Change Point Detection with Stable AR(1)
Errors
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1 Introduction and Results

In this paper we are interested to detect possible changes in the location model

Xi=c+e, 1=Zj<n (1)

against the one change alternative
Hy: thereis k™ suchthat ¢y =...= ¢+ # cprg) = ... = Cp.
We say that £* is the time of change under the alternative. The time of change as

well as the location parameters before and after the change are unknown. The most
popular methods to test [ against H4 are based on the CUSUM process
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L
Un(x) = Y Xi— M—’“J- ZX

=1

Clearly, if Hy is true, then U,(r) does not depend on the common but unknown
location parameter. It is well known that if Xj,...,X, are independent and
identically distributed random variables with a finite second moment, then

1 2[0.1]
WU::(X) —= B(x];

where B(x) is a Brownian bridge. Throughout this paper Z[0, 1] denotes the space of

right continuous functions on [0, 1] with left limits; -gﬁ}—’i] means weak convergence
in 2[0, 1] with respect to the Skorohod J; topology (cf. Billingsley [10]). Of
course, var(X;) can be consistently estimated by the sample variance in this case,
resulting in

| \
o* 1/2U (x) ?"[(‘J‘;] B(x) (2)

I
with
1/2

_
with X, == ) X.

1 " _
=~ % - Z(Xi - Xn)2
n an

Assuming that X, X>,...,X, are independent and identically distributed random
variables in the domain of attraction of a stable law of index @ € (0, 2), Aue et al. [3]
showed that

1

Un(9) 25 B, ()
— = _Uplx) — alX),
n'/®L(n)

where L is a slowly varying function at oo and B,(x) is an a—stable bridge.
(The a—stable bridge is defined as By (x) = Wy(x) — xW, (1), where W, is a Lévy
a—stable motion.) Since nothing is known on the distributions of the functionals of
a—stable bridges, Berkes et al. [9] suggested the trimmed CUSUM process

Lrx]
1) = YO XX < o) — 22 ZX1<1X| < D
i=1

where 1, 4 1s the dth largest among |X,|, | Xz, ..., |X.|. Assuming that the X;’s are
independent and identically distributed and are in the domain of attraction of a stable

law, they proved

| 2[0,1]
— () 2 B,
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where

2

1 1 ¢
6n = = 2 | XX < taad = — D XHIX| < nab |
i=1

i=1 j=

and B(r) is a Brownian bridge. Roughly speaking, the classical CUSUM procedure
in (2) can be used on the trimmed variables X;/{|X;| < n,4},1 < j < n. The
CUSUM process has also been widely used in case of dependent variables, but it is
nearly always assumed that the observations have high moments and the dependence
in the sequence 1s weak, i.e. the limit distributions of the proposed statistics are
derived from normal approximations. For a review we refer to Aue and Horvith [5].
However, very few papers consider the instability of time series models with heavy
tails.

Fama [16] and Mandelbrot [23, 24] pointed out that the distributions of commod-
ity and stock returns are often heavy tailed with possibly infinite variance and they
started the investigation of time series models where the marginal distributions have
regularly varying tails. Davis and Resnick [14, 15] investigated the properties of
moving averages with regularly varying tails and obtained non-Gaussian limits for
the sample covariances and correlations. Their results were extended to heavy tailed
ARCH by Davis and Mikosch [13]. The empirical periodogram was studied by
Mikosch et al. [25]. Andrews et al. [1] estimated the parameters of autoregressive
processes with stable innovations.

In this paper we study testing Hy against H4 when the error terms form an
autoregressive process of order 1, i.e., e; is a o (¢;,j < i) measurable solution of

eg=pe—1+& —o00o<i<oo. {3)
We assume throughout this paper that

&j, —00 < j < oo are independent and identically distributed, (4)

o belongs to the domain of attraction of a stable (3)

random variable £*) with parameter 0 < o < 2,

and

£o 1s symmetric when o = 1. (6)

Assumption (5) means that

Y & —an /bn 2, @ (7)
j=1
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for some numerical sequences a, and b,. The necessary and sufficient condition for
this 1s

P{Eo = —I} .

oo Lo i~o0 Ly (f)r®

for some numbers p > 0, g > 0, p + g = 1, where L, is a slowly varying function
at oo. It is known that (3) has a unique stationary non-anticipative solution if and
only if

—1l<p<l. (9)

Under assumptions (4), (5), (6), (7), (8), and (9), {e;} is a stationary sequence and
Eleo|* < oo forall 0 < k < « but E|eg| = oo for all k > «. The AR(1) process
with stable innovations was considered by Chan and Tran [12], Chan [11], Aue and
Horvith [4] and Zhang and Chan [28] who investigated the case when p is close to
1 and provided estimates for p and the other parameters when the observations do

not have finite variances.
The convergence of the finite dimensional distributions of U, (x) is an immediate

dd
consequence of Phillips and Solo [26]. Let Ji—> denote the convergence of the finite
dimensional distributions.

Theorem 1. If Hy, (3), (4), (5), (6) and (9) hold, then we have that

l1—p

| fdd
mUn(l) —> By (x),

where By(x),0 <t <1 is an a—stable bridge.

It has been pointed out by Avram and Taqqu [6, 7] that the convergence of
the finite dimensional distributions in Theorem 1 cannot be replaced with weak
convergence in Z[0, 1]. Avram and Taqqu [6, 7] also proved that under further
regularity conditions, the convergence of the finite dimensional distributions can
be replaced with convergence in 20, 1] with respect to the M, topology. However,
the distributions of supg | |By (x)|dx and fol B2 (x)dx depend on the unknown «
and they are unknown forany 0 < @ < 2.

The statistics used in this paper are based on 7, (x) with a truncation parameter

d = d(n) satisfying
lim d(n)/n=20 (10)
n—oo

and

d(n) > n® withsome 0<§ <1, (11)
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Let F(x) = P{Xo < x}, H(x) = P{|Xo| > x} and let H~!(¢) be the (generalized)
inverse of H. We also assume that g, has a density function p(r) which satisfies

o0
f Ip(t +s) — p(1)|dt < C|s| with some C. (12)

(o ]
Let
A, = dV*H™(d/n). (13)

The following result was obtained by Bazarova et al. [8]:

Theorem 2. If Hy, (3), (4), (5), (6) and (9), (10), (11), (12) hold, then we have that

(52)" ()5 2o
o 1+p An

where B(x) is a Brownian bridge.

The weak convergence in Theorem 2 can be used to construct tests to detect
possible changes in the location parameter in model (1). However, the normalizing
sequence depends heavily on unknown parameters and they should be replaced with
consistent estimators. We discuss this approach in Sect. 2. We show in Sect. 3 that
ratio statistics can also be used so we can avoid the estimation of the long run
variances.

2 Estimation of the Long Run Variance

The limit result in Theorem 2 is the same as one gets for the CUSUM process in
case of weakly dependent stationary variables (cf. Aue and Horvith [5]). Hence
we interpret the normalizing sequence as the long run variance of the sum of the
trimmed variables. Based on this interpretation we suggest Bartlett type estimators
as the normalization.

The Bartlett estimator computed from the trimmed variables X* = X/{|X;| <

Nn.d} 18 given by

n—1

5 = ””“Z (h(n))

where

n—j 1 n

== Z(X* XX —X0, Xy=-3 X7,

n
i=1
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w(-) is the kernel and A(:) is the length of the window. We assume that w(-) and A(-)
satisfy the following standard assumptions:

w(0) =1, (14)

w() =0 if ¢t>a withsome a > 0, (15)

w(-) is a Lipschitz function, (16)

@(-), the Fourier transform of w(-), is also Lipschitz and integrable (17)
and

h(n) - oo and h(n)/n— oo as n — oo. (18)

For functions satisfying (14), (15), (16), and (17) we refer to Taniguchi and
Kakizawa [27]. Following the methods in Liu and Wu [22] and Horvith and Reeder
[18], the following weak law of large numbers can be established under Hy:

I’l52 P

A%(1+p)a/((l-p)(2-a))“’l’ 4 i+ (19)

The next result is an immediate consequence of Theorem 2 and (19).

Corollary 1. If Hy, (3), (4), (5), (6), (9), (10), (11), (12) and (19) hold, then we
have that

1; 2[0,1
)N B,
nl/23,

where B(x) is a Brownian bridge.

It follows immediately that under the no change null hypothesis

A T, (x 2
2, = Sip Hw-m—[ (A)I — sup |B(x)|.
0<x<l ;11/25n 0<x<l

Simulations show that §, performs well under Hp but it overestimates the norming
sequence under the alternative. Hence 2, has little power. The estimation of the
long—run variance when a change occurs has been addressed in the literature. We
follow the approach of Antoch et al. [2], who provided estimators for the long run
variance which are asymptotically consistent under Hy as well as under the one
change alternative. Let x denote the smallest value in [0, 1] where |T,(x)| reaches
its maximum and let X = |xon|. The modified Bartlett estimator is defined as

""”"”Z ()7
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where
)7] = — Lebe+js by = X; ~ XE‘ £ = b k,
n—j = k =1
n
=X, - - ZX*, =k+1,...,58
T i

Combining the proofs in Antoch et al. [2] with Liu and Wu [22] and Horvith and
Reeder [18] one can verify that
~2

]lSn p
Aﬁ(l £ P)&'/((I — p)(z_a)) -1, as n—- (20)

under Hy as well as under the one change alternative Hy. Due to (20) we
immediately have the following result:

Corollary 2. If Hy, (3), (4), (5), (6), (9}, (10), (11), (12) and (20) hold, then we
have that

1; Z[0,1
W b,

nl/2g,

where B(x) is a Brownian bridge.

We suggest testing procedures based on

sup |T,(x)]-

nl/25, 0<x<1
It follows immediately from Corollary 2 that under H

9, —9—> sup |B(x)|. (21)

0<x<l

First we study experimentally the rate of convergence in Theorem 2. In this
section we assume that the innovations &; in (3), (4), (5), (6), and (7) have the
common distribution function

g(1 — =2, if —00<1<0,

F(n = ~32
1—p(1=97%2 if 0<t<oo,

where p > 0,9 > O and p + g = 1. We present the results for the case of p = p =
g = 1/2 based on 10° repetitions. We simulated the elements of an autoregressive
sample (ey, ..., e,) from the recursion (3) starting with some initial value and with
a burn in period of 500, i.e. the first 500 generated variables were discarded and
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Table 1 Simulated 95 % n 1400 1600 1800 11.000 loo
percentiles of the distribution :
of 2, under H, 1.29 132 | 1.33 (134 [1.36

I X
ol g

t ‘ + + + 1 ol
-3 -27 24 -21 -18 -15 1.2 09 -06 -0.3 03 06 09 12 15 18 21 24 27 3

Fig. 1 Empirical power for 2, with significance level 0.05, n = 400 (dashed), n = 600 (solid)
and n = 800 (dotred) with ky = n/2

the next n give the sample (e, ...,e,). Thus (ey,...,e,) are from the stationary
solution of (3). We trimmed the sample using d(n) = [n%*’| and computed

2 a\M2 11— o\V2 1
9, = ( “) (—p) Z sup |T()].
o 1 4 P Ay 0=x=<1

Under Hy we have

9, 2 sup BR)|.

0<x<1

The critical values in Table | provide information on the rate of convergence in
Theorem 2.

Figures 1 and 2 show the empirical power of the test for Hy against H4 based
on the statistic .2, for a change at time k* = n/4 and n/2 and when the location
changes from 0 to ¢ € {-3,-2.9,...,2.9, 3} and the level of significance is 0.05.
We used the asymptotic critical value 1.36. Comparing Figs. | and 2 we see that we
have higher power when the change occurs in the middle of the data at k* = n/2.
We provided these results to illustrate the behaviour of functionals of 7, without
introducing further noise due to the estimation of the norming sequence.
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X

+ - - - + o s . + - . +
-3 -27 -24 -21 -18 -15 -1.2 -09 -06 -0.3 03 06 09 12 15 18 21 24 27 3

Fig. 2 Empirical power for 2, with significance level 0.05, n = 400 (dashed), n = 600 (solid)
and n = 800 (dotted) with k) = n/4

Table 2 Simulated 95 % n 1400 1600 |8(JU '1,000 ioo

percentiles of the distribution ! T
of fjn under H, 1.57 {1.52 ! 1.50 | 1.49 | 1.36

Next we study the applicability of (21) in case of small and moderate sample
sizes. We used h(n) = n'/? as the window and the flat top kernel

1 0<r<.1
w(t) =< 1.1 =4 d 2= 11
0 t>1.1

Figures 3 and 4 show the empirical power of the test for H, against H, based
on the statistic 2, for a change at time k* = n/4 and n/2 and when the location
changes from 0 to ¢ € {—3,-2.9,...,2.9,3} and the level of significance is 0.05.
We used the asymptotic critical value 1.36 (Table 2). Comparing Figs. 3 and 4 we
see that we have again higher power when the change occurs in the middle of the
dataat k; = n/2.

Figure 5 shows how the power of the test behaves depending on the value of
d = n e €{0.3,0.35,0.42,0.45,0.5} for n = 400. The bigger the d is, the better

1s the power curve.
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X

-3 27 -24 21 -18 -15 1.2 -0.9 -06 -0.3 ¢ 03 06 09 12 15 18 21 24 27 3

Fig. 3 Empirical power for .@-,1 with significance level 0.05, n = 400 (dashed), n = 600 (solid)

and n = 800 (dorted) with ky = n/2

X

-3 -2.7 -24 -21 -1.8 -15 -12 -09 -06 -0.3 . 03 06 098 12 15 18 21 24 27

3

Fig. 4 Empirical power for 2, with significance level 0.05, n = 400 (dashed), n = 600 (solid)

and n = 800 (dotred) with k) = n/4
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"""

-t
-

X

0

-3 27 24 -21 -18 -15 -1.2 -09 06 -03 03 06 09 12 15 18 21 24 27 3

Fig. 5 Empirical power curves for .2, with significance level 0.05 for d = n®, € = 0.35 (dash-
dotted), ¢ = 0.42 (dashed), € = 0.45 (solid), e = 0.5 (dotted) withn = 400, k; = n/2

3 Ratio Statistics

The statistics Qn as well as Q,, are very sensitive to the behaviour of §, and 5,,. As we
pointed out, §, is the right norming only under Hy. The sequence 0, works under H
and under the one change alternative, but it could break down if multiple changes
occur under the alternative. Even if the Bartlett type estimator is the asymptotically
correct norming factor, the rate of convergence can be slow. Also, these estimators
are very sensitive to the choice of the window & = h(n). Following the work of
Kim [19] (cf. also Kim et al. [20]) and Leybourne and Taylor [21], Horvath et al.
[17] proposed ratio type statistics of functionals of CUSUM processes. We adapt
their approach to the trimmed CUSUM process. Let 0 < § < 1 and define

- Zn.l (k)
né<k<n—né Zn‘z (k) '

Z, =

where

i k
Zua(k) = max | GHIX| < mwa} = 1/K) Y_CGHIX| < 1na)))
Si< o

=1
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and

Zua(k) = max | > (G| < ua} = (1/ (=) D~ KHIX)| < ma)})|-
<n| 2

j=k+1

Roughly speaking, we split the data into two subsets at k, compute the maximum
of the CUSUM in both subsamples and compare these maxima. To state the limit
distribution of Z, under the null hypothesis, we need to introduce

21(t) = sup [W(s) — (s/)W ()|

0<s<t
and

22(1) = sup [W*(s) — (1 —9)/(1 = ))W*(1)],

t<s<l

where W* (1) = W(1) — W(z). The following result is an immediate consequence of
Theorem 2.

Theorem 3. IfHy, (3), (4), (5), (6) and (9), (10), (11), (12) hold, then we have that

L t
Z, — sup a()

) (22)
s<i<1-5 22(1)

We reject the no change null hypothesis if Z, is large. Using Monte Carlo
simulations, it is easy to obtain the distribution function of the limit in (22).
Selected critical values can be found in Horvith et al. [17], where some probabilistic
properties of the limit are also discussed.

Below we study the finite sample behaviour of Z,. Table 3 contains simulated
significance levels when § = .2, n = 400, 600, 800, 1,000 and n = 5,000. (Since
the distribution function of the limit in (22) is unknown, we used n = 5,000 for the
limit distribution.)

Figures 6 and 7 contain the empirical power curves of the test for Hy against
Hy based on the statistic Z, for a change at time &* = n/4 and n/2 and when the
location changes from O to ¢ € {—5,—4.9,...,4.9,5} and the level of significance
is 0.05. We used critical values from Table 3. Figure 8 shows how the power of
the test behaves depending on the value of d = »¢, € € {0.3,0.35,0.42,0.45,0.5}
for n = 400. The bigger the d is, the better is the power curve.

il he distributi
gtr:l;cl:lt;;;roélnedlsnbu o 590 |5.67 |549 [543 5.03
n 0
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-5 45 4 35 -3 -25 -2 -15 -1 05 ¢ 05 1 18 2 25 3 35 4 45 5

Fig. 6 Empirical power curves for Z, with significance level 0.05, n = 400 (dashed), n = 600
(solid) and n = 800 (dotted) withk; = n/2

X

-5 45 4 -35 -3 25 -2 -15 -1 05 o 05 1 15 2 25 3 35 4 45 5

Fig. 7 Empirical power curves for Z, with significance level 0.05, n = 400 (dashed), n = 600
(solid) and n = 800 (dotted) with k; = n/4
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-5 45 -4 -35 -3 -25 -2 -15 -1 -05 ¢ 0.5 1 15 2 25 3 35 4 45 5

Fig. 8 Empirical power curves for Z, with significance level 0.05 for d = nf, ¢ = 0.35 (dash-
dotted), € = 0.42 (dashed), € = 0.45 (solid), € = 0.5 (dotted) with n = 400, k, = n/2
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