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Abstract. The general disease group of malignant neoplasms depicts
one of the leading and increasing causes for death. The underlying com-
plexity of cancer demands for abstractions to disclose an exclusive subset
of information related to the disease. Our idea is to create a user inter-
face for linking a simulation on cancer modeling to relevant additional
publicly and freely available data. We are not only providing a cate-
gorized list of open datasets and queryable databases for the different
types of cancer and related information, we also identify a certain sub-
set of temporal and spatial data related to tumor growth. Furthermore,
we describe the integration possibilities into a simulation tool on tumor
growth that incorporates the tumor’s kinetics.

Keywords: Open data · Data integration · Cancer · Tumor growth ·
Data · Visualization · Simulation

1 Introduction

Interactive data integration, data fusion and, first and foremost, the selection of
datasets is a key research direction to enable knowledge discovery in health infor-
matics generally, and bioinformatics and computational biology specifically [1].

Our aim is to link publicly and freely available data on cancer to an enhanced
version of our recently presented tool on tumor growth [2]. Thereby, we list
open databases providing datasets on the different types of cancer and collect
related information. The datasets are examined for growth-related parameters
and subsequently integrated into a simulation tool on modeling neoplasms. This
simulation on neoplasia comprises abnormal tissue growth such as benign and
malignant tumors. Additional text-based information and non-growth-relevant
data is scanned and revised for accessory visualization features.
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We further describe and sketch possibilities for integration and visualization
of cancer-related data into our recently presented simulation and visualization
tool on tumor growth [2]. The Web tool is based on the implementation of
the Cellular Potts Model (CPM) and Cytoscape, that is available at https://
github.com/davcem/cpm-cytoscape. We present an integrative approach to can-
cer research. The study rests upon the idea of enhancing the tumor growth
simulation by integrating multiple genuine data.

First, we introduce the topic of open data for research in general and on
cancer in detail. Further, we recap the biological settings for cancer modeling.
We approximate and appoint open datasets on cancer involving tumor growth
information by considering temporal and spatial aspects. And, we discuss their
feasible incorporation into an online simulation. We proceed with a summary
on the key challenges for embedding open data to our cancer simulation. We
thereby suggest that an integrative approach is key to understanding cancer.

2 Related Work

2.1 Open Data for Scientific Research

There is a strong trend towards an increasing number of freely available datasets
becoming available in many domains, including scientific research. The idea of
open data is to provide unrestricted access for sharing, validating, reusing and
merging relevant data to advance scientific research. Several works already show
that new opportunities arrive with the increasing amount of open data. The
so-called Fourth Paradigm [3] envisions data-driven research by widened access
to open data for common good.

While open data provides opportunities, there are challenges associated with
the provision, discovery and usage of open data. Typically, relevant content needs
to be retrieved by researchers. Then, data from different sources of possibly het-
erogeneous data regarding data type, quality, and resolution need to be inte-
grated for joint analysis.

Interactive visualization can help to explore and related data during the dis-
covery process. Domain- as well as application-specifics need to be taken into
account to choose the right visualization tool for supporting search and explo-
ration in general data exploration [4–6]. In previous work, approaches for dis-
covery of relevant data in research data repositories based on exploration and
visual querying have been proposed. The VisInfo system [7] allows to query
for content in large time series databases. Often, content needs to be related to
metadata. In [8] data patterns are correlated with metadata, for enhanced explo-
ration. Visual search for bivariate data has been addressed in [9] using features
obtained from scatter plot representations of input data. In absence of example
queries from real data, user sketching of patterns can be useful, if appropriate
similarity functions can be obtained [10]. Besides exploration, visual-interactive
approaches can also be useful for the effective semi-interactive integration of
heterogeneous data sources, which is a primary requirement in many open data
analysis projects [11].

https://github.com/davcem/cpm-cytoscape
https://github.com/davcem/cpm-cytoscape
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More specifically regarding the medical domain, we recently compared meth-
ods for visualizing and analyzing data in online proteomics databases. Only a
few available tools meet the needs for interactive visual analysis [12].

Increasing data availability is not only considered as an opportunity but also
new issues arise. Challenges of data integration in the biomedical sciences include
determining available and usable data, completeness, re-use for novel approaches
for data discovery and exploitation [1,13].

2.2 Open Data in Cancer Research

Biomedical data comes in many guises [1]. Initiatives are already fostering open-
access research for improving patient care. There are several freely accessible web
portals, yet, providing exploration support for cancer genomics due to increasing
efforts in the area of Bioinformatics regarding genomic data handling [14–22].
For example, challenges in normalizing clinical drug data have been illustrated
while using open access druggable genome datasets for target discovery in the
context of cancer therapeutics [23].

With regard to imaging data there are several online resources providing
several million cancer images, which are partly public, partly protected. Avail-
able imaging data includes computed tomography, magnetic resonance and other
images. De-identification scripts support moving more and more images on pub-
lic servers [24].

Text mining for literature curation is common for omics data [25]. Sum-
maries of fundamental concepts for text mining in cancer research are mainly
concerned on relation extraction mechanisms such as identifying protein-protein,
gene-gene or gene-disease relations [26]. Text mining has already been combined
with manually curated data for data integration in the context of disease-gene
associations [27]. Several open access literature resources exist to apply text
mining for finding suitable disease data. However, text mining in biomedical lit-
erature is more sophisticated than for clinical data [28]. Only a few databases
provide information on cancer incidences and statistics. Movements come from
the American Cancer Society and the World Health Organization [29–31]. Data
protection regulations and privacy is one of the obstacles to tackle to providing
open data for biomedical research [33,34] There are approaches for space-time
analysis and visualization related to cancer, but they deal with population data
such as location and age [35].

Sophisticated integrative analysis tools for cancer are yet to be found [36].
Online available disease ontologies help understanding the relationships of cancer
terms and foster communication and exchange [37,38].

To our knowledge, there is no approach to identifying tumor growth related
open data. We therefore focus on identifying temporal and spatial entities within
available cancer data.
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2.3 Biological Background

There are two basic biological phenomenons which play essential roles in the
disease of cancer. First, spontaneous mutations occur naturally and frequently
within all cells [39]. Secondly, normal cells can undergo programmed cell death,
so-called apopotosis, with time. In some cases however, such mutations can have
an effect on cellular functions. Tumor cells are characterized by a change in
the proliferative capacity. Malignancy can be developed if mutations lead to
the inhibition of apoptosis or excessive proliferation and could further end in
differentiation. Tumors can look and function similar to normal cells. Benign
masses of tumor cells are normally localized. They only become problematic
if space is limited or keep producing hormones in excess [40]. Malignant tumor
cells become more serious. They do not only grow more rapidly but they can also
invade other tissues and parts throughout the body. Parameters that relate to
the specified aspects in tumor growth are of particular importance for modeling
cancer. Since mutations are the onset of cancer, open data is concentrated on
genetic data. Still, in order to combat the disease relational information has to
be retained.

3 Approach

Our approach is to study open datasets for querying and relating interaction data
to (gene classified) cancer diseases. The goal is to extend an existing framework
for simulating and visualizing tumor growth [2] by integrating a selected subset
of spatial and temporal data for supporting exploration and sense-making. To
achieve this goal several data integration steps are necessary. Most important,
available data has to be identified and examined for relevance.

3.1 Relevance to Tumor Growth?

We focus on summarizing and picking specific information on tumor growth.
Presently, there are no web-resources providing exclusive data on tumor growth.
So, relevant information has to be isolated from an abundance of data in matters
of cancer research. We aim to gather cancer-relevant data in regard to spatial
and temporal criteria in particular.

Temporal and spatial characteristics on tumor growth can be influenced
by several factors, such as gene regulation or mutations as well as drugs and
other inhibitors or promoters. In cancer, the balance between growth promoting
and inhibiting factors is shifted towards proliferation. The underlying signal-
transduction pathways are complex biological processes involving several key
steps as well as mediators which are dynamically and differentially regulated.
The influencing factors have to be recognized and parameterized in order to be
integrated into the simulation.

We are equally interested in statistical assessment of growth kinetics from
various tumors and cancer subtypes, as well as incidence reports on isolated case
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reports. Notably, entity relationship descriptions and interaction data in regard
to tumor growth characteristics are of relevance and primary focus.

Previous studies on tumor growth prediction could be likewise included. In
order to enhance the cancer modeling tool, we aim to provide a comprehensive
simulation comprising growth characteristics of various kinds of tumors. Most
studies on predictive cancer modeling focus on the kinetics of various cancer
diseases. We try to collect and capture the specifics of several tumor types and
to likewise broaden and refine the visualization approach tumor growth analysis.

4 Results

We present an overview of available cancer-related open data. We categorize
identified datasets corresponding to the content types that can be found with
respect to cancer research. The study shows that genomic data as well as imaging
data is increasingly available. But, explicit information on temporal and spatial
aspects are hardly found. Text mining in incidence reports and open access
publications have to be taken into account in order to find suitable data for
tumor growth simulation. Furthermore, we describe the integration of a subset
of open data related to tumor kinetics, temporal and spatial data in particular,
into an existing tumor growth simulation user interface that is freely online
available via github.

4.1 Overview of Available Data

We categorize online available information from cancer research under 5 different
categories. First, many datasets provide genomic data. Secondly, incidence
data can be analyzed and downloaded from several portals. Third, there are
large archives consisting of imaging data. Fourth, there are several databases
that consist of disease associations such as disease ontologies. Last but not
least, open access databases provide a comprehensive list of literature data for
text mining.

By considering content quality, license information and access possibilities
for each of the listed entries, we chose a subset that satisfied the needs for free
non-commercial usage as well as data relevance. Table 1 lists facts about the
identified databases regarding its data category relation.

Starting with a review of currently available cancer genomic databases for
research [41], our search strategy included systematically examining lists of data-
bases of cancer-related data presented at metasites found via online search.
Therefore, we iteratively extended a table of cancer related databases until we
arrived at a comprehensive list of databases that we are summarizing below. We
examined available databases and included information about access possibili-
ties as well as descriptions about the provided data type/category, the data’s
coverage, whether download of data as well as a web API is provided, license
information and last but not least studied optional input and output entities.
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Table 1. Statistics about list of non-filtered databases

Category # Identified # Chosen Possibilities Possibilities

databases databases for spatial data for temporal data

Genomic data 15+ 9 – –

Imaging data 6+ 5 � –

Incidence data 6 4 – �
Disease associations 6 3 � �
Literature data 2+ 2 � �

genomic db

cBioPortal, 
intogen…

imaging db

NBIA, TCIA, 
MTB, HPA...

genomic db

TCGA,  
Ensembl...

disease assoc.

DO, FACD, 
MTB…

genomic db

ICGC, CGAP, 
UCSC...

incidences db

Seer Cancer

incidence db

Cancer 
Research UK

← input: cancer study, cancer type
→ output: case lists metadata, 

case list details, study metadata, 
study details, cancer types, genetic 

profiles, mutations, survival, age, 
proteomics data etc.

(web api, tools & data for download)

← input: cancer type, 
anatomical site etc.

→ output: images & metadata
(web api & images for 

download)

→ input: cancer type, population specifics 
etc. 

← output: cases, fact sheets, population 
data, mortality data, country attirbutes etc.

(limited api & downloadable data)

← input: gene, genesets, mutation, donor, 
    drug, project name, keyword etc.
→ output: genes, genesets, mutations, donors, 
    cancer project names, drugs etc.
(web api available, software & data for download)

← input: name, disease, keywords, 
    Mesh Code, NCI, ICD10 etc.
→ output: disease metadata & 
    details, disease relations etc.
(web api, downloadable data)

→ input: cancer type, 
    disease, biospecimen ID, 
    mutation annotations 
→ output: sample metadata, 
     samples, clinical data, 
     sequence data, publications
(webapi & data for download)

← input: cancer type
→ output: statistics on mortality, 

survival, risk factors, 
diagnosis and treatment

(html search & downloadable data)

literature db

open access 
publications

← input: free text query search
→ output: article ids & metadata, 
     cross-referenced articles, 
     retrieving full text
(web api for most dbs, e.g. PMC apis...)

Fig. 1. Overview of cancer databases for integration

Therefore, next to the availability of spatial and temporal data, we further dif-
ferentiate between possible input and output. Figure 1 shows an overview of our
approach. The input and output is being summarized. The node’s color corre-
sponds to the data’s category.
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Table 2. Summary of examined databases that may be suitable for the task of data
integration

Category/Name Abbreviation Data access Ref.

Genomic data

The Cancer Genome Atlas - Data Portal TCGA REST, download [16]

cBio Cancer Genomics Portal cBioPortal REST, download [15]

NCI’s Cancer Genome Anatomy Project CGAP download [43]

International Cancer Genome Consortium - Data

Portal

ICGC REST, download [19]

United States Cancer Statistics - Cancer Genomics

Browser

UCSC download [16]

Catalogue of somatic mutations in cancer COSMIC REST, download [18]

Integrative Onco Genomics INTOGEN download [20]

Integrative Genomics Viewer IGV download [21]

Many more general genome databases such as

Ensembl

ENSEMBL REST, download

Imaging data

The Cancer Imaging Archive TCIA REST, download [24]

CancerData.org - Sharing data for cancer research CancerData download [45]

Mouse Tumor Biology - Database MTB download [44]

National Biomedical Imaging Archive NBIA REST, download [24]

Many more such as the Human Protein Atlas HPA download

Incidence data

WHO Cancer Mortality Database WHOdb download [46]

Center for Disease Control and prevention - Cancer

Data and Statistics

CDC download

Surveillance, Epidemiology, and End Results -

Program

SEER download [30]

Cancer Incidence in Five Continents CI5 download [31]

Disease associations

Diseases Ontology DO REST, download [37]

Mouse Tumor Biology - Database MTB download [44]

NCI Thesaurus NCIt REST, download [38]

Literature data

PubMed Central PMC REST, download [26]

Europe PubMed Central Europe PMC REST, download [32]

Table 2 lists all examined databases providing cancer-related content as
download that is free for non-commercial, scientific purposes, sorted by cate-
gory.

The summarizing table shows only a small subset of examined resources due
to the fact that several licensing issues as well as quality issues such as depre-
cated data that has not been maintained for years have been identified during
our research. We also observed that several data portals make use of others,
e.g. the Disease Ontology’s cancer project includes several mappings from other
databases, especially genomic data. The “+” in the column of identified data-
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bases within Table 1 implies that more databases could be found but are already
included within other databases. To that effect, the databases’ peculiarities also
include data coverage such as databases that cover other databases’ contents
as well. Due to that reason, we chose to use only the largest two archives of
biomedical literature data for further literature mining.

4.2 Literature Mining

We conducted a search for some tumor growth related terms to test the suitabil-
ity of literature databases for finding data to be integrated. PubMed has been
reported to be one of the best biomedical publication archives [26]. Therefore, we
chose to conduct some mining within the two public archives of biomedical and
life sciences literature, “Europe PMC” and “Pubmed Central” (PMC). Addi-
tionally, we made use of an information retrieval tool for biological literature
called “Textpresso” [42]. Example queries are summarized below.

Table 3. Example queries for text mining

Database Query for Query for Query for Query for

or tool “abnormal “tumor growth” “tumor cell “neoplasm”

cell growth” growth”

Textpresso 111 matches, 3891 matches, 37072 matches, 3990 matches,

33 documents 926 documents 6519 documents 2000 documents

Europe PMC 1399 matches, 121435 matches, 12555 matches, 4076094 matches,

277 open access 35174 open access 4089 open access 436216 open access

PMC 1389 matches 98822 matches 13557 matches 2837065 matches

Making use of specific text mining tools is favored over literature mining
for finding most relevant results and presenting sets of results. E.g. highlighting
matching sentences is crucial to a fast scan through results and the identification
of relevant information.

4.3 Data Processing

Most online portals provide free access to the data available as downloadable
content, some accompany web interfaces such as web services for direct access
too. In each case further data processing steps are necessary to respond to the
needs of (visual) data mining and integration into the existing user interface.

Most genomic data portals already provide entity relationship (ER) diagrams
for documentation of available data entities and relations. However, we focused
on finding temporal as well as spatial tumor growth data and were not able to
identify explicit information about those aspects within available cancer genomic
data. Further mining techniques have to be taken into account to accomplish
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the task of finding suitable information about specific growth impact on cancer
disease-gene associations.

As a starting point for data integration we created a set of different growth
functions by literature curation. We collected data points for comparing discrete
growth functions for tumor growth, vascularization inhibition and cell density
inhibition on growth. Data points come from three different publications found
via PMC and is summarized in Fig. 2 [47–49].

Time (d)

Time (d)

Tu
m

or
si

ze

0 5 10 15 20
0

1

2

3

4 Tumor Volume (E-2 mm3)
Tumor Diameter (E-1mm)
Tumor Mass (au)

Fig. 2. Literature-curated discrete tumor growth - data samples: various
tumor types, determined growth in tumor size, given in miscellaneous units, over time,
presented in days.

4.4 User Interface Extensions

Cpm-cytoscape is a tool for scientific simulation and visual analysis of tumor
growth. The web application makes use of the CPM for modeling tumor growth.
The CPM is a popular lattice-based, multi-particle cell-based model that has
been used for modeling tumor growth in a wide area. The tool incorporates
a novel graph-based visualization approach [2]. Figure 3 shows an annotated
screenshot of the existing user interface, describing the different interaction and
visualization possibilities of the tool’s user interface.

The tool’s framework integrates visualization features for analysis via
JavaScript and HTML. A Converter Class allows for extending the data objects
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2 5

1   adjustable parameter settings for CPM computation, including custom profile selection

6

6   Toggleable line chart 
     container shows 
     computed growth 
     with export button.

3 4

2   At top there are
     are buttons for 
     initializing and 
     computing the 
     lattice sites. 

4   Rght side shows the 
     output for the last
     computation step.
     The table below shows
     computed cell data.

3   Left side shows the
     initialization output 
     as rendered graph.
     The table below shows
     the initialized cell data.

5   Toggle button

Fig. 3. Overview of User Interface with custom profile showing kinetics and cell sorting
after several simulation steps

that represent simulated cell sorting and kinetics. Another Converter allows for
processing data to communicate between backend and frontend. This Java Class
maps the graph data from the modeling computation to the format needed by the
visualization renderer in the frontend. Such converter classes are easily extend-
able and support integrating additional information. The simulation and its sev-
eral computation steps are started via Representational State Transfer (REST)
calls, while the user interface displays response information both within the
graph visualization as well as in an overlay as simple Line diagram. Details on
its usage and implementation can be found on the project’s github page [2].

Profile Specific Simulation and Visualization. The first implemented
extension to the user interface is the ability to provide “profiles” for running
simulations under different configurations. The simulation can be started with
the help of choosing a profile or specifying a custom profile. Figure 3 shows a com-
pleted simulation for a custom profile. The profile extension is a good example
of extending the user interface neatly and encapsulated. A separate JavaScript
function call via changeProfile() is located in an separate extension. Each profile
for selection is represented as JSON file for easy maintenance. The profile can
be selected via a dropdown (Fig. 4). The parameter settings that are available
via JSON files can be replaced with a dynamic function that communicates with
another server to get all the various parameter settings.
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Fig. 4. Screenshot of profile selection possibilities

Until now we did not find any database that holds all the data needed to have
different complete configurations to run a simulation, therefore we are providing
static configuration files to try out different settings that have found via manual
literature mining. However, this extension is a good example to start the task
of data integration and can be further extended as soon as a suitable dataset is
available.

Presenting Details on Cell Nodes. The visualization of cell sorting and
kinetics is based on a graph. Each node is representing a so called “cellular
brick” of a cell. A cell is a set of 0 to n cellular bricks with the same cell-index,
while each cell sigma is of a specific cell-type τ . Until now, we only differentiate
between proliferating tumor cells and healthy cells as distinct cell types, with
different growth rates and volume constraints for each type, rendered as colored
nodes. Thirdly, we use grey nodes to represent the extracellular matrix (ECM).
Additional information on nodes can be provided via context menu. According
to the node’s cell-index σi,j additional information about the associated cell-
type can be shown, while proliferating tumor cells are called “dark” cells and
the other healthy cells are called “light” cells. Cells with σi,j = 0 represent the
ECM, visualized as grey nodes. Cells with odd σi,j represent the “dark” cells
and are visualized as dark red colored nodes. The other cells with an even σi,j

show “light” cells and can be recognized by the lighter blue to green colored
nodes.

Search for Reports on Related Diagnosis and Treatment. Text-based
search within an existing incidence data provides exploration of similar cases,
diagnosis, treatment as well as other possible relations. Figure 5 shows a mock-
Up of a simple integration. As starting point we just link to additional infor-
mation. However, a tight integrative approach would be adding further data to
the computation of the several simulation’s steps. Taking additional information
into account such as drug information that has impact on growth could then be
presented as uncertainty visualization as sketched in Fig. 6.

Direct Inclusion of Time-oriented Data for Growth Simulation. An
ultimate goal is to include information not only on existing related incidences but
far more information on drugs and other inhibitors or promoters to be integrated
directly into the computation process. In particular time-oriented data as we see
in the simple line diagram showing the growth of different celltypes supports
integration of additional information to be visualized for further exploration and



60 F. Jeanquartier et al.

Fig. 5. Screenshot, showing additional information for cell nodes (Color figure online)

Fig. 6. Mock-Up of a time-line extension showing results of a computation taking
additional information on treatment into account

analysis. Regarding the carcigonesis we have to include information about several
attributes of tumor progression as well as genetic theory. Genomic databases
also provide data in biotab format that includes temporal data such as “days
to death” [50]. The possibilities are numerous. Comparing progress is possible
with visualization metaphors such as making use of a Layer Area graph, Braided
graph, Stream-graph or even parallel coordinates as well as many others [51].

5 Challenges

Our work is an intermediate step in extending cancer research using a specific
tool and feeding it with additionally enhanced data. A number of challenges has
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to be addressed. There are many open issues for data integration, in particular
to cancer data. We summarize and explain the most important ones.

Relevance. A key challenge is finding suitable relations in a domain-specific
manner. Are relevant data such as growth rates explicitly available via open data
sources or hidden within text retrieval of open access publications (literature
curation)? How can relevant data sets be successfully retrieved?

Data Quality. Regarding data quality, aspects of accuracy and completeness
have to be taken into account. Several genomics databases show associations
between diseases and genes for several reasons, sometimes only because of the
fact that queried terms occurred in the same publication. Further data processing
steps have to be taken into account to decrease retrieval of false-positive or false-
negative associations.

Tight Integration of Visualization. Integration for visual data analysis is
possible on different levels. Moving beyond visualization as simple presentation
of computation results, several interaction possibilities have to be included seam-
lessly to foster understanding of the underlying processes [5].

Specifically in the case of simulations, experts need to set many parame-
ters but it is often not clear what the effect of the different parameters will be.
Hence, there is a need for representing sensitivity and also, uncertainty of the
analysis results. The latter is particularly relevant in case of incomplete data,
or data of varying levels of resolution. Moreover, the integration of the knowl-
edge of a domain expert can sometimes be indispensable, and the interaction
of a domain expert with the data would greatly enhance the whole knowledge
discovery process pipeline, i.e. interactive machine learning puts an human-into-
the-loop to enable what neither a human nor a computer could do on their
own [52].

Ease of Use. Incorporating a human computer interaction perspective into can-
cer simulation and visual analysis, we have to face the danger of user interface
overload due to the complexity of data integration. Integrating various multi-
dimensional result-sets of different databases in a consistent and concise way
to maintain an intuitive user interface. While our approach is to provide tumor
growth simulation and visual analysis via an intuitive user interface that is online
available, questions to be answered still remain: How to facilitate exploration and
discovery and how to make complex cancer data easily accessible.

6 Discussion and Conclusion

Cancer research is a data-intensive application domain that, on the one hand,
raises many challenges for researchers, technicians and clinicians. On the other
one in silico modeling may benefit from the many possibilities that come with
accessible data related to the disease of cancer.

We implemented an easily extendable user interface using open-source com-
ponents, with the ultimate goal of supporting in silico modeling by dissemination
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and contribution throughout the Computational Biology community for cancer
research. Visualization for scientific simulations can have a positive impact on
exploration, comparison and understanding. Therefore we are iteratively extend-
ing a visualization approach to tumor growth simulation and describe some
examples as a starting point, how publicly available data can be used to further
enhance the analysis of tumor kinetics.

We believe that it is essential to exploit and integrate data to achieve the
goal of supporting clincians’ decision making. The tool’s extensions have been
co-designed and validated by a domain-expert, but have not been evaluated by
clinicians so far. Future plans are to conduct iterative testing and validating.

This contribution is preliminary work and aims to facilitate integration of
heterogeneous data sources for tumor simulation and analysis by providing a
categorized list of databases and describing integration possibilities. Open Data
for cancer research can be disposed on a large scale: Incidence reports can be
used to enhance a statistical and probabilistic approach to prediction regard-
ing population data such as age, sex, etc. Imaging archives can be exploited for
input testing. Further, profiles can be created and utilized. First attempts are
discussed in [53]. Databases provide information about mutation probabilities
regarding specific cancer types. Subsequently, genomic information can be used
for biomarker discovery, for targeting strategies regarding novel drugs. Moreover,
the comparison of biopsies with other incidence reports may foster personalized
medicine. Data can be used for parameter refinement not only for extending the
set of profiles but also including more variables according multicellular struc-
tures.

In general, the sheer abundance of data, derived from multiple experiments
in cancer research, asks for a more comprehensive approach to data retrieval,
analysis and application [36].

The progress of sophisticated biochemical and biomedical methods may not
outrank the development of bioinformatic methods in order to salvage the often
multi-dimensional information There is a general need to readily access cancer
data from public repositories. Data integration resembles one promising option
to this task.

So far, Web repositories on cancer information focus genomic and mutational
data in particular. We experienced that one can easily get sunk within this mag-
nitude of information in search of completely different readings. We aim to pick
and choose details of growth-relevance in order to refine and improve kinetic
models within field of computational biology in cancer. In anticipation of future
development, in terms of personalized medicine, individual mutational profiles
could be compared to those from repositories and integrated by determining the
scope of the specific tumor growth. This approach could be equally employed for
proteomic material. For that matter, further information on spatial and tempo-
ral changes due to genetic changes have to be allocated to online repositories.
Ultimately, such an approach will predict the outcome of the disease and the
patient’s survival possibilities.
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Concluding, we believe that the key to understanding the concept of cancer
lies within the integrative translation and multi-dimensional connection of open
data.
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