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Abstract

LetX,X1, X2, . . . be i.i.d. random variables with P (X = 2k) = 2−k (k ∈ N)
and let Sn =

∑n
k=1Xk. The properties of the sequence Sn have received

considerable attention in the literature in connection with the St. Petersburg

paradox (Bernoulli 1738). Let {Z(t), t ≥ 0} be a semistable Lévy process

with underlying Lévy measure
∑

k∈Z 2
−kδ2k . For a suitable version of (Xk)

and Z(t), we prove the strong approximation Sn = Z(n)+O(n5/6+ε) a.s. This
provides the �rst example for a strong approximation theorem for partial sums

of i.i.d. sequences not belonging to the domain of attraction of the normal or

stable laws.

Keywords: St. Petersburg game, a.s. invariance principle, semistable laws.

MSC 2000: 60F15, 60F17, 60G50.

1 Introduction

Let X,X1, X2, . . . be i.i.d. random variables with P (X = 2k) = 2−k (k = 1, 2, . . . )
and put Sn =

∑n
k=1Xk. The study of the sequence {Sn, n ∈ N} has received

considerable attention in the literature in connection with the St. Petersburg paradox
(Bernoulli 1738) concerning the "fair" entry price for a game where the winnings
are distributed according to X. Martin-Löf [14] proved that

S2m/2
m −m

d−→ G (1)

where G is the semistable distribution with characteristic function exp(g(t)), where

g(t) =
0∑

l=−∞

(exp(it2l)− 1− it2l)2−l +
∞∑
l=1

(exp(it2l)− 1)2−l. (2)
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He also proved ([14], Theorem 1) that if nk ∼ γ2k, 1 ≤ γ < 2, then

Snk
/nk − Lognk

d−→ Gγ

whereGγ denotes the distribution with characteristic function exp(γg(t/γ)−itLog γ)
and Logn denotes logarithm with base 2. Letting γn = n/2[Logn] (where [·] denotes
integral part), Csörg® [9] proved that

sup
x

∣∣∣∣P (Sn

n
− Logn ≤ x

)
−Gγn(x)

∣∣∣∣ −→ 0 as n→ ∞ (3)

and determined the precise rate of convergence. Relation (3) shows that the class
of subsequential limit distributions of Sn/n− Logn is the class

G = {Gγ, 1 < γ ≤ 2}. (4)

Moreover, if n runs through the interval [2m, 2m+1] then, with error tending to 0 as
m → ∞, the distribution of the variable Sn/n − Logn runs through the elements
of the discrete set

{Gγ, γ = 1 + j2−m, j = 0, 1, . . . , 2m}.

(Note that G1 = G2, so that the motion is 'circular' in G.) This remarkable behavior
was called merging in [9]. Csörg® and Dodunekova [11] showed that merging holds
for extremal and trimmed sums of the sequence (Xn) as well and Berkes, Horváth
and Schauer [5] and del Barrio, Janssen and Pauly [1] proved that the same holds
for bootstrapped sums of (Xn).

Let Z(t) denote the Lévy process de�ned by

E(exp(iuZ(t)) = exp(tg(u)). (5)

The process Z(t) has been introduced by Martin-Löf [14] who proved the scaling
relation

g(2mt) = 2m(g(t)− imt).

From this it follows that the transformation t −→ 2t does not change the distribution
of the process

{Z(t)/t− Log t, t > 0}. (6)

In particular, Z(2)/2− 1
d
= Z(1), and since Z(2)

d
= Z(1) ⋆ Z(1), the distribution of

Z(1) is semistable. In view of the atomic Lévy measure in the characteristic function
of Z(1), its distribution is not stable. It also follows that

Z(n)/n− Logn
d
= Z(γn)/γn − Log γn

d
= Gγn ,

showing that the distribution of the sequence Z(n)/n− Logn exhibits the merging
behavior (3) in an ideal way, i.e. the left hand side of (3) is equal to 0 for all n.
Hence in analogy with strong approximation theory under �nite variances, it is
natural to ask if the process {Sn, n ≥ 1} can be approximated, in the almost sure
sense, by the semistable process {Z(n), n ≥ 1} with a good remainder term. Such
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an approximation would naturally yield much more information on the behavior of
the partial sums Sn than their weak limit behavior. The purpose of this paper is to
prove such a strong approximation result. More precisely, we will prove the following

Theorem. Let X,X1, X2, . . . be i.i.d. r.v.'s with P (X = 2k) = 2−k (k = 1, 2, . . . )
and let Sn =

∑
k≤nXk. Let Z(t) be the Lévy process de�ned by (5), with g given

by (2). Then without changing their distributions, the processes {Sn, n ≥ 1} and
{Z(n), n ≥ 1} can be de�ned on a common probability space such that

|Sn − Z(n)| = O(n5/6+ε) a.s. (7)

for any ε > 0.

As in the case of i.i.d. sequences with �nite variances, our theorem implies the
functional (Donsker type) version of (1), as well as the almost sure central limit
theorem in [2]. As the deductions are routine, we omit the details.

Our theorem can be extended for the class of i.i.d. sequences X,X1, X2, . . . sat-
isfying

P (X > x) = c1x
−αψ(log x), P (X ≤ −x) = c2x

−αψ(log x) (x ≥ x0)

for some x0 > 0, where c1 ≥ 0, c2 ≥ 0, 0 < α < 2, are constants and ψ is a bounded
periodic function. However, since the proof requires lengthy calculations and no new
ideas, we do not give the details here. Note that such i.i.d. sequences belong to the
domain of geometric attraction of semistable laws, see Grinevich and Khokhlov [13]
for a precise characterization of this class in terms of characteristic functions. Also,
as shown by Csörg® and Megyesi [12], for partial sums of i.i.d. sequences belonging
to this class, an analogue of the merging relation (3) holds.

It seems likely that the exponent 5/6 in (7) is far from optimal, but since for
applications all exponents < 1 su�ce and we do not know the optimal exponent,
we will not investigate this problem here. Finding the optimal remainder term is
unsolved even in the case of stable limit distributions. In the case of symmetric X,
upper bounds for the remainder term in the stable case are given in [3], [6], [15],
while lower bounds are given in [6]. For example, in [6] it is shown that if X is
symmetric with

P (X > x) = (c+ β(x))x−α, 0 < α < 2, x ≥ x0

where β(x) = (log x)−γ, γ > 0, then the partial sums
∑n

k=1Xk can be approximated
with a stable Lévy process Z(n) with a.s. remainder term O(n1/α(log n)τ ) for τ =
1/α− γ/α+ ε, but not for τ = 1/α− 2γ/α− γ − ε. Similar results hold for slower
decreasing functions β(x). On the other hand, the proof of lower bounds in [6] breaks
down if β decreases at least polynomially, thus even in the simplest symmetric case
when P (X > x) = cx−α (0 < α < 2, x ≥ x0) no lower bounds are known. In case
of the St. Petersburg variable X it follows from the results of [4] that the di�erence
|P (X > x) − P (Y > x)| of the tails of X and the limiting semistable variable Y
is O(x−(1+γ)) for some γ > 0 and again the method of [6] yields no lower bounds
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in the invariance principle. As Csörg® [9] showed, the precise convergence speed
in (3) is O((log n)2/n) (cf. also Lemma 2 below), which is better than the classical
Berry-Esseen bound O(n−1/2) for i.i.d. sequences with �nite third moments. Thus
it is conceivable that the remainder term O(n5/6+ε) in our strong approximation
theorem can be improved beyond O(n1/2), but this remains open.

2 Proof

Let Y1, Y2, . . . be i.i.d. random variables with distribution G having characteristic
function exp(g(t)) with g de�ned by (2). Then letting Z∗(n) =

∑n
k=1 Yk, the pro-

cesses {Z(n), n ≥ 1} and {Z∗(n), n ≥ 1} have the same distribution and thus our
theorem states equivalently that the sequences (Xk), (Yk) can be de�ned jointly on
a suitable probability space such that

n∑
k=1

(Xk − Yk) = O(n5/6+ε) a.s. (8)

Our proof will use a modi�cation of the standard blocking technique. Using a
remainder term in the merging theorem in [9], the blocking method yields the ap-
proximation (8) along a polynomially growing sequence (tk) of n's. Unfortunately,
the �uctuation of the partial sums of Xn and Yn in the intervals [tk, tk+1] are too
large for extending the approximation (8) for all n. However, as we are going to see,
the di�culty is caused by a single large term Xi and Yj within [tk, tk+1], and using
a special coupling ensuring that the indices of the maximal terms of the sequences
(Xn) and (Yn) in the blocks [tk, tk+1] coincide, then removing these terms and using
a minimax inequality of Billingsley [8] instead of a standard maximal inequality re-
solves the di�culty. This idea was used by Berkes, Dabrowski, Dehling and Philipp
[3] in the context of stable Rd-valued sequences and appears to have many further
applications for heavy tailed sequences.

Lemma 1. We have

P

{∣∣∣∣Sn

n
− Logn

∣∣∣∣ > x

}
≤ 9

x
(x ≥ 9, n = 1, 2, . . .). (9)

Relation (9) remains valid if we replace Sn by S̃n =
∑

i≤n X̃i, where X̃1, X̃2, . . . are
i.i.d. random variables with characteristic function exp(g(u)).

For the proof of (9) see Berkes, Csáki and Csörg® [2]; the proof of the second
relation is similar.

Lemma 2. For any n ≥ 1 we have

π

(
dist

(
Sn

n
− Logn

)
, Gγn

)
≤ C

(log n)2

n
(10)

for some absolute constant C > 0, where π denotes the Prohorov distance.
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This follows from Theorem 1 of Csörg® [9].

Lemma 3. Let {τj : 1 ≤ j ≤ n} be a �nite sequence of i.i.d. random variables with
sum S =

∑
j≤n

τj. Assume that the distribution function of |τ1| is continuous. Then

L, de�ned by |τL| = max
1≤j≤n

|τj|, is with probability one, a well de�ned random variable

that is independent of S and has uniform distribution on {1, 2, . . . , n}.

Clearly, the distribution of L is uniform on {1, 2, . . . , n}; in fact, it is uniform
conditionally on any symmetric function of τ1, . . . , τn, i.e. it is independent of S.

Proof of the Theorem. We �rst enlarge the probability space to carry an i.i.d.
sequence (ζn) of standard normal r.v.'s, which is also independent of (Xn). By the
LIL for (ζn), it su�ces to prove the theorem for the sequence (X∗

n) where X∗
n =

Xn + ζn. Also,

P

(∣∣∣∣∣n−1

n∑
k=1

ζk

∣∣∣∣∣ ≥ x

)
≤ exp(−nx2/2) ≤ C/x, (x ≥ 1) (11)

with some constant C and thus Lemma 1 remains valid, with possibly di�erent
constants, for the sequence (X∗

k). Further, (11) implies that

P

(∣∣∣∣∣n−1

n∑
k=1

ζk

∣∣∣∣∣ ≥ (log n)/
√
n

)
≤ C ′′(log n)2/

√
n,

and thus Lemma 2 also remains valid for (X∗
n) with (log n)2/n on the right hand

side of (10) replaced by (log n)2/
√
n. Since in the rest of the proof of the theorem

we use the properties of the St. Petersburg sequence (Xn) only through Lemmas 1
and 2, in the sequel we can drop the stars and let Xn denote the perturbed version
of Xn. As a consequence, the Xn have continuous distribution.

Let
tk = [kρ], nk = tk+1 − tk, Hk = (tk, tk+1] (12)

for some ρ > 3 chosen suitably later and

ξk = n−1
k

(∑
j∈Hk

Xj − nk Lognk

)
. (13)

The modi�ed version of Lemma 2 implies that the Prohorov distance of the
distribution of ξk and of Gγk is≪ (log nk)

2/
√
nk and since the underlying probability

space is atomless (because of the continuity of the distribution of theXk's), the proof
of Theorem 2 of Berkes and Philipp [7] shows that on the same probability space
there exists a sequence {ηk, k ≥ 1} of independent random variables such that ηk is
measurable with respect to σ{ξ1, . . . , ξk}, it has distribution Gγk and

P{|ξk − ηk| ≥ αk} ≤ αk (14)
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where

αk ≪
(log nk)

2

√
nk

≪ (log k)2

k(ρ−1)/2
. (15)

Here, and in the sequel, ≪ means the same as the O notation.
De�ne Lk by |Xtk+Lk

| = max
j∈Hk

|Xj|. Since the Xk have continuous distribution,

Lemma 3 shows that Lk is de�ned uniquely with probability 1, has uniform dis-
tribution on (0, nk] ∩ Z and is independent of ξk, and consequently of the whole
sequence {ξk, k ≥ 1}. Since the Lk are independent, it follows that {Lk, k ≥ 1} is
independent of {ξk, k ≥ 1} and since ηk is measurable with respect to σ{ξ1, . . . , ξk},
it follows that {Lk, k ≥ 1} is independent of {ηk, k ≥ 1}. In other words, the joint
distribution of Lk and ηk is the same as that of Lk and ξk, a fact that will enable
us to guarantee that the Lk will also be the location of the maximum the block
{Yj, j ∈ Hk} of the approximating sequence (Yk) (still to be constructed).

Let {Yi, i ≥ 1} be a sequence of independent random variables, de�ned on some
probability space and with common characteristic function exp(g(u)). Denote by
L∗

k the random variable de�ned by |Ytk+L∗
k
| = max

j∈Hk

|Yj|. Since the distribution of

Yi is continuous (in fact, Yi has an in�nitely many times di�erentiable density, see
Csörg® [10]), by Lemma 3 L∗

k is well-de�ned, has uniform distribution on (0, nk]∩Z
and is independent of

η∗k = n−1
k

(∑
j∈Hk

Yj − nk Lognk

)
.

As we noted above, η∗k has distribution Gγk and thus the sequence {(η∗k, L∗
k), k ≥ 1}

has the same distribution as {(ηk, Lk), k ≥ 1}. We apply Lemma A1 of Berkes and
Philipp [7] to the joint law F of the sequences {ξi, i ≥ 1, ηk, k ≥ 1} and {(ηk, Lk), k ≥
1} and the joint law G of the sequences {(η∗k, L∗

k), k ≥ 1} and {Yi, i ≥ 1} and the
spaces S1 = R∞ ×R∞, S2 = (R×N)∞, S3 = R∞. We obtain a joint law Q with
marginals F and G, which we realize on some probability space Ω′. Hence, keeping
the same notation we can set ηk = η∗k and Lk = L∗

k.
In summary, we have rede�ned the sequences {Xi, i ≥ 1}, {ξk, k ≥ 1} and

{Lk, k ≥ 1} without changing their joint law on a (possibly) new probability space,
together with a sequence {Yi, i ≥ 1} of i.i.d. random variables with common char-
acteristic function exp(g(u)) with the following properties:

ηk = n−1
k

(∑
i∈Hk

Yi − nk Lognk

)
, |Ytk+Lk

| = max
i∈Hk

|Yi|, (16)

i.e. the location tk + Lk of max
i∈Hk

|Xi| and max
i∈Hk

|Yi| is the same.

This together with (13) yields:∑
j∈Hk

(Xj − Yj) = nk(ξk − ηk). (17)
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Using (14) and (15) and since ρ > 3 implies
∑∞

k=1 αk < ∞, we get, using the
Borel�Cantelli lemma,

|ξk − ηk| ≪ αk ≪
(log k)2

k(ρ−1)/2
a.s. as k → ∞

and hence using (12) we �nd∣∣∣∣∣∑
i≤tk

(Xi − Yi)

∣∣∣∣∣≪ ∑
j≤k−1

njαj ≪ k(ρ+1)/2(log k)2 ≪ t
(ρ+1)/2ρ
k (log tk)

2 a.s. (18)

This estimates the di�erence |
∑

i≤n(Xi − Yi)| for all n of the form n = tk. For
general n we need the following lemmas.

Lemma 4. With probability 1 we have for any ε > 0 and su�ciently large k that

max
n∈Hk

min

{∣∣∣∣ ∑
tk<j≤n

Xj

∣∣∣∣, ∣∣∣∣ ∑
n<j≤tk+1

Xj

∣∣∣∣} ≤ 2t
1−1/(2ρ)+ε
k (19)

and a similar statement holds for the Yj's.

Proof. Let a0 = 0 and aj = j Log j for j ≥ 1. We claim that

P (|(Sj − Si)− (aj − ai)| ≥ λ) ≤ 18(j − i)

λ
LogN for 1 ≤ i < j ≤ N. (20)

Clearly, (20) holds for λ < 18(j − i)LogN , since then the right hand side exceeds
1. Assume now λ ≥ 18(j − i)LogN . Then we have, observing that |aj − ai| ≤
2(j − i)LogN by the mean value theorem and trivially aj−i ≤ (j − i)LogN , we get

P (|(Sj − Si)− (aj − ai)| ≥ λ) = P (|Sj−i − (aj − ai)| ≥ λ)

≤ P (|Sj−i| ≥ 8λ/9) ≤ P (|Sj−i − aj−i| ≥ λ/2) ≤ 18(j − i)/λ,

where in the last step we used Lemma 1. Thus we proved (20) and letting X̄k =
Xk − (ak − ak−1), S̄n =

∑
k≤n X̄k = Sn − an, we get by the independence of the X̄j

for any 1 ≤ i ≤ j ≤ k ≤ N and λ > 0,

P
{
|S̄j − S̄i| ≥ λ, |S̄k − S̄j| ≥ λ

}
≤ 324

λ2
(j − i)(k − j)Log 2N ≤ 324

λ2
(k − i)2 Log 2N.

Hence using Theorem 12.1 of Billingsley [8] with γ = 1, α = 1 and uj = 18LogN ,
we get for any N ≥ 1 and λ > 0,

P

{
max
1≤k≤N

min{|S̄k|, |S̄N − S̄k|} ≥ λ

}
≤ C

1

λ2
N2 Log 2N (21)

for some absolute constant C > 0. Clearly, replacing S̄k and S̄N in (21) with Sk

and SN , the random variable in the brackets on the left hand side of (21) changes
at most by N LogN and thus

P

{
max
1≤k≤N

min{|Sk|, |SN − Sk|} ≥ λ+N LogN

}
≤ C

1

λ2
N2 Log 2N. (22)
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Hence choosing N = nk, λ = t
1−1/(2ρ)+ε
k and using stationarity and the Borel-Cantelli

lemma, we get the statement of Lemma 4 for the Xj's. The proof for the Yj's is the
same.

Lemma 5. With probability 1 there exists a k0 such that for all k ≥ k0 there is at
most one index j ∈ Hk with |Xj| > t

1−1/(2ρ)+ε
k .

Proof. Since P (|X1| > t) = O(1/t), we have

P
{
min(|Xi|, |Xj|) > t

1−1/(2ρ)+ε
k for some i ̸= j ∈ Hk

}
≤ n2

kP
2
{
|X1| > t

1−1/(2ρ)+ε
k

}
≤

≪ k2ρ−2t
−(2−1/ρ+2ε)
k ≪ k−(1+2ρε)

by (12). The result follows now from the Borel�Cantelli lemma.

We now show that with probability 1 for su�ciently large k we have

max
n∈Hk

min

{∣∣∣∣ ∑
tk<j≤n

(Xj − Yj)

∣∣∣∣, ∣∣∣∣ ∑
n<j≤tk+1

(Xj − Yj)

∣∣∣∣} ≤ 16t
1−1/(2ρ)+ε
k . (23)

In other words, with probability 1 for any n ∈ Hk, k ≥ k0,
∑

j≤n(Xj − Yj) di�ers

from one of the sums
∑

j≤tk
(Xj−Yj) and

∑
j≤tk+1

(Xj−Yj) by at most 16t
1−1/(2ρ)+ε
k .

Then choosing ρ close to 3, (18) and (23) imply conclusion (8) of our theorem.
To prove (23), assume �rst that

ω ∈ Ek :=

{∣∣∣∣∣∑
j∈Hk

Xj

∣∣∣∣∣ ≥ 6t
1−1/(2ρ)+ε
k

}
.

Then by Lemma 4, for every n ∈ Hk one of the sums in the brackets in (19) is

≤ 2t
1−1/(2ρ)+ε
k in absolute value and the other is ≥ 4t

1−1/(2ρ)+ε
k . Let n run through

the interval Hk and for each n we consider which of the two sums in (19) is smaller in

absolute value. For the smallest value n = tk+1, we have |Xn| ≤ 2t
1−1/(2ρ)+ε
k a.s. by

P (|Xn| > t) = O(1/t), tk = [kρ], ρ > 3 and the Borel-Cantelli lemma. Thus for this
n, the �rst sum in (19) is smaller. For the same reason, for n = tk+1 − 1 the second
sum is smaller. Hence if n runs through Hk, at least at one location n the minimum
in (19) must switch from the �rst sum to the second sum. Clearly, at this location

we have |Xj| ≥ 2t
1−1/(2ρ)+ε
k and thus by Lemma 5 there is with probability 1 at most

one switch and this occurs at the index n where |Xn| takes its maximum over Hk,
i.e. at n = tk+Lk. (Since the location of the maximum is uniformly distributed over
Hk, the Borel-Cantelli lemma shows that with probability 1 for k ≥ k0 the maximal
term cannot occur for n = tk+1 or n = tk+1, and thus the switch occurs inside Hk.)
Thus we proved that with probability 1 for k ≥ k0 we have∣∣∣∣ ∑

tk<j≤n

Xj

∣∣∣∣ ≤ 2t
1−1/(2ρ)+ε
k , tk < n < tk + Lk (24)
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and ∣∣∣∣ ∑
n<j≤tk+1

Xj

∣∣∣∣ ≤ 2t
1−1/(2ρ)+ε
k , tk + Lk ≤ n ≤ tk+1. (25)

The same conclusion holds if ω ∈ Ec
k, with the constant 2 in (24), (25) replaced by 8,

since in this case Lemma 4 implies that both sums in (19) are at most 8t
1−1/(2ρ)+ε
k .

These inequalities remain valid if Xj is replaced by Yj since the locations of the
maxima in the blocks are the same for the X and the Y process. Thus we proved∣∣∣∣ ∑

tk<j≤n

(Xj − Yj)

∣∣∣∣ ≤ 16t
1−1/(2ρ)+ε
k , tk < n < tk + Lk

and ∣∣∣∣ ∑
n<j≤tk+1

(Xj − Yj)

∣∣∣∣ ≤ 16t
1−1/(2ρ)+ε
k , tk + Lk ≤ n ≤ tk+1,

completing the proof of (23).
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