which has pF = 2 and is of the form∣∣∣Ñ〉

F
=

1√
2

[|1010 · · · 〉F + |0101 · · · 〉F ] .

In both the bosonic and fermionic chains we can choose an arbitrary member in the sum
(4.5) as the first (labelling) vector |a〉B,F . However, in the fermionic case we require that
the last site of |a〉F is in the state |0〉F . This can always be achieved by a finite number of
translations because the fully occupied fermionic state does not occur in the image of the
original mapping P .

The mapping P̃ is constructed by associating

|ã〉F = P̃ |ã〉B

such that for the original vectors

|a〉F = P |a〉B and paF =
N + L

L
paB .

The relation on the right above follows simply from the properties of the mapping P . It is
easy to see that P̃ establishes a bijection between the zero-momentum basis vectors of the
bosonic and fermionic chains. Now we show that pulling back the q-boson Hamiltonian leads
to the XX model.

First of all notice, that a one-particle hopping amplitude between two vectors |a〉B,F
and |b〉B,F is non-zero only in those cases when at least one of the states has pa,bB = L or
pa,bF = N + L, respectively. If neither states are periodic, then it can be seen immediately
that the one-particle hopping amplitude is −1 both in the bosonic and fermionic chains. Now
we consider the cases when paB < L, paF < N + L and paB = L, paF = N + L. In these cases
breaking of the partial translational invariance is a result of a single hopping somewhere
along the chain. It is easy to see that

B〈ã |HB | b̃〉B = − L√
paBp

b
B

= −

√
L

paB
and F 〈ã|HXX |b̃〉F = − N + L√

paF p
b
F

= −

√
N + L

paF
.
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Using the relation paF = N+L
L paB , we obtain that the two matrix elements are indeed the

same. With this we have established that in the zero-momentum sectors of each theory

HB = P̃−1HXXP̃ . (4.6)

It is useful to consider the physical S-matrix in the two models. In the XX model we have
S = −1, whereas in the phase model S is given by (2.6). The apparent difference is easily
explained by the non-locality of the mapping P . Two particles that are on neighboring sites
of the phase model correspond to a string of 101 on the XX chain. Therefore, exchanging
positions of two particles in the phase model is equivalent to performing a translation, an
exchange and another translation in the XX model. Multiplying the phase factors associated
to these three steps, we obtain the bosonic S-matrix (2.6).

4.1 Other local operators
The mappings between the models are highly non-local, therefore there is no general

correspondence between local operators. However, we can find a limited set of operators
that are local in both models and whose space averages correspond to each other. Examples
include the emptiness formation probability (EFP) operators and the projection operators
that measure the probability to have a fixed number of particles on a given site.

First we consider the EFP. We define local projection operators3 Π0
j,B and Π0

j,F that
project to the subspaces where there is no particle on site j. Then the position dependent
m-site EFP is defined as

Em,B(j) =

m−1∏
k=0

Π0
j+k,B , Em,F (j) =

m−1∏
k=0

Π0
j+k,F .

The average EFP is

Ēm,B =
1

L

L∑
j=1

Em,B(j), Ēm,F =
1

M

M∑
j=1

Em,F (j).

It is easy to see that P maps a local bosonic m-site EFP to a local fermionic m+ 1 site EFP,
but the position of the resulting fermionic operator depends on the particle distribution of
the bosonic state outside the EFP. However, the averaged EFP’s are mapped onto each other,
except for finite boundary contributions:

Ēm,B ≈
M

L
P−1Ēm+1,FP = (1 + n)P−1Ēm+1,FP, (4.7)

where the factor M
L = (1 + n) arises from the change of the volume. Equality is reached in

the thermodynamic limit. Regarding the mapping P̃ connecting the zero-momentum sectors
it is easy to see that the relation

Ēm,B = (1 + n)P̃−1Ēm+1,F P̃ (4.8)

is exact both in finite volume and in the thermodynamic limit.
As a second example we consider the probability to have m particles on site j of the

bosonic model. To this end we introduce the general projection operators Πm
j,B and Πm

j,F ,
where m = 0 . . .∞ and m = 0, 1 in the bosonic and fermionic models, respectively. We will
also use the average of the bosonic operator

Π̄m
B =

1

L

L∑
k=1

Πm
j,B .

3The bosonic EFP operator has already been defined in Section 3.2. Here we redefine it with a subscript B in
order to have the same notations for the bosonic and fermionic operators.
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A bosonic site with m particles is always mapped to a continuous sequence of m particles on
the fermionic chain, preceded and followed by an empty site:

P |. . . ,m, . . . 〉B =

∣∣∣∣∣∣. . . , 0, 1, . . . , 1︸ ︷︷ ︸
m times

, 0, . . .

〉
F

.

We define the fermionic operators and their average

Dm,F (j) = Π0
j−1,F

(
m−1∏
k=0

Π1
j+k,F

)
Π0
j+m,F , D̄m,F =

1

M

M∑
j=1

Dm,F (j).

Once again, the averaged operators correspond to each other except for certain finite bound-
ary terms:

Π̄m
B ≈ (1 + n)P−1D̄m,FP. (4.9)

With regard to the mapping P̃ in the zero-momentum sector we have an exact relation

Π̄m
B = (1 + n)P̃−1D̄m,F P̃ . (4.10)

Note that (4.9)-(4.10) give the EFP relations (4.7)-(4.8) at the special value m = 0.

4.2 Formation probabilities in the XX chain
As discussed in the previous subsection, the calculation of averaged formation proba-

bilities in the bosonic case can be directly recast in the language of the XX chain with
Hamiltonian (4.1). The correspondence holds also for the time dependent quantities after
a quench and becomes especially useful in case of the translational invariant initial states.
Here we use this mapping to obtain simple determinant formulas for the EFP, employing
free-fermion techniques [38, 39]. On the one hand, these will serve as a check of the bosonic
results, but they will also be used to obtain new results. For simplicity, we will only consider
cases when the bosonic state is translationally invariant.

The periodic XX chain can be transformed into a fermionic hopping model with Hamil-
tonian

HF = −
M∑
j=1

(c†j+1cj + c†jcj+1 − h(2c†jcj − 1)), (4.11)

where, in the sector of even particle number N =
∑
j c
†
jcj , the boundary condition is anti-

periodic in the fermion operators, cM+1 = −c1. Note that the lengths M and L of the
fermionic and bosonic chains are related as M = L + N . Since the term proportional to h
in (4.11) is just a constant, it drops out from the time evolution and one can set h = 0. The
Hamiltonian becomes diagonal after a Fourier transform

HF = −
M∑
k=1

2 cos(qk)c†qkcqk , qk =
π

M
(2k − 1) , (4.12)

where the allowed values of momenta are set by the anti-periodic boundary condition.
Starting from an initial Fock state, all the information about the time evolved state

is encoded in the fermionic correlation matrix elements Cmn(t) = 〈c†m(t)cn(t)〉. Using the
diagonal form of HF , the time evolution of the fermionic operators reads

cn(t) =
∑
l

Unl(t)cl , Unl(t) =
1

M

∑
k

e−iqk(n−l)ei2t cos qk . (4.13)

From here on, we will work directly in the thermodynamic limit M →∞, where the matrix
elements of the unitary time evolution operator are given via Bessel functions as Unl(t) =
in−lJn−l(2t). The time dependent correlation matrix elements then follow as [42]

Cmn(t) = in−m
∑
k,l

ik−lJm−k(2t)Jn−l(2t)Ckl(0) . (4.14)
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The knowledge of the above two-point functions allows us to calculate the expectation
value of arbitrary products of creation and annihilation operators through Wick’s theorem.
In particular, the position dependent m-site EFP is given by [38, 39]

〈Em,F (j, t)〉 = 〈
m−1∏
k=0

cj+k(t)c†j+k(t)〉 = det(1− CIj,m(t)), (4.15)

where Ij,m = [j, j +m− 1] and for any interval I the matrix CI is the reduced correlation
matrix with both its rows and columns restricted to I. Finally, the averaged bosonic EFP is
obtained as 〈

Ēm,B(j, t)
〉

=
1

L

N+L∑
j=1

det(1− CIj,m(t)). (4.16)

If the bosonic initial state is such that its fermionic picture is invariant under translations
under ν sites then we have the simpler formula

〈
Ēm,B(j, t)

〉
=

1 + n

ν

ν∑
j=1

det(1− CIj,m(t)). (4.17)

For the sake of completeness, we show in Appendix B that (4.17) can be derived directly
from formula (3.32) without invoking the mapping to the XX model.

One can also obtain determinant formulas for the various fermionic string formation
probabilities 〈Dm,F (j, t)〉 that are related via (4.9) to the probability of finding m bosons at
a given site. In particular, for m = 1 one has

〈D1,F (j, t)〉 = det(1− CI1)− det(1− CI2), (4.18)

where I1 = [j − 1] ∪ [j + 1] and I2 = [j − 1, j + 1]. Note, that this is just the EFP on two
next-nearest-neighbor sites j − 1 and j + 1 minus the EFP on all three consecutive sites,
which indeed gives the probability of finding a 010 string.

Finally, we consider the string-probability D2,F (j, t) on sites [j − 1, j + 2] in the time
evolved state. This can again be written in terms of EFP’s as

〈D2,F (j, t)〉 = det(1− CI1)− det(1− CI2)− det(1− CI3) + det(1− CI4) (4.19)

on the corresponding subsets

I1 = [j − 1] ∪ [j + 2] , I2 = [j − 1, j] ∪ [j + 2] ,

I3 = [j − 1] ∪ [j + 1, j + 2] , I4 = [j − 1, j + 2] .

Formulas (4.18)-(4.19) will be used in the next section to derive the bosonic occupation
probabilities in a specific quench situation.

5 Translationally invariant initial states
In this section we calculate exact time evolution starting from translationally invariant

initial states. We deal with homogeneous initial states:

|ψn〉B ≡ |n, n, n, n, · · · 〉B

On the one hand these are natural candidates, because they could be prepared in experiments
or other numerical simulations. On the other hand they are also convenient for our purposes
because their overlaps have the form (3.1) so that the calculations of the previous sections
can be applied.

Our methods enable us to investigate both finite size effects and the infinite volume
limit. Concerning finite size effects, we can address the question of particle propagation on
the background induced by the quench. In a finite volume global quench we expect that the
physical observables will be very close to their infinite volume limit until a time t ≈ L/2v∗,
where v∗ is interpreted as the velocity of propagation through the highly excited stationary
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state reached after the quench. The physical interpretation can be given using the semi-
classical reasoning of [43]: as a result of the quench quasi-particles are emitted at each
site, and finite size effects arise only at times when two particles have traveled around the
volume and meet at the opposite side. Our numerical data enables us to give estimates for
the velocities v∗. We stress however, that these can not be considered as rigorous answers,
because there are no sharp wave fronts associated with the finite size effects.

Concerning the infinite volume and infinite time limit, we can check the predictions of
the GGE. In [27] it was argued that in the q-boson model the GGE should give a correct
description of the stationary state after the quench4. The main argument was that in the
q-boson model the initial values of the conserved charges completely determine what types
of states can populate the system after the quench, in particular there is a one-to-one cor-
respondence between the charges and the Bethe root densities. After dephasing, all local
operators approach the averages in these Bethe states, and the averages only depend on the
root densities. Therefore, the charges in the initial state completely determine the long-time
limit of local observables. This was explicitly checked in [27] for the particular quench that
will be discussed in 5.1. In the present work we can go further and consider more general
initial states.

In [27] it was shown that the mean values of the EFP operators in Bethe states can be
expressed using the charges, for example

〈Ω|E1|Ω〉 =
1

1 + n

(
1− |〈Ω|Q1|Ω〉|2

)
,

where |Ω〉 is an arbitrary on-shell Bethe state. It was also shown that in pure Fock states
the expectation values of the charges are all zero except for the particle number operator.
Therefore it is very easy to obtain the GGE predictions for the limit of the EFP, for example

lim
t→∞

〈E1(t)〉 =
1

1 + n
, (5.1)

which should be valid for any quench starting from an initial state which is a pure Fock
state. In particular, we will verify this for the states |ψn〉B at the end of this section.

5.1 Initial state |ψ1〉B = |1, 1, 1, 1 . . . 〉B
This is probably the simplest initial state with particle density n = N/L = 1: there is

exactly one particle at each site. The initial state corresponds to the particular component
of the Bethe vector (2.5) with xj = j, therefore the overlap can be written as

〈Ψ0|{a}N 〉 = det
N

(
(ak)2j

)
=
∏
j

a2
j

∏
j<k

(a2
k − a2

j ) =
∏
j<k

(a2
k − a2

j ), (5.2)

where we used that the overlap is non-zero for zero-momentum states only. This simple
structure of the overlap made possible the direct computation of the time-evolution of the
1-EFP in [27]. The following result was obtained in finite volume:

〈E1(t)〉 =
1

2
− 1

2

 1

N

∑
j

cos(4 cos(pj)t)

− 1

2

∣∣∣∣∣∣ 1

N

∑
j

sin(4 cos(pj)t)e
ipj

∣∣∣∣∣∣
2

, (5.3)

where
pj =

π(2j − 1)

2L
. (5.4)

Taking the infinite volume limit with fixed t leads to

〈E1(t)〉 =
1

2
− 1

2

(∫ π

0

dp

π
cos(4 cos(p)t)

)2

− 1

2

∣∣∣∣∫ π

0

dp

π
sin(4 cos(p)t)eip

∣∣∣∣2 . (5.5)

4It might be more accurate to use the term “predictions of the Diagonal Ensemble (DE)”, because an ac-
tual Generalized Gibbs Ensemble is not constructed. However, for historical reasons and to conform with the
terminology of [10], we continue to use the expression “predictions of the GGE”.
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The GGE prediction (5.1) gives

lim
t→∞

〈E1(x, t)〉 =
1

2
,

and this is clearly confirmed by (5.5), as it was already observed in [27].
Quite interestingly the symmetrized mapping to the XX model gives

P̃ |1, 1, . . . , 1〉B =
1√
2

[|1, 0, 1, 0, · · · 〉F + |0, 1, 0, 1, · · · 〉F] . (5.6)

Therefore, this particular situation corresponds to the Néel-to-XX quench studied extensively
in [44, 45, 46, 47], given that the initial state is chosen to be the translationally invariant
combination of the Néel and Anti-Néel states. These papers concentrated on the time evolu-
tion of the staggered anti-ferromagnetic order, the spin-spin correlations, and the Loschmidt
echo.

Below we also show how to compute (5.3) in the fermionic language introduced in section
4. However, before turning to the XX model we first consider the Loschmidt amplitude. In
appendix A.1 we compute it using the general formalism introduced in section 3. Our finite
volume result for the amplitude reads

L(t) =

 N∏
j=1

cos(2 cos(pj)t) +

N∏
j=1

sin(2 cos(pj)t)

 , (5.7)

where pj is defined in (5.4). This agrees with the corresponding result of [47]. The second
term in (5.7) is not present in the Néel to XX quench, because it corresponds to the finite
volume Néel to Anti-Néel transition. If we fix t then in the L→∞ limit only the first term
survives. The physical reason for this is that in infinite volume the time evolution generated
by the Hamiltonian can not shift the whole chain by one site in finite time. Therefore, in the
TDL limit at finite t we have

lim
L→∞

1

L
log |L(t)| = 1

π

∫ π

0

log | cos(2 cos(p)t)|dp. (5.8)

We note that even though the finite volume amplitude is exactly equal to that computed in
[46], there is a factor of 2 in the Loschmidt echo per site. This factor arises from the re-scaling
of the volume through the mapping between the two models.

Now we turn to the evaluation of the EFP and the local occupation probabilities. Formula
(5.3) could be derived easily from (3.32) too, for example by using (3.30) for a simple evalu-
ation of the determinants. However, it is instructive to re-derive it in the fermionic language
introduced in section 4.

We are interested in the 2-site EFP 〈E2,F (j, t)〉, which can be obtained via the time-
dependent fermionic correlation matrix (4.14) using the determinant formula (4.15). The
correlation matrix at time t = 0 is diagonal with alternating entries C2k−1,2k−1(0) = 1 and
C2k,2k(0) = 0. Substituting into (4.14) and using the Bessel function addition theorems [48]

∞∑
k=−∞

Jk+m(z)Jk+n(z) = δm,n,

∞∑
k=−∞

(−1)kJk+m(z)Jk+n(z) = (−1)mJn−m(2z), (5.9)

one obtains the following simple expression for the time evolved matrix elements

Cm,n(t) =
in−m

2
[δm,n − (−1)mJn−m(4t)] . (5.10)

Although the matrix elements are invariant only to 2-site translations, it is easy to see
that the 2× 2 determinants defining the 2-site EFP in (4.15) are completely translationally
invariant. Therefore, one has for the average EFP〈

Ē2,F (t)
〉

=
1

4
(1− J2

0 (4t)− J2
1 (4t)). (5.11)
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Figure 1: Time evolution of the 1-site EFP in the phase model for the initial state |ψ1〉B = |1, 1, 1, 1, · · · 〉B .

Comparing to the bosonic result in (5.5), one obtains the relation (4.7) with the volume
re-scaling factor 1 + n = 2. Moreover, as discussed in the previous section, one has an
exact match even with the finite volume result (5.3), which is easily obtained from (5.11) by
replacing the Bessel functions in (5.11) with the finite-M propagators in (4.13) and setting
M = 2L.

In Fig. 1 we plotted the numerical data for the bosonic 1-EFP. We can see that the
finite volume time evolution follows the infinite volume curve until a time t∗ = L/2v∗ which
grows linearly with the volume. The speed v∗ of the propagation could be estimated from
the difference between the finite and infinite volume results, or simply by looking at the
numerical data for large volumes. We choose the latter method and read off the approximate
value v∗ ≈ 1. Note that the maximum speed of particles in vacuum was vmax = 2, which
is the group velocity as calculated from the energy-momentum relation (2.8). This slowing
down with a factor of 2 can be explained by the properties of the mappings P and P̃ between
the bosonic and fermionic models. In the XX chain information always propagates with a
maximal speed of v = 2, regardless of the local spin content. This follows from the fact
that the model is effectively free. On the other hand, the mappings are non-local and they
involve a re-scaling of the volume whose extent depends on the local particle density. In fact,
a segment of the bosonic chain with length l and density n is mapped to a segment of the XX
model with length l(1 + n). Therefore, information in the bosonic chain can not propagate
faster than v∗(n) = 2/(1 + n). In the present case this leads to v∗ = 1, in agreement with
the numerical data.

We continue by calculating the expectation value of the average string-probability
〈
D̄1,F (t)

〉
which, in the bosonic chain, corresponds to the probability of having a single boson at a site.
We stress that this is a new result, which could not have been obtained using the formalism
of Section 3, because the matrix elements of the corresponding operators are not known. The
fermionic 010 string probability is position dependent, however, due to 2-site translational
invariance, it is enough to consider j = 1 and j = 2. Using the matrix elements (5.10) and
expanding the determinants in (4.18), one finds for the average string probability〈

D̄1,F (t)
〉

=
1

2

∑
j=1,2

〈D1,F (j, t)〉 =
1

8
(1 + 3J2

0 + 2J2
1 − J2

2 ), (5.12)

where for brevity the arguments (4t) of the Bessel functions were suppressed. For the bosonic
occupation probability we thus obtain〈

Π1
B(t)

〉
=

1

4
(1 + 3J2

0 + 2J2
1 − J2

2 ). (5.13)

Similarly, one can also calculate the 0110-string probability 〈D2,F (j, t)〉, which is, in fact,
translational invariant due to the symmetry of the problem and thus one has to consider
j = 1 only. Evaluating the determinants in (4.19) is straightforward but rather tedious.
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After re-scaling one arrives at the lengthy formula〈
Π2
B(t)

〉
=

1

8
[(1− J2

0 )(1− J2
0 − 3J2

1 − J2
3 )− 2(1 + J2

0 )J2
2 + 4J0J1J2(J1 − J3)

+2J1J3(J2
1 − J2

2 ) + J2
1J

2
3 + (J2

1 + J2
2 )2 + 4(J2

1 + J2
2 )
]
. (5.14)

The bosonic occupation probabilities 〈Πm
B (t)〉 are shown in Fig. 2 for m = 0, 1, 2. One

observes that the curves relax rapidly to their stationary values, given by 1/2, 1/4, 1/8,
respectively. This suggests that the number of bosons has a geometric distribution in the
stationary state. In the fermionic picture it is easy to verify that this is indeed the case. In
fact, the reduced density matrix ρI of an arbitrary finite interval I in the stationary state is
given via the reduced correlation matrix CI as [49]

ρI ∝ exp(
∑
i,j∈I

Hi,jc
†
i cj), H = ln

1− CI
CI

, (5.15)

where CI = limt→∞ CI(t). From Eq. (5.10) one has immediately CI = 1/2 and hence the
local steady state is a Gibbs state at infinite temperature. In turn, this implies that all string
configurations have equal probabilities and thus

lim
t→∞

〈
D̄m,F (t)

〉
= 2−(m+2).

We stress that equations (5.13)-(5.14) are new results of this work.
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Figure 2: Time evolution of the probability to have m bosons on a single site for the initial state |ψ1〉B =
|1, 1, 1, 1, · · · 〉B . The bosonic result is obtained from the averaged fermionic string probabilities

〈
D̄m,F (t)

〉
for m = 0, 1, 2 multiplied by the factor 1 + n = 2, see Eq. (4.10). The horizontal dashed lines correspond
to the t→∞ limit.

5.2 Initial state |ψ2〉B = |2, 2, 2, 2 . . . 〉B
As a second example, we consider the initial state with exactly 2 particles at each site.

The overlaps are of the form (3.1) with

Gj(ak) = a
j+xj
k , with xj =

[
j + 1

2

]
,

and [x] denotes the integer part. In this case the time evolution of the EFP can be computed
either from formula (3.32) or by the mapping to the XX chain. In the following we present
the latter computation.

The symmetrized mapping gives

P̃ |2, 2, . . . 〉B =
1√
3

[|1, 1, 0, 1, 1, 0, · · · 〉F + |0, 1, 1, 0, 1, 1, · · · 〉F + |1, 0, 1, 1, 0, 1, · · · 〉F] (5.16)
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For simplicity we will work in the thermodynamic limit. Since the initial density has now a
3-site periodicity, we need a more general addition theorem of Bessel functions [48]

∞∑
k=−∞

Jn+k(z)Jk(z) cos(kα) = Jn(2 sin(α/2)z) cos(n(π − α)/2)

∞∑
k=−∞

Jn+k(z)Jk(z) sin(kα) =Jn(2 sin(α/2)z) sin(n(π − α)/2).

(5.17)

Indeed, setting α = 2π/3, we obtain two equations involving the various 3-periodic sums
of products of Bessel functions. Supplementing the set of equations with the completeness
relation on the l.h.s of Eq. (5.9), the system can be solved and the result can be used to
evaluate the matrix elements in (4.14). In particular, the diagonal elements are obtained by
choosing n = 0 in (5.17) with the result

Cm,m(t) =

{
1
3 (2 + J0(2

√
3t)) if m = 3l + 1 or m = 3l + 2

2
3 (1− J0(2

√
3t)) if m = 3l.

. (5.18)

Similarly, the elements in the first off-diagonal follow from solving the set of equations for
n = 1 and read

Cm,m+1(t) =


0 if m = 3l + 1

iJ1(2
√

3t)/
√

3 if m = 3l + 2

−iJ1(2
√

3t)/
√

3 if m = 3l.

(5.19)

Evaluating the determinants and taking the average, one arrives at

〈
Ē2,F (t)

〉
=

1

3

3∑
j=1

〈E2,F (j, t)〉 =
1

9

[
1− J2

0 (2
√

3t)− 2J2
1 (2
√

3t)
]
. (5.20)

For the bosonic 1-EFP we thus obtain

〈E1,B(t)〉 =
1

3

[
1− J2

0 (2
√

3t)− 2J2
1 (2
√

3t)
]
. (5.21)

The finite volume result has the same form, with the Bessel functions replaced by the finite
volume propagators (4.13).

In Fig. 3 we plot the numerical data for the 1-EFP in finite and infinite volume. Concern-
ing the maximal speed of wave propagation, we can read off the approximate value v∗ ≈ 2/3.
Similar to our previous example, the slowing down of the wave propagation is consistent with
the re-scaling of the volume caused by P̃ with a factor of 3.
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Figure 3: Time evolution of the 1-site EFP in the phase model for the initial state |ψ2〉B = |2, 2, 2, 2, · · · 〉B .

Note that the long-time limit of the 1-EFP in (5.21) is given by 1/3 which agrees with
the GGE prediction (5.1). In fact, the prediction can even be verified for initial states |ψn〉B
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with arbitrary n. As observed already for n = 1 and n = 2, it is not difficult to prove in
general that for t→∞ the off-diagonal matrix elements of the fermionic correlation matrix
vanish, while the diagonal elements give the average fermionic density

lim
t→∞

Cm,m(t) =
n

n+ 1
, lim

t→∞
Cm,m+1(t) = 0. (5.22)

Substituting into (4.17), one immediately finds

lim
t→∞

〈E1,B(t)〉 =
1

1 + n
. (5.23)

In Appendix A.2 we also computed the time evolution of the Loschmidt amplitude, both in
finite and infinite volume. The formulas are lengthy and we refrain from repeating them here.
However, we note that the intermediate result (3.20) leads to a relatively simple calculation
even in this case. In fact, it seems that regarding the Loschmidt amplitude the bosonic
formulation always leads to simpler derivations than the fermionic methods.

6 Conclusions
In this work we investigated time evolution of physical observables in the phase model,

which is the q → ∞ limit of the q-boson model. We set up a framework to calculate the
finite volume Loschmidt echo and the emptiness formation probability in non-equilibrium
situations. One of our main results is equation (3.24), which computes the exact EFP in
polynomial (O(N7)) time, which is a tremendous simplification as compared to the expo-
nential sum over all states in the Hilbert space. Analogously, the Loschmidt echo can be
obtained with O(N5) steps. The result (3.24) applies whenever the overlaps with the ini-
tial state take the form (3.1). Pure Fock states in the local coordinate basis satisfy this
requirement. Such states are natural candidates to study because they could be prepared in
experiments or other independent numerical simulations.

The fact that the EFP could be obtained with a cost of O(N7) steps shows that the
complexity of the phase model is between that of a free theory and a generic Bethe Ansatz
solvable model. In technical terms, this unique situation arises because the scattering phase
shift (2.6) can be factorized. This leads to a special type of Bethe equation (2.7), which implies
that the one-particle rapidities can be chosen freely from an enlarged set of N +L solutions,
as long as they obey an overall constraint coming from the total momentum quantization.
Unfortunately, this simplification only emerges in the q →∞ limit, which restricts the scope
of our method.

We also considered a non-local mapping between the phase model and the XX chain.
In its simplest form, the mapping connects the zero-momentum sectors of the two theories,
such that the Hamiltonians and space averages of certain other local operators are mapped
onto each other. In situations that are not translationally invariant the mapping can not be
used to give information about the space dependence of the observables, it applies only to
the averaged operators. Therefore it is important to stress that the phase model should not
be considered as “equivalent to a free theory”.

In Section 5 we considered examples where the initial state is translationally invariant.
We derived new results for the Loschmidt amplitude, the EFP, and local bosonic occupation
probabilities using both the bosonic methods of section 3 and the mapping to the XX chain.
In these formulas both the thermodynamic limit and the long time limit could be performed
quite easily; in those cases where a GGE prediction was available for the stationary values
in the TDL, the prediction was confirmed. We stress that, even though our results pertain
to very special situations, they are among the very few that exactly solve time evolution and
rigorously prove the validity of the GGE predictions in an interacting many-body system.

In a future publication we plan to apply our result (3.24) in situations that are not
translationally invariant. Examples include global quenches starting from initial states that
have periodic structure, for example |Ψ0〉B = |1, 0, 1, 0, · · · 〉B. Formula (3.24) can be readily
applied in those cases, giving the numerically exact finite volume EFP. However, it is a
challenging open problem to obtain the thermodynamic limit of the space dependent EFP
in such cases.
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Another class of problems to be investigated is that of joining two subsystems with
different initial states. This can be achieved for example by choosing initial states of the
form |Ψ0〉B = |1, 1, · · · , 1, 2, 2, · · · , 2〉B. Our formulas deal with periodic boundary conditions,
therefore this situation corresponds to having two initial domain walls on a circle. Time
evolution will induce a particle and energy current at the two boundaries, and we plan to
investigate the properties of these currents and the wave-front propagation into the bulk of
the two subsystems.
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A Analytic results for the Loschmidt amplitude
Here we compute exact analytic results for the Loschmidt amplitude using the formula

(3.20). For simplicity we subtract an irrelevant constant from the Hamiltonian and will work
with the one-particle dispersion relation

E(p) = −2 cos(p).

This only affects the phase of the Loschmidt amplitude.

A.1 Initial state |ψ1〉B = |1, 1, 1, 1, . . . 〉B
We have N = L, the state is translationally invariant and only the J = 0 sector con-

tributes. The initial coordinates of the particles are xj = j. Then the matrix H is N × 2N
and

HjK =
1√
N

∑
m

e−iqjmei2pKm. (A.1)

We will use the definitions

qj =
2π

N
j − π

N
, j = 1 . . . N and pK =

π

N
K − π

2N
, K = 1 . . . 2N. (A.2)

This gives
HjK =

√
N(δj,K + δj+N,K). (A.3)

This way the matrix product in (3.20) gives

(HΛH†)jk = Nδj,k (Λj,j + Λj+N,j+N ) = Nδjk

(
e−iE(qj/2)teiαqj/2 + e−iE(qj/2+π)teiα(qj/2+π)

)
.

We have

det(HΛH†) = NN

{∏N
j=1 2 cos(2 cos(qj/2)t)eiαqj/2 for even α∏N
j=1 2i sin(2 cos(qj/2)t)eiαqj/2 for odd α

.

For the sum of the momenta we obtain

N∑
j=1

qj = −π +
2π

N

N(N + 1)

2
= πN. (A.4)
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Therefore
N∏
j=1

eiαqj/2 = eiαπN/2 =

{
1 for even α
(−1)N/2 for odd α

. (A.5)

This gives

det(HΛH†) = 2NNN

{∏N
j=1 cos(2 cos(qj/2)t) for even α∏N
j=1 sin(2 cos(qj/2)t) for odd α

.

All quantities are periodic in α with period 2, so we can set A = 2 in (3.20) leading to

L(t) =

 N∏
j=1

cos(2 cos(qj/2)t) +

N∏
j=1

sin(2 cos(qj/2)t)

 . (A.6)

A.2 Initial state |ψ2〉B = |2, 2, 2, 2, . . . 〉B
In this case we have N = 2L, only the P = 0 sector contributes and

xj =

{
(j + 1)/2 for odd j
j/2 for even j

.

We have the definitions

qj =
2π

2L
j − π

2L
, j = 1 . . . 2L and pK =

2π

3L
K − π

3L
, K = 1 . . . 3L. (A.7)

The matrix H is 2L× 3L and its elements are

HjK =
1√
N

(1− ei(qj−pK))

L∑
m=1

e−iqj2meipK3m =

√
N

2
(1− ei(qj−pK))(δj,K mod L). (A.8)

For the product in (3.20) we obtain a block-diagonal matrix, whose determinant is

det(HΛH†) =

(
L

2

)N L∏
j=1

detM j , (A.9)

where each M j is a 2× 2 matrix with elements given by

M j
ab =

2∑
c=0

(1− ei(qj+aL−pj+cL))(1− e−i(qj+bL−pj+cL))Λj+cL,j+cL (A.10)

For the sub-determinants we get

detM j =

2∑
c,d=0

16 sin

(
qj − pj+cL

2

)
cos

(
qj − pj+dL

2

)
sin

(
pj+dL − pj+cL

2

)
Λj+cLΛj+dL

=

2∑
c,d=0

16 sin

(
qj − pj+cL

2

)
cos

(
qj − pj+dL

2

)
sin

(
(c− d)π

3

)
Λj+cLΛj+dL

=

2∑
c,d=0

16 sin
(qj

6
− cπ

3

)
cos

(
qj
6
− dπ

3

)
sin

(
(c− d)π

3

)
e2iαpjeiα(c+d)2π/3e−i(E(pj+cL)+E(pj+dL))t.

All quantities are α-periodic with a period of 3, therefore we can set A = 3:

L(t) =

3∑
α=1

eiαL2π/3
L∏
j=1

zα(qj),
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where

zα(qj) =
4

9

2∑
c,d=0

[
sin
(qj

6
− cπ

3

)
cos

(
qj
6
− dπ

3

)
sin

(
(c− d)π

3

)
×

× eiα
(c+d)2π

3 e
2it
(

cos
(

2qj+c2π

3

)
+cos

(
2qj+d2π

3

))]
.

In the thermodynamic limit only the term with α = 3 survives and this leads to

lim
L→∞

1

L
log |L(t)| = 1

π

∫ π

0

dq log |z(q)|, (A.11)

where

z(q) =
4

9

2∑
c,d=0

[
sin
(q

6
− cπ

3

)
cos

(
q

6
− dπ

3

)
sin

(
(c− d)π

3

)
e2it(cos( 2q+c2π

3 )+cos( 2q+d2π
3 ))

]
.

B Direct equivalence of the bosonic and fermionic calcu-
lations of the EFP

Here we prove that the fermionic results for the EFP can be obtained directly from the
bosonic formula (3.24). We require that the initial state is translationally invariant. In order
to conform with the notations in the main text we will use the convention that the lower
and upper case indices take values 1, . . . , N and 1, . . . , (N + L), respectively.

We introduce the (N + L)× (N + L) Fourier-transform matrix as

UIJ =
1√

N + L
eipJI ,

where the pJ variables are defined in (3.14). It is easy to see that U is unitary. Note that this
matrix is different from V introduced in (3.18), which performs a Fourier transform over N
points.

Our goal is to calculate the EFP from expression (3.32). In the present calculation it is
useful to treat the two factors in the Λ matrices separately. Inserting 1 = UU† = U†U we
write with some abuse of notation

Om = G̃Λ1FmΛ2G̃
† = G̃eiα1pU†UeiE(p)tFme

−iE(p)tU†Ue−iα2pG̃†.

It is easy to see that
(G̃eiα1,2pU†)kJ =

√
N + LδJ,k+xk+α1,2

.

Using (3.29) we write

(
eiE(p)tFme

−iE(p)t
)
JK

= (N + L)δJK −
m+1∑
β=1

eiE(pJ )t

eiE(pK)t

eiβpJ

eiβpK
.

Multiplying with U and U† we get

(
UeiE(p)tFme

−iE(p)tU†
)
JK

= (N + L)δJK − (N + L)

m+1∑
β=1

U∗J+β(t)UK+β(t),

where

Uβ(t) =
1

N + L

N+L∑
J=1

e−iβpJ e−iE(pJ )t,

which is equal to the fermionic propagator introduced in (4.13), up to an irrelevant constant
shift in the energy eigenvalue.
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Finally

Om,jk = (N + L)2

δjkδα1,α2
−
m+1∑
β=1

U∗j+xj+α1+β(t)Uk+xk+α2+β(t)

 .
If α1 6= α2 then the determinant vanishes except in the very small chain with N = m + 1.
We don’t consider this case and set α1 = α2.

The determinant of Om can be computed using the following general identity, which is
valid for arbitrary κ ≤ N :

det
N

(δjk +

κ∑
β=1

a
(β)
j b

(β)
k )j,k=1..N = det

κ
(δβ,γ +

N∑
j=1

a
(β)
j b

(γ)
j )β,γ=1..κ. (B.1)

In the present case we get
detOm = (N + L)2N det

m+1
K,

where

Kβγ = δβγ −
N∑
j=1

U∗j+xj+α+β(t)Uj+xj+α+γ(t).

If the coordinates yj = j + xj form a set of periodicity ν, then we can set A = ν and obtain

〈Em(t)〉 =
(1 + n)2

ν2

ν∑
α=1

det
m+1

K. (B.2)

If the initial state is |ψn〉B then ν = 1 +n and the sum in (B.2) describes the averaging over
the 1 + n components of the fermionic state |ψn〉F = P̃ |ψn〉B . It is easy to check that (B.2)
exactly agrees with formula (4.17), which was derived using free fermion techniques.
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