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ABSTRACT. By a classical result of Philipp (1975), for any sequence (nk)k≥1 of
positive integers satisfying the Hadamard gap condition, the discrepancy

of (nkx)1≤k≤N mod 1 satisfies the law of the iterated logarithm. For sequences
(nk)k≥1 growing subexponentially this result becomes generally false and the
asymptotic behavior of the discrepancy remains unknown. In this paper we show
that for randomly sampled subsequences (nk)k≥1 the discrepancy DN of

(nkx)1≤k≤N mod 1 and its Lp version D
(p)
N not only satisfy a sharp form of

the law of the iterated logarithm, but we also describe the precise asymptotic
behavior of the empirical process of the sequence (nkx)1≤k≤N , leading to sub-
stantially stronger consequences.

Communicated by W.G. Nowak

1. Introduction

An infinite sequence (xk)k≥1 of real numbers is said to be uniformly dis-
tributed mod 1 if for every pair a, b of real numbers with 0 ≤ a < b ≤ 1 we
have

lim
N→∞

∑N
k=1 I[a,b)(xk)

N
= b− a.

Here I[a,b) denotes the indicator function of the interval [a, b), extended with pe-
riod 1. It is easily seen that (xk)k≥1 is uniformly distributed mod 1 iffDN (xk)→0
(or equivalently D∗

N (xk) → 0) where DN (xk) and D∗
N (xk) are the the discrep-

ancy, resp. star discrepancy of the finite sequence (xk)1≤k≤N defined by
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DN (xk) := sup
0≤a<b≤1

∣∣∣∣∣
∑N

k=1 I[a,b)(xk)

N
− (b− a)

∣∣∣∣∣ ,
D∗

N (xk) := sup
0<a≤1

∣∣∣∣∣
∑N

k=1 I[0,a)(xk)

N
− a

∣∣∣∣∣ ,
respectively. Clearly, D∗

N ≤ DN ≤ 2D∗
N . By a classical result of Weyl [23], for

any increasing sequence (nk)k≥1 of positive integers, (nkx)k≥1 is uniformly dis-
tributed mod 1 for almost all x and consequently, DN (nkx) → 0 a.e. Computing
the precise order of magnitude of DN (nkx) is a difficult problem and has been
solved only in a few special cases. In the case nk = k, Kesten [12] proved that

NDN (kx) ∼ 2

π2
logN log logN in measure. (1.1)

For further related results, see Drmota and Tichy [6] and Kuipers and Nieder-
reiter [13]. Philipp [15], [16] proved that if (nk)k≥1 satisfies the Hadamard gap
condition

nk+1/nk ≥ q > 1 k = 1, 2, . . . , (1.2)

then
1

4
√
2
≤ lim sup

N→∞

NDN (nkx)√
2N log logN

≤ Cq a.e., (1.3)

where Cq is a constant depending only on q. Note that by the Chung–Smirnov
law of the iterated logarithm (see e.g. [20], p. 504) we have

lim sup
N→∞

NDN (ξk)√
2N log logN

= 1/2 a.s. (1.4)

if (ξk)k≥1 is a sequence of independent random variables, uniformly distributed
over (0, 1). A comparison of (1.3) and (1.4) shows that under (1.2) the sequence
({nkx})k≥1 behaves like an i.i.d. sequence of random variables; here, and in
the sequel, {t} denotes the fractional part of t. However, the analogy is not
complete: the value of the limsup in (1.3) can be different from 1/2 and can also
be a nonconstant function of x. Fukuyama [8] showed that in the case nk = θk,
θ > 1 the limsup actually equals a constant Σθ for almost all x, where

Σθ = 1/2 if θr is irrational for all r ∈ N,
Σθ =

√
42/9, if θ = 2,

Σθ =

√
(θ + 1)θ(θ − 2)

2
√
(θ − 1)3

if θ ≥ 4 is an even integer, (1.5)
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Σθ =

√
θ + 1

2
√
θ − 1

if θ ≥ 3 is an odd integer.

Aistleitner [1] showed that the limsup equals 1/2 for a large class of integer
sequences (nk)k≥1 satisfying certain Diophantine conditions. For examples for
a nonconstant limsup function in (1.3) and its version for the star discrepancy
D∗

N , see Aistleitner [2] and Fukuyama and Miyamoto [11].

Given an increasing sequence (nk)k≥1 of real numbers, let

FN (t) = FN (t, x) =
1

N

N∑
k=1

I(−∞, t]({nkx})

denote the empirical distribution function of the sample {n1x}, . . . , {nNx}.
Philipp [16] proved that under (1.2) the sequence

αN (t, x) =

√
N

2 log logN
(FN (t, x)− t), 0 ≤ t ≤ 1, N = 1, 2, . . . (1.6)

is relatively compact in the Skorohod space D[0, 1] for almost all x and under
additional number theoretic assumptions on nk he determined the class of its
limit functions in the D[0, 1] metric. Since

D∗
N (nkx) = sup

t
|FN (t, x)− t|,

this leads immediately to a precise LIL for DN (nkx), but a functional LIL yields
far deeper information on the behavior of the sequence ({nkx})k≥1 than (1.3): it
yields the precise asymptotics of various other functionals of the curve in (1.6)
with constants obtained as extreme values of functionals on Hilbert space. Unlike
the constants in (1.5) above, they can only be evaluated approximately.

For sequences (nk)k≥1 growing slower than exponentially, the LIL (1.3) be-
comes generally false (see Berkes and Philipp [3]), and the asymptotic behavior
ofDN (nkx) remains open. It is then natural to ask about ‘typical’ behavior of the
discrepancy, which requires to study DN (nkx) for random sequences (nk)k≥1.
A simple and natural model is when (nk)k≥1 is an increasing random walk, i.e.
when nk+1−nk are i.i.d. positive random variables. This model was investigated
by Schatte [17], [19], Weber [22], Berkes and Weber [4]. For other randomization
methods in the context of the LIL for the discrepancy of (nkx) mod 1 we refer to
Fukuyama [9], [10]. The purpose of the present paper is to investigate the ran-
dom walk model in more detail and to prove a functional LIL for the empirical
process of ({nkx})1≤k≤N in this model.

Let X1, X2, . . . be i.i.d. positive random variables defined on some proba-
bility space (Ω,F ,P). We assume that X1 is supported on a finite interval
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[a, b] ⊂ (0,∞) and has a bounded density. Let U be a random variable uni-
formly distributed on (0, 1), independent of the sequence (Xk)k≥1. Clearly, the
existence of such a U can be guaranteed by a suitable enlargement of the prob-
ability space. Put Sn =

∑n
k=1Xk and let

F ∗
N (t, x) =

1

N

N∑
k=1

I(−∞,t]({Skx})

denote the empirical distribution function of the sample {S1x}, . . . , {SNx}. We
will prove the following result.

Theorem. With P-probability one the sequence of functions

αN (t, x) =

√
N

2 log logN
(F ∗

N (t, x)− t), 0 ≤ t ≤ 1, N = 1, 2, . . . (1.7)

is relatively compact in the Skorohod space D[0, 1] for almost all x > 0 in the
sense of Lebesgue measure and its class of limit functions is identical with the
unit ball BΓ of the reproducing kernel Hilbert space determined by the covariance
function

Γ(s, s′) = Egs(U)gs′(U) +
∞∑
k=1

Egs(U)gs′(U + Skx)

+
∞∑
k=1

Egs′(U)gs(U + Skx). (1.8)

Here gs = I(0,s) − s is the centered indicator function of the interval (0, s),
extended with period 1.

The absolute convergence of the series (1.8) will follow from the proof of the
theorem. For background on reproducing kernel Hilbert spaces see e.g. Oodaira
[14].

In the case when X1 is uniformly distributed on (0, 1), the {Skx} are easily
seen to be independent, uniform r.v.’s and Γ(s, s′) reduces to the covariance
function s(1 − s′) (s < s′) of the Brownian bridge. In this case the limit set in
the theorem reduces to the set

K =

{
y(t) : y is absolutely continuous in [0, 1],

y(0) = y(1) = 0 and

∫ 1

0

y′(t)2dt ≤ 1

}
obtained in the i.i.d. case by Finkelstein [7].
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As noted above, sup0≤t≤1 |F ∗
N (t, x) − t| equals the star discrepancy of the

sequence {Skx}1≤k≤N , while (
∫ 1

0
|F ∗

N (t, x) − t|p dt)1/p is the Lp discrepancy

D
(p)
N (Skx) of the same sequence. Thus immediate consequences of our theorem

are

lim sup
N→∞

√
N

2 log logN
D∗

N (Skx) = sup
y∈BΓ

∥y∥∞ (1.9)

and

lim sup
N→∞

√
N

2 log logN
D

(p)
N (Skx) = sup

y∈BΓ

∥y∥p (p ≥ 1) (1.10)

P-a.s. for almost all x. With a different representation of the limit, relation
(1.9) was obtained earlier in Schatte [19]. However, the Theorem above pro-
vides much more precise information than (1.9), (1.10): for example, as a stan-
dard application of our theorem, one can characterize precisely how frequently
(N/(2 log logN))1/2D∗

N (Skx) can get close to its limsup or get asymptotics for
weighted versions of the discrepancy. We refer to Strassen [21] for applications
of functional laws of the iterated logarithm.

2. Proof of the theorem

By Fubini’s theorem, it suffices to show that for any fixed x > 0 with P-
probability 1 the sequence (1.7) is relatively compact in D[0, 1] and the set of its
limit functions is BΓ. Since for any x > 0 the sequence (Xkx)k≥1 also satisfies
the condition of our theorem, without loss of generality we can assume x = 1.

Throughout this section, f : R → R will denote bounded measurable functions
satisfying

f(t+ 1) = f(t),

∫ 1

0

f(t)dt = 0, (2.1)

and the L2-Lipschitz condition(∫ 1

0

|f(t+ h)− f(t)|2dt
)1/2

≤ Kh (2.2)

for some constant K > 0. Note that if f = I(a,b)−(b−a) for some 0 ≤ a < b ≤ 1,
(extended as usual with period 1) then f satisfies (2.1), (2.2) with K = 1. Put

A(f) = ∥f∥2 + 2
∞∑
k=1

Ef(U)f(U + Sk), (2.3)
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where U is a uniform (0, 1) random variable, independent of (Xj)j≥1. The ab-
solute convergence of the series (2.3) will follow from the proof of Lemma 1.

Note that our main theorem deals with the sequence {S1x}, {S2x}, . . ., or,
equivalently, with partial sums of random variables defined on the torusT = R/Z
where summation is meant mod 1. In this interpretation (which we adopt in the
sequel), f is an element of L2(T) and all fractional part signs can be dropped,
leading to a substantial simplification of the formulas.

In the sequel, C and λ will denote positive constants, not always the same,
which depend (at most) on the function f and the distribution of the random
variable X1.

Lemma 1. Let f satisfy (2.1), (2.2), let ℓ, b, b1, b2, . . . be positive integers and
define a sequence of sets by

I1 := {1, 2, . . . , b}
I2 := {p1, p1 + 1, . . . , p1 + b1} where p1 ≥ b+ ℓ+ 2

...

In := {pn−1, pn−1 + 1, . . . , pn−1 + bn−1} where pn−1 ≥ pn−2 + bn−2 + ℓ+ 2

...

Then there exists a sequence δ1, δ2, . . . of random variables, not depending on f ,
satisfying the following properties:

(i) |δn| ≤ Ce−λℓ for all n ∈ N,
(ii) The random variables∑

i∈I1

f(Si),
∑
i∈I2

f(Si − δ1), . . . ,
∑
i∈In

f(Si − δn−1), . . .

are independent.

P r o o f. We will construct the sequence (δn)n∈N by induction. Define

δ1 := (Sb+l − Sb)− FSb+l−Sb
(Sb+l − Sb) ,

where, for any random variable Y , FY denotes the distribution function of Y .
By the assumptions of our theorem and Theorem 1 of Schatte [18] we have

sup
t

|FSn(t)− t| ≤ Ce−λn n ∈ N. (2.4)

Since Sb+ℓ − Sb
d
= Sℓ for all b and all ℓ, it follows easily that |δ1| ≤ Ce−λℓ.

Furthermore we have

Sp1 − δ1 = Sp1 − (Sb+ℓ − Sb) + FSb+ℓ−Sb
(Sb+ℓ − Sb)
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= (X1 + · · ·+Xb) + (Xb+ℓ+1 + · · ·+Xp1) + FSb+ℓ−Sb
(Sb+ℓ − Sb) .

Similarly,

Sp1+1 − δ1 = (X1 + · · ·+Xb) + (Xb+ℓ+1 + · · ·+Xp1+1)

+ FSb+l−Sb
(Sb+ℓ − Sb)

...

Sp1+b1 − δ1 = (X1 + · · ·+Xb) + (Xb+ℓ+1 + · · ·+Xp1+1)

+ FSb+ℓ−Sb
(Sb+ℓ − Sb) .

Thus applying Lemma 1 of [17] with

X = (X1, X2, . . . , Xb)

U = FSb+ℓ−Sb
(Sb+ℓ − Sb)

(W1, . . . ,Wp1+b1) = ((Xb+ℓ+1 + . . . Xp1) , . . . , (Xb+ℓ+1 + · · ·+Xp1+b1))

W = X1 + · · ·+Xb,

it follows that ∑
j∈I1

f(Sj) is independent of
∑
j∈I2

f(Sj − δ1).

Now suppose δ1, . . . , δn−1 have been constructed and define

Yn = Spn−1+bn−1+ℓ − Spn−1+bn−1 , δn = Yn − FYn(Yn).

As before, it follows easily that |δn| ≤ Ce−λℓ. We let

X =
(
X1, . . . , Xpn−1+bn−1 , δ1, . . . , δn−1

)
U = FYn(Yn)

W = X1 + · · ·+Xpn−1+bn−1

(W1, . . . ,Wpn+bn)

=
(
Xpn−1+bn−1+ℓ+1 + · · ·+Xpn , . . . , Xpn−1+bn−1+ℓ+1 + · · ·+Xpn+bn

)
.

Then, again by Lemma 1 of [17] it follows that∑
i∈In+1

f(Si − δn) is independent of

(∑
i∈I1

f(Si), . . . ,
∑
i∈In

f(Si − δn−1)

)
,

which completes the induction step and the proof of the lemma. �
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Put m̃k =
k∑

j=1

⌊j1/2⌋, m̂k =
k∑

j=1

⌊j1/4⌋ and let mk = m̃k + m̂k. Using Lemma 1

we can construct sequences (∆k)k∈N, (Πk)k∈N of random variables such that
∆0 = 0, Π0 = 0,

|∆k| ≤ Ce−λ
4√
k, |Πk| ≤ Ce−λ

√
k (2.5)

and

T
(f)
k :=

mk−1+⌊
√
k⌋∑

j=mk−1+1

(f(Sj −∆k−1)− Ef(Sj −∆k−1))

T
∗(f)
k :=

mk∑
j=mk−1+⌊

√
k⌋+1

(f(Sj −Πk−1)− Ef(Sj −Πk−1)

are sequences of independent random variables.

Lemma 2. Under the conditions of Lemma 1 we have
n∑

k=1

Var(T (f)
k ) ∼ A(f)m̃n,

n∑
k=1

Var(T ∗(f)
k ) ∼ A(f)m̂n,

where A(f) is defined by (2.3).

P r o o f. Since f does not change in the proof, we will drop the upper index f

from T
(f)
k , T

∗(f)
k and A(f). Clearly

Var(Tk) =
mk−1+⌊

√
k⌋∑

j=mk−1+1

Ef2(Sj −∆k−1)

+ 2

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

ℓ=mk−1+1

Ef(Sℓ −∆k−1)f(Sℓ+ϱ −∆k−1)− L(k)

where

L(k) :=

mk−1+⌊
√
k⌋∑

j=mk−1+1

Ef(Sj −∆k−1)

2

.

By (2.1), (2.2), (2.4) and (2.5) we have

∥f(Sj −∆k−1)− f(Sj)∥ ≤ Ce−λ 4√k−1

and ∣∣Ef(Sj)
∣∣ = ∣∣Ef(Sj

)
− Ef

(
FSj

(
Sj

))∣∣ ≤ Ce−λj

8



ON THE DISCREPANCY AND EMPIRICAL DISTRIBUTION FUNCTION OF {nkα}

since FSj (Sj) is a uniformly distributed random variable and thus the last ex-
pectation in the previous displayed formula equals 0 by (2.1). Thus

L(k) ≤ Cke−λ 4√k−1.

Let now

Λ(k) :=

mk−1+⌊
√
k⌋∑

j=mk−1+1

γj,k O(k) :=

mk−1+⌊
√
k⌋∑

j=mk−1+1

εj ,

where

γj,k = Ef2(Sj −∆k−1)− Ef2(Sj)

εj = Ef2(Sj)− Ef2
(
FSj (Sj)

)
.

Repeating the argument above for the function f2 − ∥f∥2, we get

mk−1+⌊
√
k⌋∑

j=mk−1+1

Ef2(Sj −∆k−1) = ∥f∥2⌊
√
k⌋+ Λ(k) +O(k)

and

|Λ(k)| ≤ C
√
ke−λ(k−1)1/4 , |O(k)| ≤ Ce−λ(mk−1+1).

We now turn to the cross terms. Define Tℓ,ϱ = Xℓ+1 + · · ·+Xℓ+ϱ and split the
product expectation Ef(Sℓ −∆k−1)f(Sℓ+ϱ −∆k−1) into the sum of terms

eℓ,ϱ,k := Ef(Sℓ −∆k−1)f(Sℓ+ϱ −∆k−1)− Ef(Sℓ)f(Sℓ+ϱ −∆k−1)

gℓ,ϱ,k := Ef(Sℓ)f(Sℓ+ϱ −∆k−1)− Ef(Sℓ)f(Sℓ+ϱ)

hℓ,ϱ := Ef(Sℓ)f(Sℓ+ϱ)− Ef
(
FSℓ

(Sℓ)
)
f(Sℓ+ϱ)

iℓ,ϱ := Ef
(
FSℓ

(Sℓ)
)
f(Sℓ + Tℓ,ϱ)− Ef

(
FSℓ

(Sℓ)
)
f
(
FSℓ

(Sℓ) + Tℓ,ϱ
)

Cℓ,ϱ := Ef
(
FSℓ

(Sℓ)
)
f
(
FSℓ

(Sℓ) + Tℓ,ϱ
)
.

Here FSℓ
(Sℓ) is a uniformly distributed variable independent of Tℓ,ϱ and thus

letting U denote a uniform random variable independent of (Xj)j≥1,

Cℓ,ϱ = Cϱ = Ef(U)f(U + Sϱ)

does not depend on ℓ. Exactly as before,

|eℓ,ϱ,k| ≤ Ce−λ(k−1)1/4 |gℓ,ϱ,k| ≤ Ce−λ(k−1)1/4 |hℓ,ϱ| ≤ Ce−λℓ |iℓ,ϱ| ≤ Ce−λℓ.

Thus letting

E(k) = 2

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

ℓ=mk−1+1

eℓ,ϱ,k G(k) = 2

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

ℓ=mk−1+1

gℓ,ϱ,k

9
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H(k) = 2

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

ℓ=mk−1+1

hℓ,ϱ I(k) = 2

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

ℓ=mk−1+1

iℓ,ϱ

we have

|E(k)| ≤ Cke−λ(k−1)1/4 , |G(k)| ≤ Cke−λ(k−1)1/4

|H(k)| ≤ C
√
k e−λ(mk−1+1), |I(k)| ≤ C

√
k e−λ(mk−1+1).

Furthermore,

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

ℓ=mk−1+1

Cℓ,ϱ =

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

ℓ=mk−1+1

Cϱ =

= ⌊
√
k⌋

∞∑
ϱ=1

Cϱ − ⌊
√
k⌋

∞∑
ϱ=⌊

√
k⌋

Cϱ −
⌊
√
k⌋−1∑
ϱ=1

ϱCϱ.

Thus using the independence of the Tk we get

Var

(
n∑

k=1

Tk

)
=

n∑
k=1

Var(Tk) = O(1) +
n∑

k=4

Var(Tk)

= O(1) +
n∑

k=4

(
⌊
√
k⌋+ Λ(k) +O(k) + 2E(k) + 2G(k) + 2H(k) + 2I(k)

+ ⌊
√
k⌋ · 2

∞∑
ϱ=1

Cϱ − 2⌊
√
k⌋

∞∑
ϱ=⌊

√
k⌋

Cϱ − 2

⌊
√
k⌋−1∑
ϱ=1

ϱCϱ − L(k)

)
.

Using the same techniques as before, we get |Cϱ| ≤ Ce−λϱ. Hence the previously
established inequalities yield

Var

(
n∑

k=1

Tk

)
∼ Am̃n ∼ Amn.

Similarly,

Var
( n∑

k=1

T ∗
k

)
∼ Am̂n,

completing the proof of Lemma 2. �
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Since

Cov(T
(f)
k , T

(g)
k ) =

1

4

(
Var(T

(f+g)
k )−Var(T

(f−g)
k )

)
,

Lemma 2 implies

Corollary. We have
n∑

k=1

Cov(T
(f)
k , T

(g)
k ) ∼ 1

4

(
A(f+g) −A(f−g)

)
m̃n

and
n∑

k=1

Cov(T
∗(f)
k , T

∗(g)
k ) ∼ 1

4

(
A(f+g) −A(f−g)

)
m̂n.

From (2.3) it follows that

A(f+g)−A(f−g) = 4⟨f, g⟩+4
∞∑
k=1

Ef(U)g(U+Sk)+4
∞∑
k=1

Eg(U)f(U+Sk). (2.6)

Let 0 < t1 < . . . < tr ≤ 1 and put

Yk = (f(0,t1)(Sk), f(0,t2)(Sk), . . . , f(0,tr)(Sk))

where f(a,b) = I(a,b) − (b− a), with the indicator I(a,b) extended with period 1,
as before.

Lemma 3. With P-probability 1, the class of limit points of the sequence{
(2N log logN)−1/2

N∑
k=1

Yk, N = 1, 2, . . .

}
(2.7)

in Rr is the ellipsoid(x1, . . . , xr) :
r∑

i,j=1

Γ(ti, tj)xixj ≤ 1

 (2.8)

where Γ is the function defined in equation (1.8).

P r o o f. Let

Tk =
(
T

(f(0,t1))

k , . . . , T
(f(0,tr))

k

)
, T∗

k =
(
T

∗(f(0,t1))

k , . . . , T
∗(f(0,tr))

k

)
.

and let Σk denote the covariance matrix of the vector Tk. From the Corollary
and (2.6) it follows that

m−1
n (Σ1 + . . .+Σn) −→ Σ

where
Σ = (Γ(ti, tj))1≤i,j≤r.

11
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Clearly

|Tk| ≤ Crk
1/2 = o(mk log logmk)

1/2

where Cr is a constant depending on r, showing that the sequences (Tk)k≥1 of
independent random variables satisfies Kolmogorov’s condition of the LIL. Thus
Theorem 1 in Berning [5] implies that the set of limit points of{

(2mn log logmn)
−1/2

n∑
k=1

Tk

}
(2.9)

is the ellipsoid (2.8). A similar statement holds for the sequence (T∗
k)k≥1, im-

plying that∣∣∣∣∣
n∑

k=1

T∗
k

∣∣∣∣∣ = O(m̂n log log m̂n)
1/2 = o(mn log logmn)

1/2 a.s.

Also, for any f = f(0,ti), 1 ≤ i ≤ r we have

max
mk+1≤ℓ≤mk+1

∣∣∣∣∣∣
ℓ∑

j=mk+1

(f(Sj)− Ef(Sj))

∣∣∣∣∣∣
= O(mk+1 −mk) = O(k1/2) = o(mk log logmk)

1/2.

From these relations Lemma 3 follows immediately. �

Lemma 4. Let f satisfy (2.1), (2.2). Then we have

E
( M+N∑

k=M+1

f(Sk)

)2

≤ C∥f∥N. (2.10)

where C is a constant depending only on the constant K in (2.2) and the distri-
bution of X1.

Note that in the previous lemmas and their proofs the constants C and λ
depend on f and the distribution of X1. In Lemma 4 (as well as in Lemma 5
below) the dependence of the constant C on f is more specific: it is only through
the constant K in (2.2). As we pointed out before, if f = I(a,b)− (b−a) for some
0 ≤ a < b ≤ 1, then f satisfies (2.2) with K = 1 and thus Lemma 4 (as well as
Lemma 5 below) hold uniformly for all centered indicators f .

P r o o f. In what follows, C and λ will denote positive constants, possibly dif-
ferent at different places, depending on the distribution of X1 and the constant
K in (2.2). We first show

|Ef(Sk)f(Sℓ)| ≤ Ce−λ(ℓ−k)∥f∥ (k < ℓ). (2.11)

12
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Indeed, by Lemma 4.3 and relation (4.8) of Berkes and Weber [4] there exists a
r.v. ∆ with |∆| ≤ Ce−λ(ℓ−k) such that Sℓ −∆ is a uniform r.v. independent of
Sk. Hence

Ef(Sℓ −∆) =

1∫
0

f(t)dt = 0

and thus
Ef(Sk)f(Sℓ −∆) = Ef(Sk)Ef(Sℓ −∆) = 0. (2.12)

On the other hand,

|Ef(Sk)f(Sℓ)− Ef(Sk)f(Sℓ −∆)|
≤ E

(
|f(Sk)| |f(Sℓ)− f(Sℓ −∆)|

)
≤ (2.13)(

Ef2(Sk)
)1/2(E|f(Sℓ)− f(Sℓ −∆)|2

)1/2
.

Since X1 has a bounded density, by Theorem 1 of Schatte [18] the density φn of
Sn exists for all n ≥ 1 and satisfies φn → 1 uniformly on [0, 1]. Thus

P (Sn ∈ I) ≤ C|I| (n ≥ 1) (2.14)

whence we get

Ef2(Sk) ≤ C

1∫
0

f2(t)dt = C∥f∥2. (2.15)

On the other hand, |∆| ≤ Ce−λ(ℓ−k) implies

E|f(Sℓ)− f(Sℓ −∆)|2 ≤ Ce−λ(ℓ−k) (2.16)

which, together with (2.13)–(2.16), gives

|Ef(Sk)f(Sℓ)− Ef(Sk)f(Sℓ −∆)| ≤ Ce−λ(ℓ−k).

Thus using (2.12) we get (2.11). Now by (2.11)∣∣∣∣ ∑
M+1≤k<ℓ≤M+N

Ef(Sk)f(Sℓ)

∣∣∣∣ ≤ CN∥f∥
∑
ℓ≥1

e−λℓ ≤ CN∥f∥

which, together with (2.15), completes the proof of Lemma 4. �
Lemma 5. Let f satisfy (2.1), (2.2). Then for any M ≥ 0, N ≥ 1, real t ≥ 1
and ∥f∥ ≥ N−1/4 we have

P

{∣∣∣ M+N∑
k=M+1

f(Sk)
∣∣∣ ≥ t∥f∥1/4(N log logN)1/2

}
≤ exp

(
−Ct∥f∥−1/2 log logN

)
+ t−2N−1 (2.17)

13
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where C is a constant depending only on the constant K in (2.2) and the distri-
bution of X1.

P r o o f. Put
ψ(n) = sup

0≤x≤1
|P (Sn ≤ x)− x|. (2.18)

By Theorem 1 of [18] we have

ψ(n) ≤ Ce−λn (n ≥ 1). (2.19)

Divide the interval [M+1,M+N ] into subintervals I1, . . . , IL, with L ∼ N19/20,
where each interval Iν contains ∼ N1/20 terms. We set

M+N∑
k=M+1

f(Sk) = η1 + · · ·+ ηL

where
ην =

∑
k∈Iν

f(Sk).

We deal with the sums
∑
η2j and

∑
η2j+1 separately. Since there is a separation

∼ N1/20 between the even block sums η2j , we can apply Lemma 4.3 of [4] to get

η2j = η∗2j + η∗∗2j

where

η∗2j =
∑
k∈I2j

f(Sk −∆j)

η∗∗2j =
∑
k∈I2j

(f(Sk)− f(Sk −∆j)) (2.20)

where the ∆j are r.v.’s with |∆j | ≤ ψ(N1/20) ≤ N−10 and the r.v.’s η∗2j j =
1, 2, . . . are independent. Relation (2.16) in the proof of Lemma 4 shows that
the L2 norm of each summand in η∗∗2j is ≤ Cψ(N1/20) ≤ CN−10 and thus for

∥f∥ ≥ N−1/4 we have

∥η∗∗2j ∥ ≤ CN−9 ≤ C∥f∥N−8. (2.21)

Thus ∥∥∥∑ η∗∗2j

∥∥∥ ≤ C∥f∥N−7

and therefore by the Markov inequality

P

(∣∣∣∣∑ η∗∗2j

∣∣∣∣ ≥ t∥f∥1/4(N log logN)1/2
)

≤ Ct−2∥f∥−1/2(N log logN)−1∥f∥2N−14 ≤ t−2N−1. (2.22)

14
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Let now |λ| = O(N−1/16), then |λη∗2j | ≤ C|λ|N1/20 ≤ 1/2 for N ≥ N0 and thus

using ex ≤ 1 + x+ x2 for |x| ≤ 1/2 we get, using Eη∗2j = 0,

E

(
expλ

(∑
j

η∗2j

))
=
∏
j

E
(
eλη

∗
2j
)
≤
∏
j

E(1 + λη∗2j + λ2η∗22j )

=
∏
j

(1 + λ2Eη∗22j ) ≤ exp

(
λ2
∑
j

Eη∗22j

)
. (2.23)

By Lemma 4

∥η2j∥ ≤ C∥f∥1/2N1/40,

which, together with (2.21) and the Minkowski inequality, implies

∥η∗2j∥ ≤ C∥f∥1/2N1/40.

Thus the last expression in (2.23) cannot exceed

exp
(
λ2C∥f∥

∑
j

N1/20
)
≤ exp(λ2C∥f∥N).

Hence choosing

λ = (log logN/N)1/2∥f∥−3/4

(note that by ∥f∥ ≥ N−1/4 we have |λ| = O(N−1/6)) and using the Markov
inequality, we get

P

{∣∣∣∣∑
j

η∗2j

∣∣∣∣ ≥ t∥f∥1/4(N log logN)1/2
}

≤ exp

{
− λt∥f∥1/4(N log logN)1/2 + λ2C∥f∥N

}
(2.24)

= exp(−∥f∥−1/2t log logN + C∥f∥−1/2 log logN)

≤ exp(−C ′∥f∥−1/2t log logN)

completing the proof of Lemma 5. �

With Lemmas 1–5 at hand, the proof of the Theorem can be completed easily.
Given any 0 < t1 < . . . < tr = 1, let BΓ(t1, . . . , tr) denote the set of points of
the form (g(t1), . . . , g(tr)), where g(·) ∈ BΓ. By the standard method of proving
functional laws of the iterated logarithm developed in Strassen [21], Finkelstein
[7], it suffices to prove that with probability 1 the sequence αN (·) is relatively
compact in the D[0, 1] topology and for any 0 < t1 < . . . < tr = 1, r =
1, 2, . . . the set of limit points of the vector (αN (t1), . . . , αN (tr)) is identical with
the set BΓ(t1, . . . , tr). Since BΓ(t1, . . . , tr) coincides with the ellipsoid (2.8), the
second statement follows from Lemma 3. On the other hand, the equicontinuity

15
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statement can be proved by a dyadic chaining argument, similar to the proof of
Proposition 3.3.2 in Philipp [16]. (The uniformity of the statements of Lemmas 4
and 5 over all centered indicator functions is needed in this chaining argument.)
Since the necessary modifications are routine, we omit the details.

Acknowledgement. We would like to thank the referee for his careful reading
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presentation.
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[23] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-
352.

Received January 24, 2014
Accepted May 19, 2014

I. Berkes
Institute of Statistics
Graz University of Technology

Kopernikusgasse 24
8010 Graz, Austria

E-mail : berkes@tugraz.at

M. Raseta

Department of Mathematics
University of York
York YO10 5DD
Great Britain

E-mail : marko.raseta@york.ac.uk

17


