
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 129.27.161.244
This content was downloaded on 26/05/2017 at 13:35

Please note that terms and conditions apply.

Coulomb correlations in 4d and 5d oxides from first principles—or how spin–orbit materials

choose their effective orbital degeneracies

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/29/26
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1 © 2017 IOP Publishing Ltd Printed in the UK

Journal of Physics: Condensed Matter

C Martins et al

Effective orbital degeneracies in spin–orbit materials

Printed in the UK

263001

JCOMEL

© 2017 IOP Publishing Ltd

29

J. Phys.: Condens. Matter

CM

10.1088/1361-648X/aa648f

26

Journal of Physics: Condensed Matter

Coulomb correlations in 4d and 5d oxides 
from first principles—or how spin–orbit 
materials choose their effective orbital 
degeneracies

C Martins1, M Aichhorn2 and S Biermann3

1 Laboratoire de Chimie et Physique Quantiques, UMR 5626, Université Paul Sabatier, 118 route de 
Narbonne, 31400 Toulouse, France
2 Institute of Theoretical and Computational Physics, Technical University Graz, Petersgasse 16, 
Graz, Austria
3 Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644, Université Paris-Saclay, 
91128 Palaiseau, France

E-mail: silke.biermann@polytechnique.edu

Received 1 December 2016, revised 7 February 2017
Accepted for publication 6 March 2017
Published 26 May 2017

Abstract
The interplay of spin–orbit coupling and Coulomb correlations has become a hot topic in 
condensed matter theory and is especially important in 4d and 5d transition metal oxides, 
like iridates or rhodates. Here, we review recent advances in dynamical mean-field theory 
(DMFT)-based electronic structure calculations for treating such compounds, introducing all 
necessary implementation details. We also discuss the evaluation of Hubbard interactions in 
spin–orbit materials. As an example, we perform DMFT calculations on insulating strontium 
iridate (Sr2IrO4) and its 4d metallic counterpart, strontium rhodate (Sr2RhO4). While a Mott-
insulating state is obtained for Sr2IrO4 in its paramagnetic phase, the spectral properties and 
Fermi surfaces obtained for Sr2RhO4 show excellent agreement with available experimental 
data. Finally, we discuss the electronic structure of these two compounds by introducing the 
notion of effective spin–orbital degeneracy as the key quantity that determines the correlation 
strength. We stress that effective spin–orbital degeneracy introduces an additional axis into 
the conventional picture of a phase diagram based on filling and on the ratio of interactions to 
bandwidth, analogous to the degeneracy-controlled Mott transition in d1 perovskites.

Keywords: dynamical mean-field theory, electronic structure, iridates, rhodates, spin–orbit 
coupling
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1. Introduction

Electronic Coulomb correlations are at the heart of a variety 
of exotic properties in compounds with partially filled 3d or 
4f shells. Prominent examples are found among the 3d trans-
ition metal oxides, where unconventional transport behaviors, 
ordering phenomena or unusual spectroscopic properties are 
observed [1]. It was argued early on that the comparably 
weak spatial extension of 3d orbitals leads to large electronic 
Coulomb interactions, competing with kinetic contributions. 
Depending on crystal fields, hybridisation, Hund’s exchange, 
and band filling, this interplay can lead to renormalized 
metallic behavior such as in simple oxides like SrVO3 [2, 3] 
or iron pnictide compounds [4–9] or induce Mott insulating 
behavior like in YTiO3 [10] or V2O3 [11–14]. According to 
common belief held until recently, such effects would be less 
dramatic in 4d, and even less so in 5d compounds, due to the 
substantially more extended radial wave functions of those 
shells, as shown in figure 1. The discovery of Mott insulat-
ing behavior in Sr2IrO4 therefore triggered a little revo lution 
in the field [15, 16]. In 5d oxides, spin–orbit coupling acts 
on an energy scale comparable to the other scales of the sys-
tem (Coulomb interactions, bandwidths, ligand fields...), and 
the electronic state is the result of a complex interplay of 
Coulomb correlations, spin–orbit splitting and crystal field 
effects (for recent reviews, see [17, 18]). But, as pointed out 
earlier [19, 20], spin–orbit interactions can also influence 
the electronic properties substantially in 4d compounds. In 
Sr2RhO4, for example, the experimentally observed Fermi 
surface can only be reconciled with experiments when spin–
orbit coupling and electronic Coulomb correlations are taken 
into account [19–22]. Here, we give a review of recent efforts 
to describe correlated spin–orbit physics from first principles, 
in a combined density functional and dynamical mean-field 
theory framework [21].

2. Spin–orbit materials—an incomplete literature 
review

The term spin–orbit material refers to systems where spin–
orbit coupling (SOC) and its interplay with other elements 
of the electronic structure—crystal or ligand fields, Coulomb 
correlations, magnetism,...—is essential in determining the 
physical properties. In many such materials, the physics is 
largely determined by the geometrical aspects of the crystal-
line structure, and the electronic properties can be understood 
by analysing the one-particle band structure. In particular, 
strong enough spin–orbit coupling can cause band inversions, 
possibly leading to non-trivial topological effects. The quest 
for topological materials is nowadays a hot topic of condensed 
matter physics, and several excellent reviews exist in the lit-
erature [23–25].

The scope of the present review is, however, a different 
one. Here, we focus on materials, where the interplay of spin–
orbit interactions and Coulomb correlations is crucial, and the 
band picture is at best useful as a starting point for further 
many-body calculations. Early examples are found among 
the layered tantalum chalcogenides: TaS2 [26–28] is Mott 

insulating thanks to the presence of a lone narrow band result-
ing from the combined effect of SOC and a charge-density 
wave instability. The corresponding selenide, TaSe2, [29] dis-
plays a surface Mott metal–insulator transition. Nevertheless, 
the true power of the interplay of spin–orbit interactions was 
fully appreciated only after the discovery of Sr2IrO4: the 
 insulating behavior—despite moderate Coulomb interactions 
usually present in 5d compounds—was even more intriguing, 
as the electronic and crystal structures are otherwise seem-
ingly  simple. The interplay of Coulomb correlations and spin–
orbit coupling was indeed shown to be essential in driving the 
system insulation, leading to a state dubbed ‘spin–orbit Mott 
insulator’ [15, 16]. A flurry of further spin–orbit materials 
have by now been characterized, or known compounds have 
been reinvestigated in the light of the new insights. Iridium-
based materials, where several families of compounds have 
been studied systematically, still hold a privileged position. 
Table  1 summarizes the structural, transport and magnetic 
properties of a selection of iridates. It is interesting to note 
that the large majority among them display insulating phases. 
The Ir4+ (5d5) state does not allow for a band insulating state 
without symmetry breaking, and magnetic order is an obvi-
ous candidate for helping to open the gap. Nevertheless, few 
compounds have been unambiguously characterized as Slater 
insulators.

Slightly more recently, attention focused on yet another 
class of 5d materials, namely osmium-based compounds. In 
this class fall, for example, ferroelectric LiOsO3 [30], as well 
as the prototypical Slater insulator NaOsO3 [31–36], where 
the loss of magnetic order with increasing temperature is 
accompanied by a closure of the insulating gap. It has been 
realized, however, that SOC can also have notable effects in 
4d compounds, with prominent examples among ruthenium- 
and rhodium-based materials, where most interesting conse-
quences for magnetic excitations have been discussed [37]. 
Table 2 gives an overview of the properties of a selection of  

Figure 1. Radial distribution function ℓr R rn
2 2( )  as a function of the 

distance from the nucleus r expressed in atomic units, for the 3d, 4d 
and 5d orbitals. To ease the comparison between different atoms, 
we use the renormalized distance ρ = ⋅Z r on the abscissa, where 
Z is the effective nuclear charge for a given multi-electron atom. 
As the principal quantum number n increases, Z remains almost 
constant for d valence electrons and their radial distribution is thus 
more and more extended.
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osmates, ruthenates and rhodates. In the following discussion, 
we will restrict ourselves to the prototypical correlated iridate 
Sr2IrO4 and its 4d analog, Sr2RhO4.

2.1. Correlated spin–orbit insulators: the example of Sr2IrO4

The 5d transition metal oxide (TMO) Sr2IrO4 has a tetrago-
nal crystal structure, the symmetry of which is lowered from 
the K2NiF4-type, well-known in Sr2RuO4 or La2CuO4, by 

an !11  rotation of its IrO6 octahedra around the c-axis [136]. 
Each Ir atom accommodates 5 electrons and the standard 
picture neglecting spin–orbit interactions would give a ‘t g2

5 ’  
ground state. However, this compound exhibits insulating 
behavior up to the highest measured temperatures, with a 
strongly temperature-dependent gap. The optical gap at 
room temperature is about 0.26 eV [137]. Below =T 240N  
K, a canted-antiferromagnetic (AF) order sets in, with an 

Table 1. Main structural, transport and magnetic properties of Ir-based spin–orbit materials. In the third column, Ins. refers to insulator 
and MIT to metal–insulator transition. The notations AFM, FM and AIAO refer to an antiferromagnetic, ferromagnetic and all-in-all-out 
magnetic ordering, respectively.

Iridium-based spin–orbit materials

Compound Crystal struct. Transport property Magnetic ordering Reference
CaIrO3 Post-perovskite Cmcm Ins. gap: 0.34 eV AFM =T 115N  K [38–40]
NaIrO3 Post-perovskite Cmcm Ins. — None [41, 42]
BaIrO3 Monoclinic C2/m Ins. gap: 0.05 eV FM =T 180C  K [43–45]
SrIrO3 Monoclinic C2/c Metal None [46–49]
α-Na2IrO3 Honeycomb monoclinic C2/c Ins. gap: 0.35 eV Zig-zag AFM =T 15N  K [50–55]
α-Li2IrO3 Honeycomb monoclinic C2/c Ins. — Spiral AFM =T 15N  K [56, 57]
β-Li2IrO3 Hyperhoneycomb Fddd Ins. — Unconventional AFM =T 38N  K [58, 59]
γ-Li2IrO3 Stripyhoneycomb Cccm Ins. — Unconventional AFM =T 38N  K [60]
Ba2IrO4 K2NiF4-type I4/mmm Ins. gap: 0.14 eV AFM =T 240N  K [61–64]
Sr2IrO4 Distorted K2NiF4-type I41/acd Ins. gap 0.25 eV Canted AFM =T 240N  K [15, 16, 21]
Ca4IrO6 Hexagonal R c3̄ Ins. — AFM =T 13.95N  K [65–67]
Y2Ir2O7 Pyrochlore Fd m3̄ Ins. — AIAO T  =  155 K [68, 69]
Pr2Ir2O7 Pyrochlore Fd m3̄ Metal None [70, 71]
Nd2Ir2O7 Pyrochlore Fd m3̄ MIT T  =  36 K AIAO T  =  36 K [70, 72]
Sm2Ir2O7 Pyrochlore Fd m3̄ MIT T  =  117 K AIAO T  =  117 K [70, 72]
Eu2Ir2O7 Pyrochlore Fd m3̄ MIT T  =  120 K AIAO T  =  120 K [70, 73–75]
Gd2Ir2O7 Pyrochlore Fd m3̄ Ins. — AIAO T  =  127 K [70]
Tb2Ir2O7 Pyrochlore Fd m3̄ Ins. — AIAO T  =  130 K [70, 76]
Dy2Ir2O7 Pyrochlore Fd m3̄ Ins. — AIAO T  =  134 K [70]
Ho2Ir2O7 Pyrochlore Fd m3̄ Ins. — AIAO T  =  141 K [70]
Er2Ir2O7 Pyrochlore Fd m3̄ Ins. — AIAO T  =  140 K [76]
Yb2Ir2O7 Pyrochlore Fd m3̄ Ins. — AIAO T  =  130 K [77]
Lu2Ir2O7 Pyrochlore Fd m3̄ Ins. — AIAO T  =  120 K [78]
Bi2Ir2O7 Pyrochlore Fd m3̄ Metal None [79, 80]

Sr3Ir2O7 Monoclinic C2/c Ins. gap: 0.1 eV AFM =T 285N  K [46, 81–85]
Na4Ir3O8 Hyperkagome P4132 Ins. — AFM =T 6N  K [86–88]
Ca5Ir3O12 Hexagonal P  −  62m Ins. — AFM =T 7.8N  K [66, 67, 89]
La2ZnIrO6 Double-perovskite P21/n Ins. — FM =T 7.5C  K [90]
La2MgIrO6 Double-perovskite P21/n Ins. gap: 0.16 eV AFM =T 12N  K [90, 91]
Pr2MgIrO6 Double-perovskite P21/n Ins. gap: 0.2 eV AFM =T 14N  K [91, 92]
Nd2MgIrO6 Double-perovskite P21/n Ins. — AFM =T 12N  K [92]
Sm2MgIrO6 Double-perovskite P21/n Ins. — AFM =T 15N  K [92]
Eu2MgIrO6 Double-perovskite P21/n Ins. — AFM =T 10N  K [92]
Gd2MgIrO6 Double-perovskite P21/n Ins. — None [92]
Sr2CeIrO6 Double perovskite P21/n Ins. gap: 0.3 eV AFM =T 21N  K [93–95]
Ba2YIrO6 Double perovskite Fm m3̄ Ins. gap: 0.221 eV None [96]

Ba3IrTi2O9 Hexagonal P63mc Ins. — None [97, 98]
Ba3ScIr2O9 Hexagonal P63/mmc Ins. — None [99]
Ba3YIr2O9 Hexagonal P63/mmc Ins. — FM T  =  4 K [99]
Ba3ZnIr2O9 Hexagonal P63/mmc Ins. — None [100]
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effective local moment of 0.5 µB/Ir, and a saturation moment 
of 0.14 µB/Ir [138]. This phase has triggered much exper-
imental and theoretical work [139–142], highlighting, in 
particular, the importance of the SOC.

Here, we focus on the paramagnetic phase, above 240 K, 
which is most interesting due to the persistence of the insulat-
ing nature despite the absence of magnetic order, as shown by 
transport measurements [15], by scanning tunneling micros-
copy and spectroscopy experiments [143], by angle-resolved 
spectroscopy [16, 144], time-resolved spectroscopy [145, 
146] or optical conductivity [137].

Resonant inelastic x-ray spectroscopy (RIXS) experiments 
[15] proposed a picture early on in terms of =j 1 2eff /  states 
and =j 3 2eff /  states:
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Since the quartet of states lies lower in energy than the doublet 
and the splitting between the =j 3 2eff /  and =j 1 2eff /  is large, 
neglecting any band dispersion would result in a configuration 
with one electron in the =j 1 2eff /  state. The DFT band struc-
ture displays a dispersion of width comparable to this split-
ting, leaving the question a priori open again. However, the 
bandwidth is narrowed due to structural distortions [21], and 
electronic correlations can then become effective and eventu-
ally drive the compound insulation.

Since the discovery of this mechanism, other Ir-based com-
pounds (see table 1) have been classified as spin–orbit Mott 
insulators (Na2IrO3, pyrochlores, etc...). Recent theoretical 
studies also predict some fluoride material [147] to be in this 
class. The one-orbital nature of insulating Sr2IrO4 has contrib-
uted to intense activities attempting to dope the compound, 

Table 2. Main structural, transport and magnetic properties of Ru, Rh and Os-based spin–orbit materials. In the third column, Ins. refers to 
insulator and MIT to metal–insulator transition. The notations AFM, FM and AIAO refer to an antiferromagnetic, ferromagnetic and all-
in-all-out magnetic ordering, respectively.

Compound Crystal struct. Transport property Magnetic ordering Reference

Ruthenium-based spin–orbit materials
BaRuO3 Cubic perovskite Pm m3̄ Metal FM Tc  =  60 K [101–103]
CaRuO3 Perovskite Pnma Metal None [104–106]
SrRuO3 Perovskite Pnma Metal FM =T 160c  K [104, 106, 107]

Sr2RuO4 K2NiF4-type I4/mmm Metal None [108, 109]
Ca2RuO4 Distorted K2NiF4-type Pbca or P21/c MIT T  =  357 K AFM T  =  110 K [108, 110–112]
SrRu2O6 Hexagonal P m31¯ Ins. — AFM =T 565N  K [113, 114]
Sr3Ru2O7 Orthorhombic BBcb Metal None [106, 115]
Sr4Ru3O10 Orthorhombic Pbam Metal FM =T 105c  K [106, 116, 117]

Rhodium-based spin–orbit materials
Li2RhO3 Honeycomb C2/m Ins. gap: 0.08 eV None [118, 119]
Sr2RhO4 Distorted K2NiF4-type I41acd Metal None [21, 120, 121]
Sr4RhO6 Hexagonal R c3̄ Ins. gap: 0.1 eV AFM = −TN  K [122]
Sr5Rh4O12 P3c1 Ins. — AFM =T 23N  K [66, 123]

Osmium-based spin–orbit materials
BaOsO3 Six-layer hexagonal 6H Pm m3̄ Metal None [124, 125]
CaOsO3 Perovskite Pnma Metal None [125]
SrOsO3 Perovskite Pnma Metal None [125]
NaOsO3 Perovskite Pnma MIT T  =  410 K AFM T  =  410 K [31–36]
Cd2Os2O7 Pyrochlore Fd m3̄ MIT T  =  226 K AIAO T  =  226 K [126–129]
Ba2NaOsO6 Double-perovskite Fm m3̄ Ins. — FM =T 6.8c  K [130–132]
Ba2LiOsO6 Double-perovskite Fm m3̄ Ins. — AFM =T 8N  K [131]
Ba2CaOsO6 Double-perovskite Fm m3̄ Ins. — FM =T 50c  K [133, 134]
Ba2YOsO6 Double-perovskite Fm m3̄ Ins. — AFM =T 69N  K [134, 135]
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with the hope of inducing a superconducting state as in the 
cuprates. Doping-induced metal–insulator transitions and 
the properties of the metallic phases have therefore become 
a hot topic, with studies of various compounds, e.g. Sr2IrO4 
[144, 148], (Sr1−xLax)3Ir2O7 [149], Ca1−xSrxIrO3 [150], 
Ca1−xRuxIrO3 [151], Sr2Ir1−xRhxO4 [152, 153], Sr2Ir1−xRuxO4 
[154], SrxLa11−xIr4O24 [155].

2.2. Correlated spin–orbit metals: the example of Sr2RhO4

It is natural that also in metallic 4d or 5d transition metal com-
pounds, SOC can have notable consequences. An example of 
a ‘spin–orbit correlated metal’ is the end member SrIrO3 of 
the Ir-based Ruddlesden–Popper Srn+1IrnO3n+1 series [46] 
but also many Ru-,Rh- or Os-based transition metal oxides 
(TMOs) belong to this class (see tables  1 and 2). In these 
compounds, correlations are important enough to renormalize 
the Fermi surface-, albeit in a strongly spin–orbit coupling-
dependent way. The respective roles of both effects have been 
worked out in some detail for several compounds, among 
which are SrIrO3 [46–48], Sr2RuO4/Ca2RuO4 [108, 109, 156] 
and Sr2RhO4 [19–21].

We will focus our attention in the following on Sr2RhO4, 
motivated by its structural proximity and isoelectronic nature 
to Sr2IrO4. Indeed, this TMO is the 4d counterpart of Sr2IrO4, 
both concerning structure and filling. To understand its Fermi 
surface requires the inclusion of both SOC and correlations 
[21]. It is composed of three pockets (see figure 8): a circular 
hole-like α-pocket around Γ, a lens-shaped electron pocket βM 
and a square-shaped electron pocket βX with a mass enhance-
ment of 3.0, 2.6 and 2.2, respectively [120].

In this review, we will put Sr2IrO4 and Sr2RhO4 in parallel, 
shedding light on the spectral properties of these compounds 
and elaborating on the notion of a reduced effective (spin–
orbital) degeneracy that is crucial for their properties.

2.3. Spin–orbit coupling and cubic symmetry: the jeff picture

Necessary conditions for realizing a jeff picture are (1) a strong 
spin–orbit coupling constant and (2) an important cubic crys-
tal field. These conditions are often met in crystalline struc-
tures where IrO6 octahedra are present (see table 1). Similar 
compounds based on Ru, Rh and Os also show such jeff states 
(see table 2). However, not all Ir-based structures belong to 
this case: we note that neither epitaxial thin films of IrO2 [157] 
nor the correlated metal IrO2 in its rutile structure [158, 159] 
exhibit such a =j 1 2eff /  state. We will now turn to a more 
precise description of that picture.

The spin–orbit interaction is one of the relativistic cor-
rections to the Schrödinger–Pauli equation  arising when 
taking the non-relativistic limit of Dirac’s equation. It 
introduces a coupling between the spin S and the motion—
or, more precisely, the orbital momentum L in the atomic 
case—of the electron. In a solid described within an inde-
pendent-particle picture, spin–orbit coupling has the fol-
lowing general form:

σ ∇= ⋅ ×H
m c

V r p
4

,SO
0
2 2

ħ [ ( ) ] (3)

where m0 is the electron mass, V r( ) is the effective Kohn–
Sham potential and σ=i x y z, ,  denote the Pauli-spin matrices. 
Assuming that the potential close to the nucleus has spherical 
symmetry, the mean value of the spin–orbit interaction on the 
atomic state ℓn,( ) takes the more common form:

ℓ ℓ
ℓ

ζ ζ= ⋅ =H n n
m c r

V
r

l s,
2

1 d
d

,
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SO SO SO
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where σ=S 1
2

, = × =L r p lħ   and ℓ… n,⟨ ⟩( ) denotes the mean 
value of the radial quantity in the state ℓn,( ). Table 3 gives 
some values of the spin–orbit constant ζSO for 3d, 4d and 5d 
atoms. The SOC increases with the atomic number, explain-
ing why spin–orbit materials are mostly found in 5d and 4d 
TMOs.

Due to the effect of SOC, a multiplet splitting arises in the 
d-orbitals. Figure 2 shows the multiplet splitting of d-orbitals 
due to the spin–orbit coupling as a function of the strength of 
a cubic crystal field ∆ = Dq10 .

In spherical symmetry the fine structure is composed of 
a six-fold J  =  5/2 multiplet (in red) and a J  =  3/2 quartet of 
lower energy (in blue), following ‘Landé’s interval rule’. The 
presence of a cubic crystal field splits further the six-fold mul-
tiplet. Indeed, the spin–orbit interaction in the cubic basis (eg 
and t2g in green and light green, respectively, in figure 2) can 
be reduced to two five-dimensional submatrices:

⎛
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in the bases ↑ ↑ ↓ ↓ ↓− −d d d d d, , , ,xz yz xy z r x y3 2 2 2 2{ } and 
↓ ↓ ↑ ↑ ↑− −d d d d d, , , ,xz yz xy z r x y3 2 2 2 2{ }, respectively. After 

diagonalization, the total angular momentum J remains a good 

Table 3. Value of the spin–orbit constant ζSO in the d-valence shells 
of some transition metals. Data from Landolt–Börnstein database 
and [160] (3d), from [19, 161] (4d) and from [162] (5d).

Atom Z
ζ d3SO( ) 
(eV) Atom Z

ζ d4SO( ) 
(eV) Atom Z

ζ d5SO( ) 
(eV)

Fe 26 0.050 Ru 44 0.161 Os 76 0.31
Co 27 0.061 Rh 45 0.191 Ir 77 0.40
Cu 29 0.103 Ag 47 0.227 Au 79 0.42
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quantum number, contrary to j mz j/  and one gets the  following 
fine structure:

 • a first quartet of J  =  5/2 states (in red) with an energy

ε ζ ζ ζ= ∆− + ∆+ ++
1
4

2
1
4

2 24 ,5
2

SO SO
2

SO
2( ) ( )   

 • a doublet of J  =  5/2 states (in yellow) of energy

ε
ζ

= +− 2
2

,5
2

SO

 • a quartet of J  =  3/2 states (in light blue) with an energy

ε ζ ζ ζ= ∆− − ∆+ +1
4

2
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4

2 24 .3
2

SO SO
2

SO
2( ) ( )   

In the limit of strong crystal field ( ≫ ζ∆ SO), the J  =  5/2 dou-
blet (in yellow) remains invariant while the higher-energy 
quartet will tend to the usual eg states and the lower-energy 
J  =  3/2 quartet will be composed of t2g states only, with an 
energy of ζ− 2SO/ .

Since the SOC matrix restricted to the t2g subspace is 
exactly the opposite of the SOC matrix of the p-states of a free 
atom, one usually labels these latter states by a jeff quantum 
number in analogy with the p1

2
 and p3

2
 multiplets, leading to 

the expressions given in equations (1) and (2). We point out 
that the =j 1 2eff /  doublet arises from the interplay of both 
cubic symmetry and SOC, whatever the strength of the crystal 
field. The corresponding eigenstates can indeed be written:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+ = + ↓ + ↓ + ↑

= − −

− = + ↑ − ↑ − ↓

= − −

d d d

i

d d d

i

1
2

,
1
2

1
3

, i ,
1
3

,

6
5

5
2

,
3
2

5
2

,
5
2

,

1
2

,
1
2

1
3

, i ,
1
3

,

6
5

5
2

,
3
2

5
2

,
5
2

yz xz xy

yz xz xy

( )

( )

 

 

(6)

(where the right hand side is written using the J,mJ quantum 
numbers). This may explain the robustness of this doublet in 
spin–orbit compounds [163]. However, the splitting between 
the =j 1 2eff /  and =j 3 2eff /  multiplets follows the inverse 
Landé interval rule (with the =j 1 2eff /  above the =j 3 2eff /  
states) only in the strong crystal field limit.

3. Interplay of spin–orbit interaction and Coulomb 
correlations from first principles

3.1. DFT+ DMFT calculations with spin–orbit coupling

Combined density functional theory (DFT) and dynamical 
mean-field theory (DMFT), as pioneered in [164, 165] (for 
a review, see [166, 167]), has made correlated electron sys-
tems accessible to first principles calculations. Over the years, 
various classes of systems ranging from transition metals 

Figure 2. Orbital diagrams for the d-shell of an atom as a function of the cubic crystal field ∆ and spin–orbit coupling ζS0, in a 
paramagnetic case. Starting from the d-shell in spherical symmetry, the cubic crystal field splits them into eg and t2g, while the SOC creates 
a six-fold J  =  5/2 multiplet and a J  =  3/2 quartet of lower energy. When both parameters are at stake, one gets a new multiplet structure 
where J remains a good quantum number but Jz does not. The initial J  =  5/2 multiplet splits into a quartet and a doublet of lower energy, 
while the quartet J  =  3/2 undergoes some redefinition inside its submanifold. The energetic splitting and the nature of the spin-orbitals 
depend on the ratio between ζ∆ SO/ . An exception is the doublet which is already of the form =j 1 2eff / . In the limit where ≫ ζ∆ SO, as is 
the case in the compounds of our interest, one gets the celebrated splitting into eg, =j 1 2eff /  and =j 3 2eff / .
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[168–171], their oxides [11, 172–177], sulphides [178, 179], 
pnictides [4, 9, 180, 181], rare earths [182–184] and their 
compounds [185–187], including heavy fermions [188, 189], 
actinides [190, 191] and their compounds [192, 193] to organ-
ics [194], correlated semiconductors [195, 196], and cor-
related surfaces and interfaces [197–199] have been studied 
with great success. Besides intensive methodological develop-
ments (see e.g. [2, 3, 167, 200–203]), recent research activi-
ties continue to extend to new classes of materials. In this 
context, 4d and 5d oxides have also come into focus [21, 22, 
62]. In this section, we review the technical aspects related to 
combined DFT+DMFT calculations in the presence of spin–
orbit interactions. Since the applications we later focus on are 
4d and 5d oxides in their paramagnetic phases, we restrict the 
discussion to this case.

In DMFT, a local approximation is made to the many-body 
self-energy which can then be calculated from an effective 
atom problem, subject to a self-consistency condition (see 
figure 3).

The notion of locality is understood in the sense of 
many-body theory as a site-diagonal form, with respect to 
atomic sites after representing the Hamiltonian in an atom-
centered Wannier-type basis ℓ|

α σw m
, ⟩, where the index α 

labels the atom in the unit-cell, ℓ m,( ) the angular momen-
tum quantum numbers of the atomic orbital and σ the spin 
degree of freedom. Different choices are possible for the 
construction of the atom-centered orbitals, and the work 
reviewed here is based on the construction of projected 
atomic orbitals subject to a subsequent orthonormalization 
procedure [180].

Figure 3. Projector-based implementation of DFT+DMFT for calculations including spin–orbit coupling in the Kohn–Sham equations. 
Once the Kohn–Sham eigenstates ψ| νk ⟩ are known, their projections ν

αP kj
m

,
, j( ) to the correlated Wannier-like orbitals | αw j

m, j⟩ are calculated. 
One can then build an effective local many-body atomic problem, subject to a self-consistency condition, which is solved using an impurity 
solver: this defines the DMFT loop (see section 3.1). The interaction parameters can also be evaluated consistently using the projectors 

ν
αP kj

m
,
, j( ) (see [204] and section 3.3). After convergence of the DMFT cycle, the chemical potential is updated and the spectral function can 

be evaluated using partial projectors Θ ν
α kj i

m
,

, j( ) (see appendix).
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The DMFT self-consistency cycle links the local effec-
tive atom problem to the electronic structure of the solid, via 
the transformation matrix from the Kohn–Sham states ψ| ν

σ
k ⟩, 

labelled by their momentum k their band index ν and their spin 
σ, to the resulting Wannier-like local orbitals ℓ|

α σw m
, ⟩. These key 

quantities are called projectors and denoted ℓ ν
α σP km,

, ( ).
The main advantage of projector-based implementations 

of DFT+DMFT (see e.g. [180, 205, 206]) is that not only 
the DFT-based part of the calculations but also the determi-
nation of the local Green’s function, used within the DMFT 
self-consistency condition, can be performed in any conveni-
ent basis set, and notably in the one used in the respective 
DFT code. Since the transformation of the DFT Hamiltonian 
matrix in that basis into the Kohn–Sham eigenset ψ| ν

σ
k ⟩ is 

known, it is sufficient to further determine the projections of 
the Kohn–Sham eigenstates onto the local orbitals ℓ|

α σw m
, ⟩ used 

in the DMFT impurity problem. This is precisely the role of 
the projectors.

In [21], this construction was generalized to the case when 
spin is not a good quantum number anymore, and imple-
mented within the framework of the DFT+DMFT implemen-
tation of [180]. Nowadays, it is available within the TRIQS/
DFTTools package [207] that links the Wien2k code [208] to 
DMFT. We give here the main lines of this generalization of 
the projector-based DFT+DMFT formalism.

When taking into account SOC, the Kohn–Sham eigenstates 
ψ| νk ⟩ are built out of both spin-up and spin-down states—in 
a similar fashion to the previously introduced =j 1 2eff /  and 
=j 3 2eff /  atomic states. Nevertheless, we can still write them 

in the following Bloch form:

ψ

φ φ

= +

= +
ν ν ν

ν ν

↑ ↓ ⋅

↑ ↓

u ur r r

r r

e

,

k k k
k r

k k

i( ) [ ( ) ( )]
( ) ( )

 (7)

where the index ν now runs over both spin and band indi-
ces. The state φ| ν

σ
k ⟩ denotes the projection of the Kohn–Sham 

state onto its spin-σ contribution and is not an eigenstate of 
the Hamiltonian.

Using this decomposition, we can define the new projectors:

ℓ ℓ ℓψ φ= | = |ν
α σ α σ

ν
α σ

ν
σP w wk .m m mk k,

, , ,( ) ⟨ ⟩ ⟨ ⟩ (8)

We define them in the standard complex basis, but allow for a 
basis transformation to quantum numbers j, mj (like =j 1 2eff /  
and =j 3 2eff / ) afterwards by means of a unitary matrix trans-
formation in the correlated ℓ-space:

ℓ ℓ ℓ ℓ∑ ∑ψ= | =ν
α

σ

σ α σ
ν

σ

σ
ν

α σP w Pk k .j
m

m
j m
m

m
m

j m
m

mk,
,

,
,
, ,

,
,
,

,
,j j j( ) ⟨ ⟩ ( )S S (9)

The main difference with the usual implementation where 
spin is a good quantum number is that there are now two 
projectors associated with each band index ν: ℓ ν

α σP km,
, ( ) with 

σ=↑ ↓, .
Using the decomposition (7) in the formulation of the self-

consistency condition relating the lattice Green’s function of 
the solid to the impurity model, the (inverse) Green’s function 
of the solid is given by:

ω ω µ ε δ ω= + − −Σνν
ν
νν νν

−
′ ′ ′G k k, i i , i ,n n nk

1[ ( )] ( ) ( ) (10)

where ενk are the (ν-dependent only) Kohn–Sham eigenval-
ues and ωΣνν ′ k, i n( ) is the approximation to the self-energy 
obtained by the solution of the DMFT impurity problem. It 
is obtained by ‘mapping’ the impurity self-energy to the local 
self-energy of the lattice and ‘upfolding’ it as:

∑ ∑ω ωΣ = ∆Σνν
α

ν
α α

ν
α∗

′

′ ′
′

′
′ ′ ′P Pk k k, i i ,n

jj m m
j

m
n jj

m m
j

m

,
,
,

loc ,
,

j j

j j j j( ) [ ( )]  [ ( )]   ( )

 (11)
with

ω ω∆Σ = Σ − Σα ′ ′ ′
′ ′ ′i i .n jj

m m
n jj

m m
jj
m m

loc imp dc
j j j j j j[ ( )] [ ( )] [ ] (12)

Here, ωΣ i nimp( ) is the impurity self-energy, expressed in the 
local orbitals, and Σdc is the double-counting correction. 
Consequently, the equations of the DMFT loop (see figure 3) 
are formally the same as in the case without SOC, but the 
computations now involve matrices which are double in size.

The local Green’s function is obtained by projecting the 
lattice Green’s function to the set of correlated orbitals and 
summing over the full Brillouin zone,

∑ω ω=α

νν
ν
α

νν ν
α ∗′ ′

′
′

′ ′ ′G P G Pk k ki , i .n jj
m m

j
m

n j
m

k
loc

,
,
,

,
,j j j j[ ( )] ( )  ( ) [ ( )] (13)

In practice, the summation over momenta is done in the irre-
ducible Brillouin zone only, supplemented by a standard 
symmetrization procedure, using Shubnikov magnetic point 
groups [209, 210].

The DMFT equations  are solved iteratively: starting 
from an initial local Green’s function ωαG i nloc( ) (obtained 
from the ‘pure’ Kohn–Sham lattice Green’s function using 
equation  (13)), the Green’s function ωi n0( )G  of the effec-
tive environ ment in the impurity model is constructed. The 
impurity model is solved, allowing the evaluation of the local 
self-energy of the solid (see equation (11)) and a new lattice 
Green’s function ωG k, i n( ). The latter can then be projected 
again onto the correlated subset and the cycle is repeated until 
convergence is reached.

3.2. Computation of the Wannier projectors within  
the augmented plane wave framework

The present implementation is within a full-potential linear-
ized augmented plane wave (FLAPW) framework, as realized 
in the Wien2k package [208]. With respect to the existing 
DFT+DMFT implementation [180] in this context, the main 
changes concern the projection technique for building the cor-
related orbitals: as discussed above, one has to take care of the 
fact that spin is no longer a good quantum number, leading to 
the more general construction of localized ‘spin-orbitals’. The 
necessary modifications in the construction of the projectors 
are reviewed in the following.

As in the case without SOC, we still use the Kohn–Sham 
states within a chosen energy window W to form the Wannier-
like functions that are treated as correlated orbitals, and the 
construction of the Wannier projectors is done in two steps. 
First, auxiliary Wannier projectors !ℓ ν

α σ
P km,

, ( ) are calculated—
separately for each φ| ν

σ
k⟩ term—from the following expression:
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ℓ"ℓ ℓ
ℓ

ℓ ℓ ℓ ℓ∑

ψ

σ

= |

= +

ν
α σ α σ

ν

να ν σ α α σ

=
′ ′

P u E Y

A c C

k

k, .

m m

m
n

N

m m m

k,
, ,

1

1
LO

, ,LO
,

,

LO

LO

( ) ⟨ ( ) ⟩

( ) O
 

(14)

A description of the augmented plane wave (APW) basis can 
be found in [180]. We use the same notations e.g. for the coef-
ficients ℓ σναA k,m( ) and the overlap matrix ℓ ℓ

α σ
′ ′m m,

,O  as introduced 
there.

One performs an orthonormalization step in order to 
get the Wannier projectors ℓ ν

α σP km,
, ( ). The overlap matrix 

σ σ
α α

′ ′
′O k m m,

,[ ( )]( ) ( ) between the correlated ℓ orbitals is defined 
by:

! !ℓ ℓ∑=σ σ
α α

ν ν

ν

ν
α σ

ν
α σ

=

∗
′ ′

′
′
′ ′

O P Pk k k ,m m m m
k

k

,
,

,
,

,
,

min

max

[ ( )] ( ) ( )( ) ( )
( )

( )
 (15)

leading to the final projectors:

!ℓ ℓ∑=ν
α σ

α σ
σ σ

α α
ν

α σ−

′ ′ ′
′ ′

′
′
′ ′

P O Pk k k ,m
m

m m m,
,

, ,

1 2
,

, ,( ) {[ ( )] } ( )/
( ) ( ) (16)

which are then further transformed into a j,mj basis as 
described above (see equation (9)).

3.3. Effective local Coulomb interactions from  
first principles

Hubbard interactions U—obtained as the static (ω = 0) limit 
of the on-site matrix element | |W partial⟨ ⟩ within the ‘con-
strained random phase approximation’ (cRPA)—have by 
now been obtained for a variety of systems, ranging from 
transition metals [211] to oxides [204, 212–215], pnictides 
[181, 186, 216, 217], f-electron elements [218] and com-
pounds [187], to surface systems [219], and several imple-
mentations within different electronic structure codes and 
basis sets have been done, e.g. within linearized muffin tin 
orbitals [211, 220], maximally localized Wannier functions 
[212, 216, 221] (as elaborated in [222]), or localized orbit-
als constructed from projected atomic orbitals [204]. The 
implementation into the framework of the Wien2k package 
[204] made it possible for Hubbard U’s be calculated for the 
same orbitals as the ones used in subsequent DFT+DMFT 
calculations, and, to our knowledge, [21] was indeed the 
first work using in this way consistently calculated Hubbard 
interactions in a DFT+DMFT calculation. Systematic calcul-
ations investigating the basis set dependence for a series of 
correlated transition metal oxides revealed further interesting 
trends, depending on the choice of the low-energy subspace. 
In contrast to common belief until then, Hubbard interactions 
increase, for example, with the principal quantum number 
when low-energy effective models encompassing only the t2g 
orbitals are employed. These trends can be rationalized by 
two counteracting mechanisms, the increasing extension of 
the orbitals with increasing principal quantum number and 
the less efficient screening by oxygen states [204]. We will 
come back to this point below, in the context of the cRPA 
calculations for our target compounds.

In the following, we review the specificities involved when 
determining the Hubbard interactions for our target spin–orbit 
compounds. We hereby use the same notations as in [204].

We start from the standard Hubbard–Kanamori Hamiltonian 
Hint which allows us to describe the interactions between t2g 
orbitals within a Hamiltonian restricted to the t2g-space:

∑ ∑

∑

∑

= +

+ −

− +

′

′
σ

σ σ

σ
σ σ

σ
σ σ σ σ σ σ σ σ

↑ ↓
<

<

<

H n n n n

n n

c c c c c c c c ,

m
m m

m n
m n

m n
m n

m n
m m n n m m n n

int
,

,

,

( )

[ ]

¯

†
¯ ¯

† †
¯

†
¯

U U

U J

J

 

(17)

where U  is the intra-orbital Coulomb repulsion term and ′U  
(= − 2U J  with cubic symmetry) the inter-orbital Coulomb 
interaction which is reduced by Hund’s exchange J . (m and n 
run over the three t2g orbitals and σ stands for the spin).

To draw the link between the cRPA calculations and this 
model Hamiltonian, the terms U , ′U  and J  are understood as 
the Slater-symmetrized effective interactions in the t2g sub-
space, related to the Slater integrals F0, F2 and F4 as:

= + + = +F F F F F
4
49

and
3
49

20
441

.0 2 4 2 4( )U J

 (18)

The last relation = − −′ F F F0 2
49

2 4
441

4U  is redundant since 
= −′ 2U U J .
One now transforms Hint into the jeff basis using the unitary 

matrix transformation σ
j lm
m
,
,jS . Keeping only density-density 

terms, Hint becomes:

∑ ∑=
′

′
′

′
′H U n n

1
2

.
j m j m

jj
m m

j m j mint
, ,

, ,
j j

j j
j j (19)

Here, the index j is a shortcut notation for the =j 3 2, 1 2eff { / / } 
quantum number and = ± ±m 3 2, 1 2j { / / }. The reduced inter-
action matrix ′

′U jj
m mj j  has the following form:

= =

− −

− −

− −

= =

− − −

− − −

− − −

′ ′

′ ′

′ ′

′ ′

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

U U

U U

0 2
5
3

2 0
7
3

5
3

7
3

0
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3

8
3

8
3

8
3

7
3

8
3

7
3

jj
m m

jj
m m

jj
m m

jj
m m

j j j j

j j j j

U J U J

U J U J

U J U J

U J U J U J

U J U J U J

U J U J U J

 

(20)
We use the standard convention that mj denotes  −mj, as is 

usually done for spin degree of freedom. The ordering of the 
orbitals | | |j m, j ⟩ is: | | |1 2, 1 2 , 3 2, 1 2 , 3 2, 3 2/ / ⟩ / / ⟩ / / ⟩, =j 1 2eff /  
and =j 3 2eff /  blocks are emphasized to ease the reading of 
the matrices.
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3.4. Technicalities of the DMFT calculation

For the solution of the quantum impurity problem we apply the 
continuous-time quantum Monte Carlo method (CTQMC) in 
the strong-coupling formulation [223]. We are able to perform 
calculations at room temperature (β = =k T1 40B/  eV−1) with 
reasonable numerical effort. In our calculations, we typically 
use around ×16 106 Monte Carlo sweeps and 28 k-points in 
the irreducible Brillouin zone.

Since the CTQMC solver computes the Green’s function 
on the imaginary-time axis, an analytic continuation is needed 
in order to obtain results on the real-frequency axis. A contin-
uation of the impurity self-energy using a stochastic version of 
the maximum entropy method [224] yields real and imaginary 
parts of the retarded self-energy. From those, we calculate the 
momentum-resolved spectral function ωA k,( ) using partial 
projectors introduced in the appendix.

During the calculations we use the fully localized limit 
(FLL) expression for the double-counting:

⎡
⎣⎢

⎤
⎦⎥ δΣ = − − −′ ′N N

1
2

1
2

1
2

,j j c c jj,
dc ( ) ( )U J (21)

where j and ′j  run over the jeff states and Nc is the total occu-
pancy of the orbitals. (Since each orbital is doubly degenerate 
in mj, Nc/2 is used in the term containing J). Moreover, we 
neglect the off-diagonal terms in the local Green’s functions 
(particularly, we neglect the term between the =j 1 2eff /  and 
the =j 3 2eff /  | |=m 1 2j /  which we checked to be two orders 
of magnitude smaller than the diagonal terms, in the chosen 
basis).

4. Electronic structure of Sr2IrO4 and Sr2RhO4

4.1. Electronic structure of Sr2IrO4 and Sr2RhO4  
within DFT-LDA

The Kohn–Sham band structures of Sr2IrO4 and Sr2RhO4 
within the local density approximation and in the pres-
ence of spin–orbit coupling (LDA  +  SO) are represented in 
 figures 4(d) and (e). For Sr2IrO4, we use the lattice parameters 
measured at 295 K in [225], and for Sr2RhO4 those measured 
at 300 K in [226].

The LDA  +  SO band structures for Sr2IrO4 and Sr2RhO4 
are very similar, as a consequence of both the structural simi-
larity and the key role of spin–orbit coupling in these com-
pounds. The eg-states ( −dx y2 2 in red and −d z r3 2 2 in yellow) start 
at about 1–1.5 eV, and are fully separated from the t2g-mani-
fold which lies around the Fermi level and overlaps at lower 
energies with the oxygen 2p-states (black). Given the t g2

5  fill-
ing and the four-atom unit cell of both compounds, a metal-
lic solution is obtained within LDA for both Sr2RhO4 and 
Sr2IrO4—at variance with experiments for Sr2IrO4. Among 
the t2g-manifold (in green), only the four highest-lying bands, 
highlighted in blue, cross the Fermi level: this is suggestive 
of the existence of a separated half-filled =j 1 2eff /  -derived 
band, which—within a four-atom unit cell—corresponds to 
a quartet of bands at each k-point. We stress, however, that 
the true picture is much more subtle: in fact, =j 1 2eff /  and 

=j 3 2eff /  overlap (see the band structure between the Γ and 
the M-point for instance) and the identification of the upper 
four bands as the =j 1 2eff /  states is too simplistic. We will 
come back to this point below.

Figure 4. Kohn–Sham band structures within LDA  +  SO of 
Sr2RhO4 and Sr2IrO4 assuming that they crystallize without 
distortions in a K2NiF4 structure ((a)–(b)), of Sr2IrO4 in a supercell 
containing four ‘undistorted’ unit-cells (c) and of ‘real’ Sr2RhO4 
and Sr2IrO4 ((d)–(e)). The reduction of the first Brillouin zone, 
when the crystal symmetry is lowered, is also shown. The eg states 
are plotted in yellow ( −d z r3 2 2) and red ( −d x y2 2) while the O-2p states 
are in black. In the t2g manifold, the =j 1 2eff /  are plotted in purple, 
the =j 3 2eff /  mj  =  3/2 in light blue and the =j 3 2eff /  mj  =  1/2 in 
green.
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To get a better understanding of the Kohn–Sham band struc-
tures of Sr2RhO4 and Sr2IrO4, we study artificial compounds 
where both the structural distortions and the spin–orbit cou-
pling have been switched off. Figures 5(b) and (c) depict the 
LDA band structure of such ‘idealized undistorted Sr2RhO4 
and Sr2IrO4’. Neglecting the rotation of about !10  of their IrO6 
and RhO6 octahedra around the c-axis leads to a K2NiF4-type 
crystal structure, like in Sr2RuO4, the well-known LDA band 
structure of which is plotted in figure 5(a).

The similarity of the three band structures is obvious. 
Around the Fermi level, one distinguishes the three t2g bands. 
The dxy-band (green) reaches out to lower energies and over-
laps with the oxygen 2p-states (black). The eg-states ( −dx y2 2 
in red and −d z r3 2 2 yellow), higher in energy, cut the Fermi 
level in both Sr2IrO4 and Sr2RhO4 due the additional electron 
remaining in the d-manifold, contrary to Sr2RuO4, which has 
actually a mere t g2

4 -filling. The larger extension of the 5d orbit-
als (see figure 1) explains the wider bandwidth observed for 
Sr2IrO4 in comparison to Sr2RhO4: the dxy band reaches the 
value of  −3.5 eV in Γ, while it remains above  −3 eV for the 
4d counterparts. Another consequence of this wider extension 
is the stronger hybridization between the 5d states with the 
oxygen p-states, which are located 1 eV lower in energy in 
Sr2IrO4 than in the 4d-TMOs.

Re-introducing the effects of the spin–orbit coupling in 
Sr2RhO4 and Sr2IrO4 (but without considering the structural 
distortions) modifies these Kohn–Sham band structures to 
those shown in figures  4(a) and (b). The t2g bands are the 
most affected, while the eg bands are slightly shifted as a 
consequence of the topological change in the t2g manifold. A 
detailed study of the character of these band structures con-
firms the decoupling between eg and t2g states (see also [19, 
20]). The cubic crystal field at stake in these compounds is 
indeed much larger than the energy scale associated with the 
spin–orbit coupling of about ζ ≈ 0.4SO  eV and ζ ≈ 0.2SO  eV 
for Sr2IrO4 and Sr2RhO4 respectively.

The jeff picture is thus justified in both Sr2IrO4 and 
Sr2RhO4: the t2g orbitals split into a quartet of =j 3 2eff /  states 
and a higher lying doublet =j 1 2eff /  (see figure 2). Each state 
is doubly degenerate in ±mj, since we observe the system in 
its paramagnetic phase at room temperature and the crystal 
structure has a center of inversion. Therefore we still refer to 
them as the ‘ =j 1 2eff /  band’ and the two ‘ =j 3 2eff /  bands’ 
in the following. The three jeff bands can easily be identified: 
the =j 1 2eff /  one (light green) lies above the two =j 3 2eff /  
ones (mj  =  3/2 in light blue and mj  =  1/2 in violet). The three 
jeff bands are well-separated all along the k-path, and more 
generally in the whole Brillouin zone. Since the spin–orbit 
coupling is half the size in Sr2RhO4, the splitting between 
the jeff bands is reduced by a factor of 2, as one can see, for 
instance, at X or Γ.

To draw the link between the ‘undistorted’ band structures 
and the realistic ones, we plot in figure 4(c) the LDA  +  SO 
band structure of the undistorted Sr2IrO4 in a supercell con-
taining four unit cells. Each band is now folded four times and 
we provide a scheme of the two first Brillouin zones in the 
=k 0z  plane to understand the correspondence between the 

high-symmetry points of each structure.
Comparing figures 4(c) and (e) highlights the key role of 

the structural distortion in Sr2IrO4: a hybridisation between 
two neighboring Ir dxy and −dx y2 2 orbitals via the in-plane 
oxygens is now allowed and pushes the t2g and eg bands 
apart. Another consequence of the distortions is the general 
narrowing of the jeff bandwidth, which is of crucial impor-
tance in driving the compound insulation, as we will see 
below.

Finally, comparing figures 4(c) and (e) gives more insight 
into the nature of the four highest-lying bands (blue) of 
 figure 4(e). Along the M  −  −X direction, each quartet of the 
jeff bands remain well-separated, =j 1 2eff /  and =j 3 2eff /  
overlap in the other direction Γ −M and M  −  X. As a result, 
the =j 3 2eff /  bands cross the Fermi-level closest to the 

Figure 5. Kohn–Sham band structures of Sr2RuO4 (a), Sr2RhO4 (b) and Sr2IrO4 (c) within LDA (and without spin–orbit coupling), 
artificially assuming that both Sr2RhO4 and Sr2IrO4 crystallize in the same K2NiF4 structure as their Ru-counterpart. For Sr2RuO4, we use 
the lattice parameters at 300 K given in [227]. The t2g-dominated bands are plotted in green (dxy) and blue (dxz and dyz) while the eg bands 
are in red ( −d x y2 2) and yellow ( −d z r3 2 2), and the O-2p states are plotted in black.

J. Phys.: Condens. Matter 29 (2017) 263001



Topical Review

12

Γ-point, while the other crossings are due to the =j 1 2eff /  
bands. The identification of the upper four bands in Sr2IrO4 
as ‘pure’ =j 1 2eff /  states is thus too simplistic, implying the 
need for a Hamiltonian containing more than one orbital in a 
realistic calculation.

The same mechanisms are important in Sr2RhO4 even 
though we do not display the orbital characters here: the 
four highest-lying bands, highlighted in blue in figure  4(d) 
exhibit a mixed character of type =j 1 2eff /  and =j 3 2eff / . 
Moreover, thanks to the distortions which allow the opening 
of a gap between t2g and eg bands, the LDA  +  SO Fermi sur-
face becomes qualitatively similar to the experimental one; as 
shown in figure 8(a), they both contain three closed contours: 
a circular hole-like α-pocket around Γ, a lens-shaped electron 
pocket βM and a square-shaped electron pockets βX. However, 
the striking discrepancies in the size of the pockets point out a 
subtle deficiency in the LDA for Sr2RhO4 [19, 20].

4.2. Wannier functions

We have derived the Wannier functions associated with the jeff 
manifold for both Sr2IrO4 and Sr2RhO4, using the framework 
introduced in section 3.1. Because of the mixed character of the 
four bands that cross the Fermi level in Sr2IrO4 and Sr2RhO4, 
the local effective atomic problem used in the DMFT cycle 
must contain the three jeff orbitals and thus accommodate five 
electrons. We construct Wannier functions for the jeff orbitals 
from the LDA  +  SO band structure of Sr2IrO4 and Sr2RhO4, 
using an energy window [−3.0,0.5] eV for Sr2IrO4 and an 
energy window [−2.67;0.37] eV for Sr2RhO4.

Figures 6 and 7 depict the projection of these Wannier 
functions on the LDA  +  SO band structure. The  similarities 
between figures 6 and 4(c) are numerous, thus confirming our 
previous band character analysis. Table 5 gives the decompo-
sition of these local Wannier functions on the t2g manifold and 
their respective occupation.

To obtain deeper insights into the nature of these Wannier 
orbitals, table  4 gives the coefficients of the local Wannier 
orbitals obtained from the LDA  +  SO band structure of 
‘undistorted’ Sr2IrO4 using an energy window [−3.5, 0.8] eV. 
The results agree well with the standard jeff picture (see equa-
tions (1) and (2)) in both modulus and phase. Discrepancies 
are mostly due to the elongation of the IrO6 along the c-axis, 
which introduces an additional tetragonal field between the t2g 
states. This effect also explains the lifting of the degeneracy 
of the two =j 3 2eff /  ( /=±m 1 2j  and /=±m 3 2j ) states and 
implies the reason why the =j 1 2eff /  is slightly more than 
half-filled.

Figure 6. LDA  +  SO band structure of Sr2IrO4, projected on the =j 1 2eff /  (a), =j 3 2eff /  | |=m 3 2j /  (b), and =j 3 2eff /  | |=m 1 2j /   
(c) spin-orbitals.

Figure 7. LDA  +  SO band structure of Sr2RhO4, projected on the =j 1 2eff /  (a), =j 3 2eff /  | |=m 3 2j /  (b), and =j 3 2eff /  | |=m 1 2j /   
(c) spin-orbitals.

Table 4. Coefficients and occupation (within LDA  +  SO) of the jeff 
Wannier orbitals in ‘undistorted’ Sr2IrO4. The discrepancy between 
these coefficients and those given in equations (1) and (2) are due to 
the small elongation of the octahedra along the c-axis.

‘Undistorted’ Sr2IrO4 ±,1
2

1
2

±,3
2

1
2

±,3
2

3
2

|dxy ↑↓⟩ ±0.6605 +0.7508 0

|dxz ↑↓⟩ ±0.5309 i −0.4670 i −0.7071 i
|dyz ↑↓⟩ +0.5309 ∓0.4670 ∓0.7071

Occupation (LDA  +  SO) 1.20 1.92 1.86
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Because of the hybridization between the dxy and −dx y2 2 
orbitals in the distorted structures, we had to define in practice 
‘effective =j 1 2eff /  and =j 3 2eff /  | |=m 1 2j /  states’, which 
remain close to the atomic jeff picture but take into account a 
small amount of −dx y2 2 character (see table 5). The coefficients 
have been calculated such that the density matrix of the local 
atomic problem is the closest possible to the diagonal form4. 
In addition to the hybridization, the construction of the ‘effec-
tive jeff’ also takes into account the tetragonal crystal field due 
to the elongation of the octahedra in each crystal structure; 
this explains the discrepancies with the standard coefficients 
given in equations (1) and (2). We note that the coefficients 
obtained for the =j 1 2eff /  state of Sr2IrO4 are equivalent to 
those obtained in the AF phase in [139].

Finally, comparing the occupation of the orbitals in tables 4 
and 5 highlights again the role of the hybridisation between 
the dxy and −dx y2 2 orbitals which pushes the band =j 3 2eff /  
| |=m 1 2j /  further below the Fermi level close to Γ. As a 
result, the four bands that cross the Fermi level are formed 
only by the =j 1 2eff /  and =j 3 2eff /  | |=m 3 2j /  orbitals and 
the =j 1 2eff /  tend to be close to half-filling. Similar conclu-
sions were drawn for the AF phase within a variational cluster 
approximation (VCA) approach in [140]. Similar conclusions 
hold for Sr2RhO4.

4.3. Effective Hubbard interactions from cRPA

After defining the jeff Wannier orbitals, we evaluate the local 
Coulomb interaction in the effective atomic problem within 
cRPA [204, 211], as explained in section 3.3. For reasons of 
computational resources, the cRPA calculations were per-
formed in the case without distortions (without the rotations 
of the octahedra, hence considering only one formula-unit 
in a unit-cell) and without SOC. To mimic the effect of the 
dist ortions, the eg states are shifted up to their energetic posi-
tion in the presence of distortions. We find = 2.54U  eV and 
= 0.23J  eV for Sr2IrO4 and = 1.94U  eV and = 0.23J  eV 

for Sr2RhO4. These parameters lead to the following local 
interaction matrices for Sr2IrO4:

=′′
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟U

0 2.08 2.21
2.08 0 1.93
2.21 1.93 0

jj
m mj j (22)

=′′
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟U

2.25 1.98 1.90
1.98 2.38 2.03
1.90 2.03 2.31

jj
m mj j (23)

and for Sr2RhO4:

=′′
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟U

0 1.48 1.66
1.48 0 1.29
1.66 1.29 0

jj
m mj j (24)

=′′
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟U

1.67 1.32 1.27
1.32 1.86 1.46
1.27 1.46 1.71

jj
m mj j (25)

where the values are in eV and the ordering of the | | |j m, j ⟩ 
orbitals is: |1 2, 1 2/ / ⟩, |3 2, 1 2/ / ⟩, |3 2, 3 2/ / ⟩ and mj denotes  −mj. 

We remind the reader that =′ ′
′ ′U Ujj

m m
jj
m mj j j j  and =′ ′

′ ′U Ujj
m m

jj
m mj j j j . 

Since we have used ‘effective jeff’ Wannier orbitals instead of 
the standard definition given in equations  (1) and (2), some 
discrepancies with the formulae given in equation  (20) and 
in [22] can be observed. Contrary to common belief, the 
Hubbard interactions are smaller in the 4d-TMO than in its 
5d-counterpart. This might seem counterintuitive at first sight, 
since the 5d-orbitals are more extended than the 4d ones, but 
finds its explanation in more efficient screening in the 4d 
material: As shown in figures 4(d) and (e), the hybridization 
between the Rh-4d states and the O-2p is weaker in Sr2RhO4 
than in Sr2IrO4. Correspondingly, the energetic position of the 
O-2p bands is closer to the Fermi level by about 1 eV, and as a 
result, the Coulomb interactions are screened more efficiently 
in Sr2RhO4 than in Sr2IrO4, explaining the observed trend.

4.4. Correlated electronic structure of Sr2IrO4 and Sr2RhO4

DFT+DMFT calculations following the procedure described 
in section 3.1 indeed find an insulating solution for Sr2IrO4 
and a correlated metal for Sr2RhO4 [21], in agreement with 
experiment. The difference in the metallic versus insulating 

Table 5. Modulus of the coefficients of the jeff Wannier orbitals in Sr2IrO4 and Sr2RhO4. The occupation within LDA  +  SO and the charge 
within LDA  +  SO+DMFT of each atomic Wannier orbital are also provided, showing how electronic correlations enhance the spin–orbital 
polarization.

Sr2IrO4 Sr2RhO4

Wannier orbitals ±,1
2

1
2

±,3
2

1
2

±,3
2

3
2

±,1
2

1
2

±,3
2

1
2

±,3
2

3
2

| −d x y2 2 ↑↓⟩ 0.0388 0.0766 0 0.0100 0.0302 0

|d xy ↑↓⟩ 0.4499 0.8889 0 0.3153 0.9485 0

|d xz ↑↓⟩ 0.6309 0.3193 0.7071 0.6710 0.2231 0.7071

|d yz ↑↓⟩ 0.6309 0.3193 0.7071 0.6710 0.2231 0.7071

occupation (LDA  +  SO) 1.16 1.98 1.84 1.42 1.96 1.64
charge (LDA  +  SO+DMFT) 1.02 2.00 1.98 1.26 1.98 1.76

4 With the obtained coefficients, the off-diagonal terms remaining in the 
local Green’s functions between the /=j 1 2eff  and /=j 3 2eff  /| |=m 1 2j  are 
smaller than 0.05. In practice, the coefficients were chosen to be real. This 
can be done in the local problem since only density-density terms were kept 
for the interaction terms and off-diagonal terms of the density matrix were 
neglected.
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nature of Sr2RhO4 and Sr2IrO4 can be traced back to the dif-
ferent spin–orbital polarization in the three jeff orbitals, which 
is enhanced by Coulomb correlations.

The occupations of the jeff Wannier orbitals within 
LDA  +  SO and LDA  +  SO+DMFT are provided in table 5. 
In Sr2IrO4, one detects a considerable spin–orbital polariza-
tion already at the LDA  +  SO level: the four =j 3 2eff /  states 
are almost filled with =| |n 1.983 2, 1 2/ /  and =| |n 1.843 2, 3 2/ /  
while the =j 1 2eff /  states thus slightly exceed half-filling 
with n1/2  =  1.16 (as in the ‘ideal undistorted’ case). Taking 
into account Coulomb correlations within DMFT opens a gap 
of about 0.26 eV [21] and enhances the spin–orbital polari-
zation, such as to fill the =j 3 2eff /  states entirely, leading 
to a half-filled =j 1 2eff /  state. This is thus the celebrated 
‘ =j 1 2eff /  -picture’ [16], which comes out here as a result of 
the calculations, rather than being an input as in most model 
Hamiltonian calculations.

A different picture emerges for Sr2RhO4 according to 
table  5: while the spin–orbital occupations display some 
polarization at the LDA  +  SO level, the smaller SOC—and 
thus the smaller effective splitting between the jeff bands—
leads to a picture where only the =j 3 2eff /  | |=m 1 2j /  state is 
entirely filled, while both =j 3 2eff /  | |=m 3 2j /  and =j 1 2eff /  
live at the Fermi level. This spin–orbital polarization is 
enhanced by Coulomb correlations—just as in Sr2IrO4—but 
this enhancement is not enough to fill both =j 3 2eff /  states 
entirely and obtain a half-filled =j 1 2eff /  state. The higher 

effective degeneracy, together with the smaller value of U , 
eventually leaves Sr2RhO4 metallic.

4.5. Spectral properties of Sr2RhO4: theory vs. experiment

We now turn to the calculated spectral function of the 
spin–orbital correlated metal Sr2RhO4 that we analyze in 
compariso n to experiment.

Figure 8 depicts the Fermi surface of Sr2RhO4 within 
LDA  +  SO (left panel) and LDA  +  SO+DMFT (right panel) 
in the =k 0z  plane, on which we superimpose the exper imental 
measurement from [120]. Table  6 gives more quantitative 
insight to ease the comparison between the different topolo-
gies. All three Fermi surfaces, the two theoretical ones and the 
experimental one, are qualitatively similar with three closed 
contours: a circular hole-like α-pocket around Γ, a lens-shaped 
electron pocket βM and a square-shaped electron pockets βX. 
These two structures merge in the undistorted tetragonal zone 
(dashed blue line in figure 8) to a large electron-like pocket β.

Comparing figures  8(a) and (b) highlights the key role of 
electronic correlations: they decrease the radius of the α pocket 
from 0.26–0.29 

−
Å

1
 to 0.21 

−
Å

1
 and decrease the radius of 

the large β pocket from 0.69–0.72 
−

Å
1
 to 0.67–0.70 

−
Å

1
, thus 

enlarging the βM and βX pockets such that their volumes are 
well-reproduced within LDA  +  SO+DMFT (see table 6). As a 
result, the agreement between LDA  +  SO+DMFT data and the 
experimental measurements becomes quantitatively excellent.

Figure 8. Calculated Fermi surface of Sr2RhO4 in the =k 0z  plane within LDA  +  SO (left panel) and LDA  +  SO+DMFT (right panel). 
Superimposed is the experimentally measured Fermi surface. Adapted with permission from [120]. Copyright 2006 by the American 
Physical Society.

Table 6. Comparison of the Fermi surface (FS) parameters evaluated within LDA  +  SO, within LDA  +  SO+DMFT and ARPES [120]. 
For each α, βX and βM pocket, the FS volume A is defined as a percentage of the two-dimensional BZ volume (using the experimental 
lattice parameters (a  =  5.45 Å)). The Fermi velocity vFħ  is obtained from the slope of the band dispersion at the Fermi level. The cyclotron 
mass ∗m me/  is calculated using the same method as described in [120]: π=∗m v AF ħ / .

α βX βM

LDA DMFT Exp. LDA DMFT Exp. LDA DMFT Exp.

FS volume A (% BZ) 18.4 10.1 6.1(4) 4.5 6.2 8.1(5) 10.0 7.6 7.4(4)
vFħ  (eV · Å) 1.252 0.645 0.41(4) 1.260 0.674 0.55(6) 1.260 0.674 0.61(6)

m∗ (me) 1.70 2.44 3.0(3) 0.83 1.83 2.6(3) 1.24 2.02 2.2(2)
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To go further in the analysis, figure 9 depicts the momen-
tum-resolved spectral function, as well as its orbital-resolved 
version. The completely filled =j 3 2eff /  | |=m 1 2j /  state is 
visible (panel (d)), as well as the partially filled character 
of the =j 3 2eff /  | |=m 3 2j /  (panel (c)) and =j 1 2eff /  states 
(panel (b)). A detailed comparison with angle-resolved pho-
toemission data from [121] (blue dashed line on the figure) 
shows that the band dispersion around the Fermi level is well-
reproduced, while some discrepancies are observed for the 
structures experimentally observed along Γ − X and Γ −M 
at lower energy. These features, reminiscent of the =j 3 2eff /  
| |=m 1 2j /  bands, are indeed about 0.05 eV higher in energy in 
our calculated spectral function.

From figures 9(b) and (c), one observes that the Fermi 
level is crossed by the renormalized =j 3 2eff /  | |=m 3 2j /  
band at 0.20 

−
Å

1
 along Γ − X and at 0.21 

−
Å

1
 along Γ −M, 

while the renormalized =j 1 2eff /  band is responsible for 
all other crossings. This allows us to label the hole-like 
α-pocket as being of =j 3 2eff /  | |=m 3 2j /  type, whereas the 
two other pockets βM and βX are mostly of type =j 1 2eff / . 
Using the quasiparticle weight of each state (Z1/2  =  0.535 
and =| |Z 0.6753 2, 3 2/ / ), we evaluate the Fermi velocity at 
each crossing along the path Γ ΓMX[ ]: we find a huge vari-
ation in the values depending on k and give in table 6 their 
mean value over the Brillouin zone. Finally, using the same 
method as described in [120], we evaluate the cyclotron 
mass ∗m me/  based on the approximate formula used there: 

π=∗m v AF ħ / . The DMFT results shown in table 6 show 
a substantial improvement over DFT when compared to 
experiments.

5. The effective orbital degeneracy as a key  
quantity determining the correlation strength

In section 4.4, we have identified the spin–orbital polarization 
as a key factor in explaining the different behavior of Sr2RhO4 
and Sr2IrO4.

In Sr2IrO4, Coulomb correlations enhance the spin–orbital 
polarization, such as to fill the =j 3 2eff /  states entirely, leading 
to a half-filled =j 1 2eff /  one-band picture, while in Sr2RhO4 
the final situation is an effective two-orbital system containing 
three electrons. This situation is akin to correlation-induced 
enhancements of orbital polarization also observed in other 
transition metal oxides. In the distorted 3d1 perovskites LaTiO3 
and YTiO3, for example, it was argued [10] that the interplay 
of structural distortions and Coulomb correlations leads to a 
suppression of orbital fluctuations in the t2g-manifold, favor-
ing a particular orbital composition selected by crystal and 
ligand field effects. At the LDA level, 0.45 [0.88] electrons 
are found in this particular orbital in LaTiO3 [YTiO3], while 
Coulomb correlations as described by LDA+DMFT lead to 
an occupation of 0.88 [0.96] electrons.

In these systems, this reduction of effective orbital degen-
eracy was shown to be key to their insulating nature since 
the critical interaction strength needed to localize the single 
electron is thus effectively determined by the one of a single-
orbital system, instead of the one of a three-fold degenerate 
t2g-manifold. Within DMFT, the critical Hubbard interaction 
scales with the square-root of the orbital degeneracy N for the 
lower critical interaction of the phase coexistence region of 
the first order Mott transition, while the upper critical interac-
tion varies with N [228].

Figure 9. Calculated momentum-resolved spectral function of Sr2RhO4 within LDA+DMFT (a) and its orbital-resolved versions for the 
=j 1 2eff /  states (b), the =j 3 2eff /  | |=m 3 2j /  (c) and the completely-filled =j 3 2eff /  | |=m 1 2j /  (d). The dashed blue line on panel (a) is the 

reproduction of the ARPES structure from [121].
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Localizing electrons in a single-orbital system there-
fore needs a critical interaction which is smaller by a factor 
of roughly 3 as compared to the degenerate case. This was 
demonstrated to be crucial for the difference in behaviors in 
the series of d1 compounds SrVO3, CaVO3, LaTiO3, YTiO3, 
where the former are three-fold degenerate metallic systems, 
whereas the latter realize the single-orbital Mott state.

The situation in the iridates is analogous with the purely 
formal difference that one is dealing with a one-hole situation 
instead of one electron. Furthermore, the strong spin–orbit 
interaction is instrumental in the suppression of the degener-
acy, which is the net result of structural distortions, spin–orbit 
coupling and Coulomb correlations.

This discussion highlights an important aspect of the phys-
ics of transition metal oxides, often neglected when consid-
ering band filling and interaction strength only: the effective 
orbital degeneracy is a crucial tuning parameter for electronic 
behavior, suggesting that the popular picture distinguishing 
filling-controlled and bandwidth-controlled Mott transitions 
[1] should be complemented by a ‘third axis’ and the notion 
of degeneracy-controlled Mott behavior.

Crystal and ligand fields, together with spin–orbit cou-
pling and the Coulomb correlations themselves, are the driv-
ing forces for establishing a given effective degeneracy. At 
the level of the calculations, this effective degeneracy is both 
an outcome of the calculation and a determining factor of the 
properties of the given compound.

6. Conclusions and perspectives

The common belief about electronic Coulomb correlations 
being less important in 4d and 5d compounds as compared 
to 3d transition metal oxides, was overruled by insights into 
the role of spin–orbit coupling in the insulating behavior of 
iridates [16] and for the Fermi surface topology of Sr2RhO4 
[19, 20].

Here, we have reviewed recent work on a first principles 
many-body description of such effects within a dynamical 
mean-field framework. We have highlighted the notion of 
the effective degeneracy of the system as a crucial param-
eter determining the physical properties of a system. The 
effective degeneracy is the result of a complex interplay 
of structural distortions, spin–orbit coupling and Coulomb 
correlations. We have stressed the analogy of the =j 1 2eff /  
Mott insulating picture for Sr2IrO4 with the insulating nature 
of LaTiO3 and YTiO3 in the ‘degeneracy-controlled Mott 
transition’ series of d1 perovskites (SrVO3, CaVO3, LaTiO3, 
YTiO3) [10].

In Sr2IrO4 and Sr2RhO4 the difference in degeneracy is itself 
a consequence of the quantitative aspects of the physics of 
these two compounds: all three decisive elements—structural 
distortions, spin–orbit coupling and Hubbard interaction—are 
smaller in Sr2RhO4 than in Sr2IrO4 and this quantitative differ-
ence in the electronic parameters translates into a qualitative 
difference in the resulting properties.

We have analyzed in detail the spectral properties of 
Sr2RhO4, a spin–orbit correlated 4d metal where the effective 
degeneracy is reduced by spin–orbit coupling and correlations 

but not to the point such as to induce a =j 1 2eff /  Mott insula-
tor. The calculated spectral properties and Fermi surface are in 
excellent agreement with experimental data. A detailed analy-
sis of the spectral properties of Sr2IrO4 is left for future work.
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Appendix. Generalized partial Θ-projectors and 
spectral function

In order to calculate quantities for a given atom α and a 
particular orbital (spin) character j (mj)—such as the spec-
tral functions ωαA k,j

mj ( )—a set of partial projectors called  
‘ Θ-projectors’ was built. Contrary to the previously intro-
duced Wannier projectors ν

αP kj
m

,
, j( ), their definition is not 

restricted to the correlated orbitals only. The formalism of 
these partial projectors was initially introduced in [180] and 
was extended to the case where spin is not a good quantum 
number anymore, in [21].

Inside the muffin-tin sphere associated with an atom α, one 
can write the spin-σ contribution of the eigenstate ψ ν rk ( ) as:

( ) [ ( )  ( ) ( )  ( )

( )  ( )]

∑ ∑φ σ σ

σ

= +

+

ν
σ να α σ α να α σ α

να α σ α
= =−

+

ℓ
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ℓ
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max

where the basis ℓ
α σ

=u m i i,
,

1,2,3{ } { } is not orthonormalized, 
as already mentioned in [180]. That is why, to make the 
calcul ations easier, one introduces an orthonormal basis set 
ℓ
α σ

=v m j j,
,

1,2,3{ }{ } for each atomic orbital ℓ m,( ). These orbitals are 
defined from the initial basis ℓ

α σ
=u m i i,

,
1,2,3{ } { } as follows:

ℓ ℓ∑∀ =α σ α α σ

=
i u c vr ,m i
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We can then rewrite equation (A.1) as:

ℓ
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The matrix elements ℓΘ ν
α σ km i,

, ( ) are the ‘ Θ-projectors’, which 
are thus defined by:
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Contrary to the implementation of [180], there are now 
a couple of Θ-projectors associated with each band index ν, 
ℓΘ ν
α σ km i,

, ( ) with σ=↑ ↓, , since spin is not a good quantum num-
ber anymore.

We have introduced here the Θ-projectors in the complex 
spherical harmonics basis. As for the Wannier projectors, it is 
of course possible to get the Θ-projectors in any desired j,mj 
basis:

ℓ ℓ∑Θ = Θν
α

σ

σ
ν

α σk k .j i
m

m
j m
m

m i,
,

,
,
,

,
,j j( ) ( )S (A.5)

Finally, the spectral function ωA k,( ), which is defined by:

ω
π

ω= −A k k,
1

Im G , ,( ) [ ( )] (A.6)

is obtained for a given atom α with orbital character ( j,mj) 
through the following formula:
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(A.7)
where the band indices ν, ν ′ run over both spin and orbital 
quantum number.
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