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Abstract. Motivated by problems in functional data analysis, in this paper we prove
the weak convergence of normalized partial sums of dependent random functions ex-
hibiting a Bernoulli shift structure.

1. Introduction

Functional data analysis in many cases requires central limit theorems and invariance
principles for partial sums of random functions. The case of independent summands is
much studied and well understood but the theory for the dependent case is less complete.
In this paper we study the important class of Bernoulli shift processes which are often
used to model econometric and financial data. Let X = {Xi(t)}∞i=−∞ be a sequence of
random functions, square integrable on [0, 1], and let || · || denote the L2[0, 1] norm. To
lighten the notation we use f for f(t) when it does not cause confusion. Throughout
this paper we assume that

X forms a sequence of Bernoulli shifts, i.e. Xj(t) = g(ϵj(t), ϵj−1(t), ...) for some(1.1)

nonrandom measurable function g : S∞ 7→ L2 and iid random functions ϵj(t),

−∞ < j < ∞, with values in a measurable space S,

ϵj(t) = ϵj(t, ω) is jointly measurable in (t, ω) (j = 1, 2, . . .),(1.2)

EX0(t) = 0 for all t, and E||X0||2+δ < ∞ for some 0 < δ < 1(1.3)

and

the sequence {Xn}∞n=−∞ can be approximated by ℓ–dependent sequences(1.4)

{Xn,ℓ}∞n=−∞ in the sense that
∞∑
ℓ=1

(E||Xn −Xn,ℓ||2+δ)1/κ < ∞ for some κ > 2 + δ,

where Xn,ℓ is defined by Xn,ℓ = g(ϵn, ϵn−1, ..., ϵn−ℓ+1, ϵ
∗
n,ℓ),

ϵ∗n,ℓ = (ϵ∗n,ℓ,n−ℓ, ϵ
∗
n,ℓ,n−ℓ−1, . . .),where the ϵ∗n,ℓ,k’s are independent copies of ϵ0,

independent of {ϵi,−∞ < i < ∞}.
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We note that assumption (1.1) implies that Xn is a stationary and ergodic sequence.
Hörmann and Kokoszka (2010) call the processes satisfying (1.1)– (1.4) L2 m–decomposable
processes. The idea of approximating a stationary sequence with random variables which
exhibit finite dependence first appeared in Ibragimov (1962) and is used frequently in
the literature (cf. Billingsley (1968)). Aue et al (2012) provide several examples when as-
sumptions (1.1)–(1.4) hold which include autoregressive, moving average and linear pro-
cesses in Hilbert spaces. Also, the non–linear functional ARCH(1) model (cf. Hörmann
et al (2010+)) and bilinear models (cf. Hörmann and Kokoszka (2010)) satisfy (1.4).

We show in Section 2 (cf. Lemma 2.2) that the series in

(1.5) C(t, s) = EX0(t)X0(s) +
∞∑
ℓ=1

EX0(t)Xℓ(s) +
∞∑
ℓ=1

EX0(s)Xℓ(t)

are convergent in L2. The function C(t, s) is positive definite, and therefore there exist
λ1 ≥ λ2 ≥ . . . ≥ 0 and orthonormal functions ϕi(t), 0 ≤ t ≤ 1 satisfying

(1.6) λiϕi(t) =

∫
C(t, s)ϕi(s)ds, 1 ≤ i < ∞,

where
∫
means

∫ 1

0
. We define

Γ(x, t) =
∞∑
i=1

λ
1/2
i Wi(x)ϕi(t),

where Wi are independent and identically distributed Wiener processes (standard Brow-
nian motions). Clearly, Γ(x, t) is Gaussian. We show in Lemma 2.2 that

∑∞
ℓ=1 λℓ < ∞,

and therefore

sup
0≤x≤1

∫
Γ2(x, t)dt < ∞ a.s.

Theorem 1.1. If assumptions (1.1)–(1.4) hold, then for every N we can define a Gauss-
ian process ΓN(x, t) such that

{ΓN(x, t), 0 ≤ x, t ≤ 1} D
= {Γ(x, t), 0 ≤ x, t ≤ 1}

and

sup
0≤x≤1

∫
(SN(x, t)− ΓN(x, t))

2dt = oP (1),

where

SN(x, t) =
1

N1/2

⌊Nx⌋∑
i=1

Xi(t).

The proof of Theorem 1.1 is given in Section 2. The proof is based on a maximal in-
equality which is given in Section 3 and is of interest in its own right.

There is a wide literature on the central limit theorem for sums of random processes
in abstract spaces. For limit theorems for sums of independent Banach space valued
random variables we refer to Ledoux and Talagrand (1991). For the central limit theory
in the context of functional data analysis we refer to the books of Bosq (2000) and
Horváth and Kokoszka (2012). In the real valued case, the martingale approach to weak
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dependence was developed by Gordin (1969) and Philipp and Stout (1975) and using
such techniques, Merlevède (1996) and Dedecker and Merlevède (2003) obtained central
limit theorems for a large class of dependent variables in Hilbert spaces. For some
early influential results on invariance for sums of mixing variables in Banach spaces we
refer to Kuelbs and Philipp (1980), Dehling and Philipp (1982) and Dehling (1983).
These papers provide very sharp results, but verifying mixing conditions is generally
not easy and without additional continuity conditions, even autoregressive (1) processes
may fail to be strong mixing (cf. Bradley (2007)). The weak dependence concept of
Doukhan and Louhichi (1999) (cf. also Dedecker et al. (2007)) solves this difficulty, but
so far this concept has not been extended to variables in Hilbert spaces. Wu (2005,
2007) proved several limit theorems for one–dimensional stationary processes having a
Bernoulli shift representation. Compared to classical mixing conditions, Wu’s physical
dependence conditions are easier to verify in concrete cases. Condition (1.3) cannot be
directly compared to the approximating martingale conditions of Wu (2005, 2007). For
extensions to the Hilbert space case we refer to Hörmann and Kokoszka (2010).

2. Proof of Theorem 1.1

The proof is based on three steps. We recall the definition of Xi,m from (1.4). For every
fixed m, the sequence {Xi,m} is m–dependent. According to our first lemma, the sums of
the Xi’s can be approximated with the sums of m–dependent variables. The second step
is the approximation of the infinite dimensional Xi,m’s with finite dimensional variables
(Lemma 2.4). Then the result in Theorem 1.1 is established for finite dimensional m–
dependent random functions (Lemma 2.6).

Lemma 2.1. If (1.1)–(1.4) hold, then for all x > 0 we have

lim
m→∞

lim sup
N→∞

P

(
max
1≤k≤N

1√
N

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

(Xi −Xi,m)

∣∣∣∣∣
∣∣∣∣∣ > x

)
= 0.(2.1)

Proof. The result is an immediate consequence of Markov’s inequality and Theorem
3.2. �
Define

Cm(t, s) = EX0,m(t)X0,m(s) +
m∑
i=1

EX0,m(t)Xi,m(s) +
m∑
i=1

EX0,m(s)Xi,m(t).(2.2)

We show in the following lemma that for every m the function Cm is square–integrable.
Hence there are λ1,m ≥ λ2,m ≥ · · · ≥ 0 and corresponding orthonormal functions ϕi,m, i =
1, 2, . . . satisfying

λi,mϕi,m(t) =

∫
Cm(t, s)ϕi,m(s)ds, i = 1, 2, . . .

Lemma 2.2. If (1.1)–(1.4) hold, then we have

(2.3)

∫∫
C2(t, s)dtds < ∞,

(2.4)

∫∫
C2

m(t, s)dtds < ∞ for all m ≥ 1,
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(2.5) lim
m→∞

∫∫
(C(t, s)− Cm(t, s))

2dtds = 0.

(2.6)

∫
C(t, t)dt =

∞∑
k=1

λk < ∞,

(2.7)

∫
Cm(t, t)dt =

∞∑
k=1

λk,m < ∞

and

(2.8) lim
m→∞

∫
Cm(t, t)dt =

∫
C(t, t)dt.

Proof. Using the Cauchy-Schwarz inequality for expected values we get∫∫
(EX0(t)X0(s))

2dtds ≤
∫∫

((EX2
0 (t))

1/2(EX2
0 (s))

1/2)2dtds = (E||X0||2)2 < ∞.

Recalling thatX0 andXi,i are independent and both have 0 mean, we conclude first using
the triangle inequality and then the Cauchy–Schwarz inequality for expected values that{∫∫ ( ∞∑

i=1

EX0(t)Xi(s)

)2

dtds

}1/2

(2.9)

=


∫∫ ( ∞∑

i=1

EX0(t)(Xi(s)−Xi,i(s))

)2

dtds


1/2

≤

∫∫ ( ∞∑
i=1

E|X0(t)(Xi(s)−Xi,i(s))|

)2

dtds

1/2

≤
∞∑
i=1

(∫ ∫
(E|X0(t)(Xi(s)−Xi,i(s))|)2 dtds

)1/2

≤
∞∑
i=1

∫∫ (
(EX2

0 (t))
1/2(E(Xi(s)−Xi,i(s))

2)1/2
)2

dtds

=

∫
EX2

0 (t)dt
∞∑
i=1

∫
E(Xi(s)−Xi,i(s))

2ds

= E||X0||2
∞∑
i=1

E||X0 −X0,i||2

< ∞
on account of (1.4). This completes the proof of (2.3).
Since EX0,m(t)X0,m(s) = EX0(t)X0(s), in order to establish (2.4), it is enough to show
that ∫∫ { m∑

i=1

EX0,m(t)Xi,m(s)

}2

dtds < ∞.
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It follows from the definition of Xi,m that the vectors (X0,m, Xi,m) and (X0, Xi,m) have
the same distribution for all 1 ≤ i ≤ m. Also, (Xi,m, Xi,i) has the same distribution as
(X0, X0,i), 1 ≤ i ≤ m. Hence following the arguments in (2.9) we get
∫∫ { m∑

i=1

|EX0,m(t)Xi,m(s)|

}2

dtds


1/2

=


∫ ∫ { m∑

i=1

|EX0(t)Xi,m(s)|

}2

dtds


1/2

≤ E||X0||2
m∑
i=1

∫
E(Xi,m(s)−Xi,i(s))

2ds

≤ E||X0||2
∞∑
i=1

E||X0 −X0,i||2.

< ∞.

The proof of (2.4) is now complete. The arguments used above also prove (2.5).
Repeating the previous arguments we have∫

C(t, t)dt ≤
∫

EX2
0 (t)dt+ 2

∞∑
i=1

∫
|EX0(t)Xi(t)|dt

=

∫
EX2

0 (t)dt+ 2
∞∑
i=1

∫
|EX0(t)(Xi(t)−Xi,i(t))|dt

=

∫
EX2

0 (t)dt+ 2
∞∑
i=1

∫
(EX2

0 (t))
1/2(E(Xi(t)−Xi,i(t))

2)1/2dt

≤ E||X0||2 + 2
∞∑
i=1

(∫
EX2

0 (t)dt

)1/2(∫
E(Xi(t)−Xi,i(t))

2dt

)1/2

= E||X0||2 + 2(E||X0||2)1/2
∞∑
i=1

(E||X0 −X0,i||2)1/2

< ∞.

Observing that ∫
C(t, t)dt =

∞∑
i=1

λi

∫
ϕ2
i (t)dt =

∞∑
i=1

λi,

the proof of (2.6) is complete. The same arguments can be used to establish (2.7). The
relation in (2.8) can be established along the lines of the proof of (2.5). �

By the Karhunen–Loéve expansion, we have that

Xi,m(t) =
∞∑
ℓ=1

⟨Xi,m, ϕℓ,m⟩ϕℓ,m(t).(2.10)

Define

Xi,m,K(t) =
K∑
ℓ=1

⟨Xi,m, ϕℓ,m⟩ϕℓ,m(t)(2.11)
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to be the partial sums of the series in (2.10), and

X̄i,m,K(t) = Xi,m(t)−Xi,m,K(t) =
∞∑

ℓ=K+1

⟨Xi,m, ϕℓ,m⟩ϕℓ,m(t).(2.12)

Lemma 2.3. If {Zi}Ni=1 are independent L2 valued random variables such that

EZ1(t) = 0 and E||Z1||2 < ∞,(2.13)

then for all x > 0 we have that

P

 max
1≤k≤N

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

> x

 ≤ 1

x
E

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

.(2.14)

Proof. Let Fk be the sigma algebra generated by the random variables {Zj}kj=1. By
assumption (2.13) and the independence of the Z ′

is we have that

E

∣∣∣∣∣
∣∣∣∣∣
k+1∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2 ∣∣∣∣Fk

 =

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

+ E||Zk+1||2 ≥

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

.

Therefore

{∣∣∣∣∣∣∑k
i=1 Zi

∣∣∣∣∣∣2}∞

k=1

is a non-negative submartingale with respect to the filtra-

tion {Fk}∞k=1. If we define

A =

ω : max
1≤k≤N

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

> x

 ,

then it follows from Doob’s maximal inequality (Chow and Teicher, 1988 p. 247) that

xP

 max
1≤k≤N

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

> x

 ≤ E

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

IA


≤ E

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

,

which completes the proof.
�

Lemma 2.4. If (1.1)–(1.4) hold, then for all x > 0,

lim
K→∞

lim sup
N→∞

P

(
max
1≤k≤N

∣∣∣∣∣
∣∣∣∣∣ 1√

N

k∑
i=1

X̄i,m,K

∣∣∣∣∣
∣∣∣∣∣ > x

)
= 0.(2.15)

Proof. Define Qk(j) = {i : 1 ≤ i ≤ k, i = j(mod m)} for j = 0, 1, ...,m − 1, and all
positive integers k. It is then clear that

k∑
i=1

X̄i,m,K =
m−1∑
j=0

∑
i∈Qk(j)

X̄i,m,K .
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We thus obtain by the triangle inequality that

P

(
max
1≤k≤N

∣∣∣∣∣
∣∣∣∣∣ 1√

N

k∑
i=1

X̄i,m,K

∣∣∣∣∣
∣∣∣∣∣ > x

)
≤ P

m−1∑
j=0

max
1≤k≤N

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

N

∑
i∈Qk(j)

X̄i,m,K

∣∣∣∣∣∣
∣∣∣∣∣∣ > x

 .

It is therefore sufficient to show that for each fixed j,

lim
K→∞

lim sup
N→∞

P

 max
1≤k≤N

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

N

∑
i∈Qk(j)

X̄i,m,K

∣∣∣∣∣∣
∣∣∣∣∣∣ > x

 = 0.

By the definition of Qk(j), {X̄i,m,K}i∈Qk(j) is an iid sequence of random variables. So,
by applications of Lemma 2.3 and the assumption (1.3), we have that

P

 max
1≤k≤N

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

N

∑
i∈Qk(j)

X̄i,m,K

∣∣∣∣∣∣
∣∣∣∣∣∣
2

> x

 ≤ 1

x
E

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

N

∑
i∈QN (j)

X̄i,m,K

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(2.16)

≤ 1

x
E||X̄2

0,m,K ||

=
1

x

∞∑
ℓ=K+1

λℓ,m.

Since the right hand side of (2.16) tends to zero as K tends to infinity independently of
N , (2.15) follows. �
Clearly, with k = ⌊Nx⌋ we have

1√
N

k∑
i=1

Xi,m,K(t) =
K∑
j=1

 1√
N

⌊Nx⌋∑
i=1

⟨Xi,m, ϕj,m⟩

ϕj,m(t).(2.17)

Lemma 2.5. If (1.1)–(1.4) hold, then the K dimensional random process 1√
N

⌊Nx⌋∑
i=1

⟨Xi,m, ϕ1,m⟩, ...,
1√
N

⌊Nx⌋∑
i=1

⟨Xi,m, ϕK,m⟩


converges, as N → ∞, in D[0, 1] to(

λ
1/2
1,mW1(x), ..., λ

1/2
K,mWK(x)

)
,(2.18)

where {Wi}Ki=1 are independent, identically distributed Wiener processes.

Proof. A similar procedure as in Lemma 2.4 shows that for each j, 1√
N

∑⌊Nx⌋
i=1 ⟨Xi,m, ϕj,m⟩

can be written as a sum of sums of independent and identically distributed random
variables, and thus, by Billingsley (1968), it is tight. This implies that theK dimensional
process  1√

N

⌊Nx⌋∑
i=1

⟨Xi,m, ϕ1,m⟩, ...,
1√
N

⌊Nx⌋∑
i=1

⟨Xi,m, ϕK,m⟩


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is tight, since it is tight in each coordinate. Furthermore, the Cramér-Wold device and
the central limit theorem for m–dependent random variables (cf. DasGupta (2008) p.
119) shows that the finite dimensional distributions of the vector process converge to the
finite dimensional distributions of the process in (2.18). The lemma follows.

�

In light of the Skorkohod–Dudley–Wichura theorem (cf. Shorack and Wellner (1986), p.
47), we may reformulate Lemma 2.5 as follows.

Corollary 2.1. If (1.1)–(1.4) hold, then for each positive integer N , there exists K
independent, identically distributed Wiener processes {Wi,N}Ki=1 such that for each j,

sup
0≤x≤1

∣∣∣∣∣∣ 1√
N

⌊Nx⌋∑
i=1

⟨Xi,m, ϕj,m⟩ − λ
1/2
j,mWj,N(x)

∣∣∣∣∣∣ P−→ 0,

as N → ∞.

Lemma 2.6. If (1.1)–(1.4) hold, then for {Wi,N}Ki=1 defined in Corollary 2.1, we have
that

sup
0≤x≤1

∫  1√
N

⌊Nx⌋∑
i=1

Xi,m,K(t)−
K∑
ℓ=1

λ
1/2
ℓ,mWℓ,N(x)ϕℓ,m(t)

2

dt
P−→ 0,(2.19)

as N → ∞.

Proof. By using (2.17), we get that

1√
N

⌊Nx⌋∑
i=1

Xi,m,K(t)−
K∑
ℓ=1

λ
1/2
ℓ,mWℓ,N(x)ϕℓ,m(t)

=
K∑
ℓ=1

 1√
N

⌊Nx⌋∑
i=1

⟨Xi,m, ϕℓ,m⟩ − λ
1/2
ℓ,mWℓ,N(x)

ϕℓ,m(t).

The substitution of this into the expression in (2.19) along with a simple calculation
shows that

sup
0≤x≤1

∫ (
1√
N

⌊Nx⌋∑
i=1

Xi,m,K(t)−
K∑
ℓ=1

λ
1/2
ℓ,mWℓ,N(x)ϕℓ,m(t)

)2

dt

= sup
0≤x≤1

K∑
ℓ=1

(
1√
N

⌊Nx⌋∑
i=1

⟨Xi,m, ϕℓ,m⟩ − λ
1/2
ℓ,mWℓ,N(x)

)2

≤
K∑
ℓ=1

sup
0≤x≤1

(
1√
N

⌊Nx⌋∑
i=1

⟨Xi,m, ϕℓ,m⟩ − λ
1/2
ℓ,mWℓ,N(x)

)2
P−→ 0,

as N → ∞, by Corollary 2.1. �
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Lemma 2.7. If (1.1)–(1.4) hold,

sup
0≤x≤1

∫ ( ∞∑
ℓ=K+1

λ
1/2
ℓ,mWℓ(x)ϕℓ,m(t)

)2

dt
P−→ 0,(2.20)

as K → ∞, where W1,W2, . . . are independent and identically distributed Wiener pro-
cesses.

Proof. Since the functions {ϕℓ,m}∞ℓ=1 are orthonormal, we have that

E sup
0≤x≤1

∫ ( ∞∑
ℓ=K+1

λ
1/2
ℓ,mWℓ(x)ϕℓ,m(t)

)2

dt = E sup
0≤x≤1

∞∑
ℓ=K+1

λℓ,mW
2
ℓ (x)

≤
∞∑

ℓ=K+1

λℓ,mE sup
0≤x≤1

W 2
ℓ (x) −→ 0,

as K → ∞. Therefore (2.20) follows from the Markov inequality. �
Lemma 2.8. If (1.1)–(1.4) hold, then for each N we can define independent identically
distributed Wiener processes {Wi,N}Ki=1 such that

sup
0≤x≤1

∫  1√
N

⌊Nx⌋∑
i=1

Xi,m(t)−
∞∑
ℓ=1

λ
1/2
ℓ,mWℓ,N(x)ϕℓ,m(t)

2

dt
P−→ 0,

as N → ∞.

Proof. It follows from Lemmas 2.4-2.7. �

Since the distribution of Wℓ,N , 1 ≤ ℓ < ∞ does not depend on N , it is enough to consider

the asymptotics for
∑∞

ℓ=1 λ
1/2
ℓ,mWℓ(x)ϕℓ,m(t), where Wℓ are independent Wiener processes.

Lemma 2.9. If (1.1)–(1.4) hold, then for each m we can define independent and iden-
tically distributed Wiener processes W̄ℓ,m(x), 1 ≤ ℓ < ∞ such that

sup
0≤x≤1

∫ ( ∞∑
ℓ=1

λ
1/2
ℓ,mWℓ(x)ϕℓ,m(t)−

∞∑
ℓ=1

λ
1/2
ℓ W̄ℓ,m(x)ϕℓ(t)

)2

dt
P−→ 0,(2.21)

as m → ∞.

Proof. Let

∆m(x, t) =
∞∑
ℓ=1

λ
1/2
ℓ,mWℓ(x)ϕℓ,m(t).

Let M be a positive integer and define xi = i/M, 0 ≤ i ≤ M . It is easy to see that

E max
0≤i<M

sup
0≤h≤1/M

∫
(∆m(xi + h, t)−∆m(xi, t))

2dt

≤
∞∑
ℓ=1

λℓ,mE

{
max
0≤i<M

sup
0≤h≤1/M

(Wℓ(xi + h)−Wℓ(xi))
2

}
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= E

{
max
0≤i<M

sup
0≤h≤1/M

(W1(xi + h)−W1(xi))
2

}
∞∑
ℓ=1

λℓ,m.

Using Lemma 2.2 we get that

∞∑
ℓ=1

λℓ,m =

∫
E∆2

m(1, t)dt =

∫
Cm(t, t)dt →

∫
C(t, t)dt =

∞∑
ℓ=1

λℓ.

So by the modulus of continuity of the Wiener process (cf. Garsia (1970)) we get that

(2.22) lim
M→∞

lim sup
m→∞

E max
0≤i<M

sup
0≤h≤1/M

∫
(∆m(xi + h, t)−∆m(xi, t))

2dt = 0.

By the Karhunen-Loéve expansion we can also write ∆m as

∆m(x, t) =
∞∑
ℓ=1

⟨∆m(x, ·), ϕℓ⟩ϕℓ(t)

and

E

∫
∆2

m(x, t)dt =
∞∑
ℓ=1

E(⟨∆m(x, ·), ϕℓ⟩)2.

So by Lemma 2.2 we have

∞∑
ℓ=1

E(⟨∆m(x, ·), ϕℓ⟩)2 → x

∞∑
ℓ=1

λℓ.

Also, for any positive integer ℓ,

E(⟨∆m(x, ·), ϕℓ⟩)2 =
∫∫

Cm(t, s)ϕℓ(t)ϕℓ(s)dtds →
∫∫

C(t, s)ϕℓ(t)ϕℓ(s)dtds = λℓ,

as m → ∞. Hence for every z > 0 we have

(2.23) lim sup
K→∞

lim sup
m→∞

P


∫ ( ∞∑

ℓ=K+1

⟨∆m(x, ·), ϕℓ⟩ϕℓ(t)

)2

dt > z

 = 0.

The joint distribution of ⟨∆(xi, ·), ϕℓ⟩, 1 ≤ i ≤ M, 1 ≤ ℓ ≤ K is multivariate normal
with zero mean. Hence they converge jointly to a multivariate normal distribution. To
show their joint convergence in distribution, we need to show the convergence of the
covariance matrix. Using again Lemma 2.2 we get that

E⟨∆(xi, ·), ϕℓ⟩⟨∆(xj, ·), ϕk⟩ = min(xi, xj)

∫∫
Cm(t, s)ϕℓ(t)ϕk(s)dtds

→ min(xi, xj)

∫∫
C(t, s)ϕℓ(t)ϕk(s)dtds = min(xi, xj)λℓI{k = ℓ}.

Due to this covariance structure and the Skorkohod–Dudley–Wichura theorem (cf. Shorack
and Wellner (1986), p. 47) we can find independent Wiener processes W̄ℓ,m(x), 1 ≤ ℓ < ∞
such that

max
1≤i≤M

max
1≤ℓ≤K

|⟨∆(xi, ·), ϕℓ⟩ − λ
1/2
ℓ W̄ℓ,m(xi)| = oP (1), as m → ∞.
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Clearly, for all 0 ≤ x ≤ 1

E

∫ ( ∞∑
ℓ=K+1

λ
1/2
ℓ W̄ℓ,m(x)ϕℓ(t)

)2

dt = x
∞∑

ℓ=K+1

λℓ → 0, as m → ∞,

and therefore similarly to (2.23)

lim sup
K→∞

lim sup
m→∞

P


∫ ( ∞∑

ℓ=K+1

λ
1/2
ℓ W̄ℓ,m(x)ϕℓ(t)

)2

dt > z

 = 0

for all z > 0. Similarly to (2.22) one can show that

E max
0≤i<M

sup
0≤h≤1/M

∫ ( ∞∑
ℓ=1

(W̄ℓ,m(xi + h)− W̄ℓ,m(xi))ϕℓ(t)

)2

dt

≤ E

{
max
0≤i<M

sup
0≤h≤1/M

(W(xi + h)−W(xi))
2

}
∞∑
ℓ=1

λℓ → 0, as M → ∞,

where W is a Wiener process. This also completes the proof of Lemma 2.9. �

Proof of Theorem 1.1 First we approximate SN(x, t) withm-dependent processes (Lemma
2.1). The second step of the proof is the approximation of the sums of m-dependent
processes with a Gaussian process with covariance function min(x, x′)Cm(t, s), where
Cm is defined in (2.2) (Lemma 2.8)). The last step of the proof is the convergence of
Gaussian processes with covariance functions min(x, x′)Cm(t, s) to a Gaussian process
with covariance function min(x, x′)C(t, s) (Lemma 2.9).

3. A Maximal Inequality

In this section we prove a maximal inequality for the sums of Yi = Xi−Xi,m, where Xi,m

is defined in (1.4).
Our first lemma is a Hilbert space version of Doob’s (1953 p. 226) inequality.

Lemma 3.1. If Z1 and Z2 are independent mean zero Hilbert space valued random
variables, and if 0 < δ ≤ 1, then

E||Z1 + Z2||2+δ ≤ E||Z1||2+δ + E||Z2||2+δ + E||Z1||2(E||Z2||2)δ/2 + E||Z2||2(E||Z1||2)δ/2.

Proof. Since 0 < δ ≤ 1, for any A,B ≥ 0 we have that (A + B)δ ≤ Aδ + Bδ (cf. Hardy
et al (1969, p. 32)). An application of this inequality along with Minkowski’s inequality
gives that

||Z1 + Z2||δ ≤ (||Z1||+ ||Z2||)δ ≤ ||Z1||δ + ||Z2||δ.
We also have by Hölders inequality that

E||Z1||δ ≤ (E||Z1||2)δ/2.
This yields that

E||Z1 + Z2||2+δ = E||Z1 + Z2||2||Z1 + Z2||δ

≤ E||Z1 + Z2||2(||Z1||δ + ||Z2||δ)
= E[||Z1||2 + ||Z2||2 + 2⟨Z1, Z2⟩](||Z1||δ + ||Z2||δ)
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= E||Z1||2+δ + E||Z2||2+δ + E||Z1||2E||Z2||δ + E||Z2||2E||Z1||δ

≤ E||Z1||2+δ + E||Z2||2+δ + E||Z1||2(E||Z2||2)δ/2 + E||Z2||2(E||Z1||2)δ/2,

which proves the lemma.
�

Remark 3.1. If Z1 and Z2 are independent and identically distributed, then the result
of Lemma 3.1 can be written as

E||Z1 + Z2||2+δ ≤ 2E||Z1||2+δ + 2(E||Z1||2)1+δ/2.

Let

(3.1) I(r) =
∞∑
ℓ=1

(E||X0 −X0,ℓ||r)1/r.

We note that by (1.4), I(r) < ∞ for all 2 ≤ r ≤ 2 + δ.

Lemma 3.2. If (1.1)–(1.4) hold, then we have

E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

(Xi −Xi,m)

∣∣∣∣∣
∣∣∣∣∣
2

≤ nA,

where

A =

∫
E(X0 −X0,m)

2(t)dt+ 25/2
(∫

E(X0 −X0,m)
2(t)dt

)1/2

I(2).(3.2)

Proof. Let Yi = Xi −Xi,m. By Fubini’s theorem and the fact that the random variables
are identically distributed, we conclude

E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2

=

∫
E

(
n∑

i=1

Yi(t)

)2

dt(3.3)

= n

∫
EY 2

0 (t)dt+ 2

∫ n−1∑
i=1

(n− i)EY0(t)Yi(t)dt

≤ n

∫
EY 2

0 (t)dt+ 2n
n−1∑
i=1

∫
|EY0(t)Yi(t)|dt

≤ n

∫
EY 2

0 (t)dt+ 2n
∞∑
i=1

∫
|EY0(t)Yi(t)|dt.

We recall Xi,i from (1.4). Under this definition, the random variables Y0 and Xi,i are
independent for all i ≥ 1. Let Zi = Xi,m, if i > m and Zi = g(ϵi, . . . , ϵ1, δi), if 1 ≤ i ≤ m,
where δi = (δi,0, δi,−1, . . .) and δi,j are iid copies of ϵ0, independent of the ϵℓ’s and ϵk,ℓ’s.
Clearly, Zi and Y0 are independent and thus with Yi,i = Xi,i − Zi we have

EY0(t)Yi(t) = EY0(t)(Yi(t)− Yi,i(t)).

Furthermore, by first applying the Cauchy-Schwarz inequality for expected values and
then by the Cauchy–Schwarz inequality for functions in L2, we get that
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∫
|EY0(t)(Yi(t)− Yi,i(t))|dt ≤

∫ (
EY 2

0 (t)
)1/2 (

E [Yi(t)− Yi,i(t)]
2)1/2 dt

≤
(∫

EY 2
0 (t)dt

)1/2(∫
E [Yi(t)− Yi,i(t)]

2 dt

)1/2

.

Also,∫
E [Yi(t)− Yi,i(t)]

2 dt ≤ 2

(∫
E [Xi(t)−Xi,i(t)]

2 dt+

∫
E [Xi,m(t)− Zi(t)]

2 dt

)
The substitution of this expression into (3.3) gives that

E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2

≤ n

∫
EY 2

0 (t)dt+ 23/2n
∞∑
i=1

(∫
EY 2

0 (t)dt

)1/2{(∫
E [Xi(t)−Xi,i(t)]

2 dt

)1/2

+

(∫
E [Xi,m(t)− Zi(t)]

2 dt

)1/2}
≤ n

[∫
EY 2

0 (t)dt+ 25/2
(∫

EY 2
0 (t)dt

)1/2

I(2)

]
,

which completes the proof.
�

Lemma 3.3. If a, b ≥ 0, then for r > 2 we have that

(a+ b)r ≤ ar + rar−1b+
r(r − 1)

2
(a+ b)r−2b2.

Proof. By Taylor expansion we have that

(a+ b)r = ar + rar−1b+
r(r − 1)

2
ξr−2b2,

where a ≤ ξ ≤ a + b. Therefore, since r > 2, the function g(ξ) = ξr−2 is strictly
increasing, and we have that

ar + rar−1b+
r(r − 1)

2
ξr−2b2 ≤ ar + rar−1b+

r(r − 1)

2
(a+ b)r−2b2.

We may then conclude that

(a+ b)r ≤ ar + rar−1b+
r(r − 1)

2
(a+ b)r−2b2,

as needed. This completes the proof.
�

Theorem 3.1. If (1.1)–(1.4) hold, then for all N ≥ 1

E

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

(Xi −Xi,m)

∣∣∣∣∣
∣∣∣∣∣
2+δ

≤ N1+δ/2B,

where

B = E||X0−X0,m||2+δ + c2+δ
δ [A1+δ/2 + J2+δ

m + JmA
(1+δ)/2 + A(1+δ/2)δJ2

m](3.4)
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+ (cδJ
2
m)

1/(1−δ)

with A defined in (3.2),

(3.5) cδ = 36

(
1− 1

2δ/2

)−1

and

Jm = 2(E||X0 −X0,m||2+δ)(κ−2−δ)/(κ(2+δ))

∞∑
ℓ=1

(E||X0 −X0,ℓ||2+δ)1/κ.

Proof. We prove Theorem 3.1 using mathematical induction. By the definition of B, the
inequality is obvious when N = 1. Assume that it holds for all k which are less than or
equal to N − 1. We assume that N is even, i.e. N = 2n. The case when N is odd can be
done in the same way with minor modifications. Let Yi = Xi −Xi,m. For all i satisfying
n+ 1 ≤ i ≤ 2n, we define

X∗
i,n = g(ϵi, ϵi−1, ..., ϵn+1, ϵ

∗
n, ϵ

∗
n−1, ...)

where the ϵ∗j ’s denote iid copies of ϵ0, independent of {ϵi,−∞ < i < ∞} and {ϵ∗k,ℓ,−∞ <
k, ℓ < ∞}. We define Zi,n = Xi,m, if m+ n+ 1 ≤ i ≤ 2n and

Zi,n = g(ϵi, . . . , ϵn+1, ϵ
∗
n, . . . ϵ

∗
i−m+1, δi) with δi = (δi,n, δi,n−1, . . .),

if n + 1 ≤ i ≤ n + m, where the δk,ℓ’s are iid copies of ϵ0, independent of the ϵk’s
and ϵ∗k,ℓ’s. Let Y ∗

i,n = X∗
i,n − Zi,n, if n + 1 ≤ i ≤ 2n. Under this definition, the

sequences {Yi, 1 ≤ i ≤ n} and {Y ∗
i,n, n+1 ≤ i ≤ 2n} are independent and have the same

distribution. Let

Θ =

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Yi +
2n∑

i=n+1

Y ∗
i,n

∣∣∣∣∣
∣∣∣∣∣ and Ψ =

∣∣∣∣∣
∣∣∣∣∣

2n∑
i=n+1

(
Yi − Y ∗

i,n

)∣∣∣∣∣
∣∣∣∣∣ .

By applying the triangle inequality for L2 and expected values, we get

E

∣∣∣∣∣
∣∣∣∣∣
2n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2+δ

= E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Yi +
2n∑

i=n+1

Y ∗
i,n +

2n∑
i=n+1

(
Yi − Y ∗

i,n

)∣∣∣∣∣
∣∣∣∣∣
2+δ

≤ E (Θ + Ψ)2+δ

≤
(
(EΘ2+δ)1/(2+δ) + (EΨ2+δ)1/(2+δ)

)2+δ
.

Since both of the expected values in the last line of the inequality above are positive, we
obtain by Lemma 3.3 that

E

∣∣∣∣∣
∣∣∣∣∣
2n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2+δ

≤EΘ2+δ + (2 + δ)(EΘ2+δ)(1+δ)/(2+δ)(EΨ2+δ)1/(2+δ)(3.6)

+ (2 + δ)(1 + δ)
[
(EΘ2+δ)1/(2+δ)

+ (EΨ2+δ)1/(2+δ)
]δ
(EΨ2+δ)2/(2+δ).
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We proceed by bounding the terms (EΨ2+δ)1/(2+δ), and EΘ2+δ individually. Applica-
tions of both the triangle inequality for L2 and for expected values yield that

(EΨ2+δ)1/(2+δ) =

E

∣∣∣∣∣
∣∣∣∣∣

2n∑
i=n+1

(
Yi − Y ∗

i,n

)∣∣∣∣∣
∣∣∣∣∣
2+δ
1/(2+δ)

≤

E

(
2n∑

i=n+1

||Yi − Y ∗
i,n||

)2+δ
1/(2+δ)

≤
2n∑

i=n+1

(E||Yi − Y ∗
i,n||2+δ)1/(2+δ).

By Hölder’s inequality we have, with κ in (1.4),

(E||Yi − Y ∗
i,n||2+δ)1/(2+δ) = (E[||Yi − Y ∗

i,n||(2+δ)2/κ||Yi − Y ∗
i,n||(2+δ)−(2+δ)2/κ])1/(2+δ)

≤ (E||Yi − Y ∗
i,n||2+δ)1/κ(E||Yi − Y ∗

i,n||2+δ)(κ−2−δ)/(κ(2+δ)).

It follows from the definition of Yi, Y
∗
i,n and the convexity of x2+δ that

E||Yi − Y ∗
i,n||2+δ ≤ 21+δ(E||Xi −X∗

i,n||2+δ + E||Xi,m − Zi,n||2+δ) ≤ 22+δE||X0 −X0,i−n||2+δ

and

E||Yi − Y ∗
i,n||2+δ ≤ 21+δ(E||Xi −Xi,m||2+δ + E||X∗

i,n − Zi,n||2+δ) ≤ 22+δE||X0 −X0,m||2+δ.

Thus we get

(EΨ2+δ)1/(2+δ) ≤ 2(E||X0 −X0,m||2+δ)(κ−2−δ)/(κ(2+δ))

∞∑
ℓ=1

(E||X0 −X0,ℓ||2+δ)1/κ = Jm.

To bound EΘ2+δ, since
∑n

i=1 Yi and
∑2n

i=n+1 Y
∗
i,n are independent and have the same

distribution, we have by Lemma 3.2, Remark 3.1 and the inductive assumption that

EΘ2+δ = E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Yi +
2n∑

i=n+1

Y ∗
i,n

∣∣∣∣∣
∣∣∣∣∣
2+δ

≤ 2E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2+δ

+ 2

E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2
1+δ/2

≤ 2n1+δ/2B + 2(nA)1+δ/2.

The substitution of these two bounds into (3.6) give that

E

∣∣∣∣∣
∣∣∣∣∣
2n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2+δ

≤ 2n1+δ/2B + 2(nA)1+δ/2(3.7)

+ (2 + δ)[2n1+δ/2B + 2(nA)1+δ/2](1+δ)/(2+δ)Jm

+ (2 + δ)(1 + δ)
[
2n1+δ/2B + 2(nA)1+δ/2 + Jm

]δ
J2
m.

Furthermore, by the definition of B, we may further bound each summand on the right
hand side of (3.7). We obtain for the first two terms that
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2n1+δ/2B + 2(nA)1+δ/2 ≤ (2n)1+δ/2B

[
2−δ/2 +

A1+δ/2

B

]
≤ (2n)1+δ/2B

[
2−δ/2 + 6c−1

δ

]
.

A similar factoring procedure applied to the expression in the second line of (3.7) yields
that

(2 + δ)
[
2n1+δ/2B + 2(nA)1+δ/2

](1+δ)/(2+δ)
Jm

≤ 6
[
(n1+δ/2B)(1+δ)/(2+δ) + (nA)(1+δ/2)[(1+δ)/(2+δ)]

]
Jm

≤ (2n)1+δ/2B

[
6Jm

B1/(2+δ)
+

6JmA
(1+δ/2)[(1+δ)/(2+δ)]

B

]
≤ (2n)1+δ/2B

[
12c−1

δ

]
.

Since 0 < δ < 1, the expression in the third line of (3.7) may be broken into three
separate terms:

(2 + δ)(1 + δ)
[
2n1+δ/2B + 2(nA)1+δ/2 + Jm

]δ
J2
m

≤ 6(2n1+δ/2B)δJ2
m + 6(2δ(nA)(1+δ/2)δJ2

m + 6J2+δ
m .

Furthermore by again applying the definition of B we have that

6(2n1+δ/2B)δJ2
m = (2n)1+δ/2B

[
6(2n1+δ/2B)δJ2

m

(2n)1+δ/2B

]
≤ (2n)1+δ/2B

[
6J2

m

B1−δ

]
≤ (2n)1+δ/2B[6c−1

δ ],

6(2(nA)(1+δ/2))δJ2
m = (2n)1+δ/2B

[
6(2(nA)(1+δ/2))δJ2

m

(2n)1+δ/2B

]
≤ (2n)1+δ/2B

[
6A(1+δ/2)δJ2

m

B

]
≤ (2n)1+δ/2B[6c−1

δ ],

and

6J2+δ
m = (2n)1+δ/2B

[
6J2+δ

m

(2n)1+δ/2B

]
≤ (2n)1+δ/2B

[
6J2+δ

m

B

]
≤ (2n)1+δ/2B[6c−1

δ ].

The application of these bounds to the right hand side of (3.7) give that

E

∣∣∣∣∣
∣∣∣∣∣
2n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2+δ

≤ (2n)1+δ/2B
[
2−δ/2 + 36c−1

δ

]
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= (2n)1+δ/2B,

which concludes the induction step and thus the proof. �
Theorem 3.2. If (1.1)–(1.4) hold, then we have

E

(
max
1≤k≤N

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

(Xi −Xi,m)

∣∣∣∣∣
∣∣∣∣∣
)2+δ

≤ amN
1+δ/2(3.8)

with some sequence am satisfying am → 0 as → ∞.

Proof. By examining the proofs, it is evident that Theorem 3.1 in Móricz et al (1982)
holds for L2 valued random variables. Furthermore, by the stationarity of the sequence
{Xi −Xi,m}∞i=1 and Theorem 3.1, the conditions of Theorem 3.1 in Móricz are satisfied
and therefore

E

(
max
1≤k≤N

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

(Xi −Xi,m)

∣∣∣∣∣
∣∣∣∣∣
)2+δ

≤ c∗δN
1+δ/2B,

with some constant c∗δ , depending only on δ and B is defined in (3.4). Observing that
B = Bm → 0 as m → ∞, the result is proven. �
Theorem 3.1 provides inequality for the moments of the norm of partial sums of Xi−Xi,m

which are not Bernoulli shifts. However, checking the the proof of Theorem 3.1, we get
the following result for Bernoulli shifts.

Theorem 3.3. If (1.1), (1.3) are satisfied and X is a Bernoulli shift satisfying

I(2 + δ) =
∞∑
ℓ=1

(E||X0 −X0,ℓ||2+δ)1/(2+δ) < ∞ with some 0 < δ < 1,

where X0,ℓ is defined by (1.4), then then for all N ≥ 1

E

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣
2+δ

≤ N1+δ/2B∗,

where

B∗ = E||X0||2+δ+c2+δ
δ [A1+δ/2

∗ + I2+δ(2 + δ)

+ I(2 + δ)A(1+δ)/2
∗ + A(1+δ/2)δ

∗ I2(2 + δ)] + (cδI
2(2))1/(1−δ),

A∗ =

∫
EX2

0 (t)dt+ 2

(∫
EX2

0 (t)dt

)1/2

I(2)

and cδ is defined in (3.5) and I(2) in (3.1).

Remark 3.2. The inequality in Theorem 3.1 is an extension of Proposition 4 in Berkes
et al (2011) to random variables in Hilbert spaces; we have computed how B∗ depends
on the distribution of X explicitly.
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important references.
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