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Abstract

We investigate the asymptotic behavior of sums
∑N

k=1 f(nkx), where f is
a mean zero, smooth periodic function on R and (nk)k≥1 is a random sequence
such that the gaps nk+1−nk are i.i.d. Our result shows that, in contrast to the
classical Salem-Zygmund theory, the almost sure behavior of lacunary series
with random gaps can be described very precisely without any assumption on
the size of the gaps.

1 Introduction

Let f : R → R be a measurable function satisfying

f(x+ 1) = f(x),

∫ 1

0

f(x)dx = 0, ∥f∥2 =
∫ 1

0

f 2(x)dx <∞. (1.1)

It is well known that for rapidly increasing (nk)k≥1 the sequence (f(nkx))k≥1 be-
haves like a sequence of independent random variables over the probability space
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([0, 1],B, λ), where B is the Borel σ-algebra and λ is the Lebesgue measure. For
example, if

nk+1/nk → ∞ (1.2)

and f satisfies the Lip α condition

|f(x)− f(y)| ≤ K|x− y|α (x, y ∈ R)

for some constants and α > 0 and K > 0, then

N−1/2

N∑
k=1

f(nkx)
d−→ N(0, ∥f∥2) (1.3)

and

lim sup
N→∞

(2N log logN)−1/2

N∑
k=1

f(nkx) = ∥f∥ a.s. (1.4)

with respect to ([0, 1],B, λ) (see Takahashi [24], [25]). Here, and in the sequel, ∥ · ∥
denotes the L2 norm. Assuming only the Hadamard gap condition

nk+1/nk ≥ q > 1, k = 1, 2, . . . (1.5)

the situation becomes more complicated. Kac [12] proved that f(nkx) satisfies the
CLT for nk = 2k and Erdős and Fortet (see [13], p. 646) showed that this generally
fails for nk = 2k − 1. Gaposhkin [10] showed that f(nkx) satisfies the CLT provided
the ratios nk+1/nk are integers or nk+1/nk → α > 1 where αr is irrational for
r = 1, 2, . . .. A necessary and sufficient number-theoretic condition for the CLT for
f(nkx) under (1.5) was given by Aistleitner and Berkes [4]. For a related sufficient
criterion for the law of the iterated logarithm for the discrepancy of {nkx} for almost
all x, see Aistleitner [1].

For subexponentially growing sequences (nk), the asymptotic behavior of SN =∑N
k=1 f(nkx) becomes much more complicated and the arising number theoretical

problems become essentially intractable. As a consequence, the limit distribution
(if it exists) of normed sums of f(nkx) is not known even for f(x) = sin 2πx and
simple sequences like nk = kr (r = 3, 4, . . .). (In the case of nk = k2 the limit
distribution was found using deep methods, see Jurkat and Van Horne [11], Marklof
[14].) In such situations, it is natural to investigate the random case, i.e. when (nk)

is an increasing random sequence, and prove asymptotic results valid for almost
all (nk); in other words, to describe the "typical" behavior of sums

∑N
k=1 f(nkx).

The simplest model for sequences with random gaps is when the gaps nk+1 − nk

are i.i.d. random variables, and in a series of papers Schatte [19], [20], [21] gave a
general study of this model. In particular, Schatte gave metric upper bounds for
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the discrepancy of {nkx} in a large class of discrete and continuous cases. Schatte’s
results have been extended and improved by Weber [26], Berkes and Weber [6],
Berkes and Raseta [5]; on the other hand, Raseta [18] proved a functional law of
the iterated logarithm for sums

∑N
k=1 f(nkx) for smooth periodic f . The purpose

of the present paper is to prove that in the case of gaps nk+1 − nk with absolutely
continuous distribution, the partial sums

∑N
k=1 f(nkx) can be closely approximated

by a Wiener process, a result having far reaching asymptotic consequences for the
sequence f(nkx). More precisely, we will prove the following result.

Theorem 1. Let (Xn)n≥1 be a sequence of i.i.d. random variables defined on a
probability space (Ω,F ,P) and let Sn =

∑n
k=1Xk. Assume X1 is bounded with

bounded density. Let f be a Lip (α) function satisfying (1.1) and put

Ax,f = ∥f∥2 + 2
∞∑
k=1

Ef(U)f(U + Skx), (1.6)

where U is a uniform (0, 1) random variable, independent of (Xn)n≥1. Then for any
fixed x > 0 the series (1.6) is absolutely convergent with P-probability 1, Ax,f ≥ 0

and the sequence (Xk)k≥1 can be redefined, without changing its distribution, on a
new probability space together with a Wiener process W (x)(·) such that

n∑
k=1

f(Skx) = W (x)(Ax,fn) +O
(
n5/12+ε

)
a.s. (1.7)

for any ε > 0.

Clearly, the redefinition of (Xk) in Theorem 1 does not change the asymptotic
properties of the sums

∑N
k=1 f(Skx) and thus limit theorems implied by the approxi-

mation (1.7) for the redefined sequence f(Skx) hold for the original sequence defined
on (Ω,F ,P) as well.

We note that in Theorem 1 we do not assume X1 > 0, and thus the sequence
(Sk)k≥1 need not be increasing. If EX1 = 0, then by standard results of probability
theory the sequence (Sk)k≥1 is dense in R; otherwise the random walk (Sk)k≥1 is
transient and Sk tends to +∞ or −∞ almost linearly. The a.s. absolute convergence
of the series in (1.6) will follow from the arguments in Section 4.

An immediate consequence of Theorem 1 is

lim sup
N→∞

(2N log logN)−1/2

N∑
k=1

f(Skx) = A
1/2
x,f (1.8)

P-a.s. for every fixed x > 0. Thus by Fubini’s theorem, with P-probability 1 (i.e. for
almost all sequences (Sk)k≥1 generated by the random walk model), the sequence
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f(Skx) satisfies the LIL (1.8) for almost every x ∈ R with respect to the Lebesgue
measure. Note that, in contrast to the LIL (1.4) in the nonrandom case, the limsup
in (1.8) is a function of x. A similar argument yields an Chung type lower LIL for
f(Skx), namely

lim inf
N→∞

(
log logN

N

)1/2

max
1≤M≤N

∣∣∣∣∣
M∑
k=1

f(Skx)

∣∣∣∣∣ = π√
8
A

1/2
x,f a.s. (1.9)

for almost all x ∈ R and for almost all sequences (Sk)k≥1 generated by the random
walk model. The functional versions of these results can also be written out and
proved without any problem. For further asymptotic consequences of an approxi-
mation result of type (1.7) we refer to Strassen [22] and Philipp and Stout [17].

In view of (1.8) and (1.9), the properties of the function Ax,f are of considerable
interest and we will investigate them in Section 4.

Note that all of the previous consequences of Theorem 1 were almost sure
limit theorems and using Fubini’s theorem we cannot prove, e.g., that P-a.s. the
normed partial sums (Ax,fn)

−1/2
∑n

k=1 f(Skx) satisfy the central limit theorem over
([0, 1],B, λ). We now formulate a version of Theorem 1 implying a CLT and many
related weak limit theorems.

Theorem 2. Under the conditions of Theorem 1 the sequence (Xk)k≥1 can be rede-
fined, without changing its distribution, on a new probability space together with a
Wiener process W such that

n∑
k=1

f(Skξ) = A
1/2
ξ W (n) +O

(
n5/12+ε

)
a.s. (1.10)

for any ε > 0, where ξ is a random variable uniformly distributed over (0, 1), inde-
pendent of (Xk) and W .

In other words, we can get an approximation of
∑N

=1 f(nkx) with a single Wiener
process W when not only the sequence (nk)k≥1, but also the x is randomized. The-
orem 2 implies, for example, that

1√
n

n∑
k=1

f(Skξ)
d−→ N(0, Aξ) (1.11)

where the right hand side denotes the distribution of A1/2
ξ ζ, where ζ is an N(0, 1)

variable independent of ξ. Clearly, this distribution is mixed normal. However, this

is a central limit theorem on the square Ω× [0, 1], and whether n−1/2
n∑

k=1

f(Skx) has

a mixed Gaussian limit P-a.s. over ([0, 1],B, λ) remains open.
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As we see, the limsup resp. liminf in (1.8), (1.9) are functions of x, in contrast
to constant limsup and liminf in the case of sums of independent random variables.
Similarly, the limit distribution of normed partial sums in Theorem 2 is a mixed
normal distribution, in contrast to standard Gaussian limit in classical situations.
In the case of sums

∑N
k=1 sinnkx with nk = 2k − 1, this phenomenon was discovered

by Erdős and Fortet (see [13], p. 646); for more general series see Morgenthaler [15],
Weiss [27], Gaposhkin [10]. The deeper fact that the limsup in the law of the iterated
logarithm for the discrepancy of lacunary sequences {nkx} can also be nonconstant,
was proved by Aistleitner [2], [3] and Fukuyama [8], [9]. See also Berkes and Raseta
[5] for the exact value of the limsup in case of the discrepancy of {nkx} for random
nk.

2 Some lemmas

In the Introduction we discussed implications of our theorems for the partial sums∑N
k=1 f(Skx) as a sequence of random variables over different probability spaces.

For the rest of the paper, x > 0 will be fixed and we consider f(Skx) as a sequence
of random variables over (Ω,F ,P), and the symbols P, E will be meant with respect
to this probability space.

Lemma 1 below, which is a slight generalization of Lemma 2 of [18], establishes
the near independence of separated block sums of the variables f(Skx). The proof
of the present form requires only routine changes.

Lemma 1. Assume the conditions of Theorem 1, let ℓ1, ℓ2, . . . be positive integers
and let I1, I2, . . . be closed intervals with positive integer endpoints such that the left
endpoint of Ik exceeds the right endpoint of Ik−1 by at least ℓk. Then there exists a
sequence δ1, δ2, . . . of random variables satisfying the following properties:

(i) |δk| ≤ Ce−λℓk for all k ∈ N, where C and λ are positive constants.

(ii) The random variables∑
i∈I1

f(Si),
∑
i∈I2

f(Si − δ1), . . . ,
∑
i∈Ik

f(Si − δk−1), . . .

are independent.

Put m̃k =
k∑

j=1

⌊j1/2⌋, m̂k =
k∑

j=1

⌊j1/4⌋ and let mk = m̃k + m̂k. Using Lemma 1

we can construct sequences (∆k)k≥0, (Πk)k≥0 of random variables such that ∆0 = 0,
Π0 = 0,

|∆k| ≤ Ce−λk1/4 , |Πk| ≤ Ce−λ
√
k (k ≥ 1) (2.1)
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and

Tk :=

mk−1+⌊
√
k⌋∑

j=mk−1+1

(f(Sj −∆k−1)− Ef(Sj −∆k−1)) (k ≥ 1)

T ∗
k :=

mk∑
j=mk−1+⌊

√
k⌋+1

(f(Sj − Πk−1)− Ef(Sj − Πk−1)) (k ≥ 1)

are sequences of independent, mean zero random variables.

Lemma 2. We have
n∑

k=1

ET 2
k = A1m̃n +O(n)

n∑
k=1

E(T ∗
k )

2 = A1m̂n +O(n), (2.2)

where A1 = A1,f is defined by (1.6) with x = 1.

Lemma 2 implies A1 = A1,f ≥ 0 and similarly we have Ax,f ≥ 0 for all x > 0.
The series expansion (1.6) resembles the series expansion of the long range variance
of a stationary process. The weaker relations

n∑
k=1

ET 2
k ∼ A1m̃n

n∑
k=1

E(T ∗
k )

2 ∼ A1m̂n

were proved in [18], Lemma 2. The proof of the present form uses the same argument
with minor changes.

Lemma 3. We have

sup
0≤t≤1

|P(Sk ≤ t)− t| ≤ ρk−2EX2
1 (k ≥ 2) (2.3)

where Sk is meant mod 1 and ρ = supr∈Z\{0} |E(e2πirX1)|.

Since X1 has a nonlattice distribution, νr = |E(e2πirX1)| < 1 for any fixed integer
r ̸= 0 (see e.g. Feller [7], p. 501, Lemma 4). Also, limr→∞ νr = 0 by the Riemann-
Lebesgue lemma and thus ρ defined in Lemma 3 satisfies ρ < 1.

Proof of Lemma 3. With EX2
1 replaced by an unspecified constant C depending

on the distribution of X1, this lemma follows from statement (c) of Theorem 1 of
Schatte [19]. To get C = EX2

1 we note that letting pk denote the density of Sk and
f(r) = E(e2πirX1), we have by a formula in the proof of Theorem 1 in Schatte [19],
p. 277 and Parseval’s relation

|pn(x)− 1| ≤ |f(r)|n−2
∑
r

|f(r)|2 ≤ ρn−2EX2
1 .
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Relation (2.3) implies that there exists a random variable U∗ on (Ω,F ,P), uni-
formly distributed over (0, 1), such that |Sk − U∗| ≤ ρn−2EX2

1 and thus by the Lip-
schitz property of f we have |f(Sk)−f(U∗)| = O(ρk). Since Ef(U∗) =

∫ 1

0
f(x)dx = 0

by (1.1), we have proved
Ef(Sk) = O(ρk). (2.4)

The following lemma is a special case of Strassen’s strong approximation theorem
[23], Theorem 4.4.

Lemma 4. Let Y1, Y2, . . . be independent r.v.’s with mean 0 and finite fourth mo-
ments, let an =

∑n
i=1 EY 2

i and assume
∞∑
n=1

EY 4
n /a

2ϑ
n <∞

with 0 < ϑ < 1. Then the sequence Y1, Y2, . . . can be redefined on a new probability
space together with a Wiener process W such that

Y1 + · · ·+ Yn =W (an) + o
(
an

(1+ϑ)/4 log an
)

a.s.

3 Proof of the theorems

We begin with the proof of Theorem 1. In what follows, C1, C2, . . . denote positive
constants, depending (at most) on the distribution of X1. Since together with (Xk)

the sequence (Xkx) also satisfies the conditions of Theorem 1 for any x > 0, it
suffices to prove the theorem for x = 1. We will apply Lemma 4 for the sequences
(Tk)k≥1 and (Tk

∗)k≥1 defined before. Clearly, (Tk)k≥1 is a sequence of independent,
mean zero random variables and |Tk| ≤M

√
k, where M = supx∈R |f(x)|. In [6], pp.

59–60 it is shown that for arbitrary real coefficients (ck) we have

E

(
N∑
k=1

ckξk

)4

≤ C1

(
N∑
k=1

ck
2

)2

(3.1)

where ξk = f(Sk) − Ef(Sk). By the Lipschitz property of f and (2.1), replacing
Sj − ∆k−1 by Sj in the definition of Tk results in an error of O(

√
k exp(−C2k

1/4))

and thus using (3.1) we get
ETk4 ≤ C3k.

Thus by mk ∼ m̃k ∼ 2
3
k3/2 we have∑

k∈N

ETk4

m̃
4/3+2ε
k

<∞
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for all ε > 0 and thus using Lemma 2 and Lemma 4 with ϑ = 2/3+ ε, |m̃n −mn| =
O(n5/4) and standard fluctuation properties of the Wiener process it follows that
after redefining the sequence (Xk)k≥1 on a suitable new probability space we have

n∑
k=1

Tk =W (A1m̃n +O(n)) +O

(
m̃
(1+ 2

3
+ε)/4

n log m̃n

)
=W (A1mn) +O(n5/8 log n) +O

(
m
(1+ 2

3
+ε)/4

n logmn

)
(3.2)

=W (A1mn) +O

(
m
(1+ 2

3
+ε)/4

n logmn

)
a.s.

for some Wiener process W . Define a sequence (p(n))n≥1 of integers by

mp(n) ≤ n < mp(n)+1.

Clearly, p(n) ∼ C4n
2/3 and, as we have shown above,

p(n)∑
k=1

Tk =W
(
A1mp(n)

)
+O

(
mp(n)

(1+ 2
3
+ε)/4 logmp(n)

)
a.s.

and similarly

p(n)∑
k=1

Tk
∗ = W ′ (A1m̂p(n)

)
+O

(
m̂
(1+ 3

5
+δ)/4

p(n) log m̂p(n)

)
a.s. (3.3)

for some other Brownian motion W ′. Now

n∑
k=1

f(Sk) =

p(n)∑
k=1

Tk +

p(n)∑
k=1

Tk
∗ +

p(n)∑
k=1

mk−1+⌊
√
k⌋∑

j=mk−1+1

(f(Sj)− f(Sj −∆k−1) + Ef(Sj −∆k−1))

+

p(n)∑
k=1

mk∑
j=mk−1+⌊

√
k⌋+1

(f(Sj)− f(Sj − Πk−1) + Ef(Sj − Πk−1))

+
n∑

k=mp(n)+1

f(Sk).

Thus∣∣∣∣∣
n∑

k=1

f(Sk)−W (A1n)

∣∣∣∣∣ ≤
∣∣∣∣∣∣
p(n)∑
k=1

Tk −W
(
A1mp(n)

)∣∣∣∣∣∣+ ∣∣W (
A1mp(n)

)
−W (A1n)

∣∣
+

∣∣∣∣∣∣
p(n)∑
k=1

Tk
∗ −W ′ (A1m̂p(n)

)∣∣∣∣∣∣+ ∣∣W ′ (A1m̂p(n)

)∣∣
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+

∣∣∣∣∣∣
p(n)∑
k=1

mk−1+⌊
√
k⌋∑

j=mk−1+1

(f(Sj)− f(Sj −∆k−1) + Ef(Sj −∆k−1))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
p(n)∑
k=1

mk∑
j=mk−1+⌊

√
k⌋+1

(f(Sj)−f(Sj−Πk−1) + Ef(Sj−Πk−1))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∑

k=mp(n)+1

f(Sk)

∣∣∣∣∣∣ .
We estimate each term separately. Since mp(n) ∼ n, we have by (3.2)∣∣∣∣∣∣

p(n)∑
k=1

Tk −W (A1mp(n))

∣∣∣∣∣∣ = o
(
mp(n)

(1+2/3+ε)/4 logmp(n)

)
= o

(
n5/12+ε

)
.

Further W (A1mp(n))−W (A1n) has distribution N(0, A1(n−mp(n))) and here

n−mp(n) ≤ ⌊(p(n) + 1)1/2⌋+ ⌊(p(n) + 1)1/4⌋ = O(n1/3). (3.4)

Thus

P
(∣∣W (A1mp(n))−W (A1n)

∣∣ ≥ n7/24
)
≤ 1− Φ(C5n

1/4) = O(n−2)

and hence the Borel-Cantelli lemma implies∣∣W (A1mp(n))−W (A1n)
∣∣ = O(n7/24) a.s.

Also m̂n ∼ C6n
5/4, hence m̂p(n) ∼ C7n

5/6 and thus (3.3) yields∣∣∣∣∣∣
p(n)∑
k=1

Tk
∗ −W ′(A1m̂p(n))

∣∣∣∣∣∣ = O(n5/12) a.s.

Using the distribution of W ′(A1m̂p(n)) and m̂p(n) ∼ C7n
5/6, the Borel-Cantelli lemma

yields
|W ′(A1m̂p(n))| = O(n5/12+ε) a.s.

In view of (2.1), (2.4) and the Lipschitz property of f we have∣∣∣∣∣∣
p(n)∑
k=1

mk−1+⌊
√
k⌋∑

j=mk−1+1

(f(Sj)− f(Sj −∆k−1) + Ef(Sj −∆k−1))

∣∣∣∣∣∣
≤

p(n)∑
k=1

mk−1+⌊
√
k⌋∑

j=mk−1+1

C8e
−C9(k−1)1/4 ≤ C8

p(n)∑
k=1

√
ke−C9(k−1)1/4 = O(1).
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Similarly∣∣∣∣∣∣
p(n)∑
k=1

mk∑
j=mk−1+⌊

√
k⌋+1

(f(Sj)− f(Sj − Πk−1) + Ef(Sj − Πk−1)

∣∣∣∣∣∣ = O(1) a.s.

Finally, by (3.4) ∣∣∣∣∣∣
n∑

k=mp(n)+1

f(Sk)

∣∣∣∣∣∣ ≤ C10(n−mp(n)) = O(n1/3).

Summarizing the above estimates, we obtain our result.

Proof of Theorem 2. By the theorem of Ionescu Tulcea (see e.g. [16], p. 154), on
a suitable probability space one can define jointly a sequence {X∗

k , k ≥ 1} of r.v.’s,
a Wiener process W ∗ and a r.v. ξ uniformly distributed over (0, 1) such that the
conditional distribution of the vector ({X∗

k , k ≥ 1},W ∗) ∈ R∞×C(0,∞) given ξ = x

equals the distribution of the vector ({Xk, k ≥ 1},W (x)) in Theorem 1. In particular,
the conditional distribution of {X∗

k , k ≥ 1} given ξ = x equals the distribution of
{X∗

k , k ≥ 1} which does not depend on x and thus ξ is independent of {X∗
k , k ≥ 1}.

For the same reason, ξ is independent of W ∗. Further, by the construction and
relation (1.7) of Theorem 1, we have the analogue of (1.10) where Sk is replaced by
the partial sums S∗

k =
∑k

j=1X
∗
j and W (n) is replaced by W ∗(n). This completes

the proof of Theorem 2.

4 Properties of Ax,f

In view of (1.8), (1.9), the function Ax,f in (1.6) plays an important role in the
asymptotic study of

∑N
k=1 f(nkx). In this section we study the properties of Ax,f .

First we give an explicit formula for Ax,f in the case f(x) = sin 2πx. Let X∗
1 =

X1 − µ, where µ = EX1. Since EX∗
1 = 0 and since all moments of X∗

1 exist by
the boundedness of X1, the Taylor expansion of the characteristic function φ of X∗

1

around 0 is

φ(t) = 1 +
∞∑
k=2

(it)k

k!
E(X∗

1 )
k,

where the even order terms give the real part and the odd order terms give the
imaginary part. Grouping the even and odd terms, we get

φ(2πx) = 1 +B(x)x2 + iC(x)x3, (4.1)

where B(x) = b0 + b2x
2 + . . . and C(x) = c0 + c2x

2 + . . ., here b0 = −2π2σ2, where
σ2 is the variance of X1 and c0 = −4π2

3
E(X1 − µ)3.
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Lemma 5. We have
Ax,f = −1

2
+
K

L
,

where
K = 1− (1 +B(x)x2) cos 2πµx+ C(x)x3 sin 2πµx

and

L =
[
1− (1 +B(x)x2) cos 2πµx+ C(x)x3 sin 2πµx

]2
+
[
(1 +B(x)x2) sin 2πµx+ C(x)x3 cos 2πµx

]2
.

As a consequence, Ax,f is infinitely many times differentiable for x > 0 and

lim
x→0

Ax,f =

{
σ2

2µ2 if µ ̸= 0,

+∞ if µ = 0.
(4.2)

Proof. Let Zk = Sk/
√
k, Z∗

k = (Sk−ESk)/
√
k = Zk−µ

√
k. Then for f(x) = sin 2πx

we get, using the independence of U and Sk,

Ef(U)f(U + Skx)

= E sin(2πU) sin(2π(U + Skx))

= E sin2(2πU) cos(2πSkx) + E sin(2πU) cos(2πU) sin(2πSkx)

= E sin2(2πU)E cos(2πSkx) + E sin(2πU) cos(2πU)E sin(2πSkx)

=
1

2
E cos(2πSkx) =

1

2
Re
{
Ee2πiSkx

}
=

1

2
Re
{
Ee2πi(Sk−µk)x · e2πiµkx

}
=

1

2
Re
{
φk(2πx)e2πiµkx

}
.

In the Re{. . .} in the last line we have a geometric progression with quotient q =

φ(2πx)e2πiµx. Since X∗
1 has a density, |q| = |φ(2πx)| < 1 for all x > 0 and thus∑∞

k=0 q
k is finite and we get

∞∑
k=0

Ef(U)f(U + Skx) =
1

2
Re
{

1

1− φ(2πx)e2πiµx

}
. (4.3)

Since the term for k = 0 of the sum in (4.3) is equal to Ef 2(U) = 1/2, we have

Ax,f = 1/2 + 2
∞∑
k=1

Ef(U)f(U + Skx) = −1/2 + 2
∞∑
k=0

Ef(U)f(U + Skx)

= −1

2
+ Re

{
1

1− φ(2πx)e2πiµx

}
.

(4.4)
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Substituting (4.1) and e2πiµx = cos 2πµx + i sin 2πµx into (4.4) we get, after some
algebra, that the Re{. . .} in the second line of (4.4) equals K/L, where K and L

are defined above. Clearly, for µ ̸= 0 the Taylor series of K and L start with the
term (2π2µ2− b0)x

2, resp. 4π2µ2x2, and thus the limit of Re{· · · } in the second line
of (4.4) as x→ 0 is

2π2µ2 − b0
4π2µ2

=
1

2
+

σ2

2µ2
.

Thus, in view of (4.4) we get the first line of (4.2). For µ = 0 the expansion of
L starts with a term later than x2 and we get the second line of (4.2). Since X1

has a density, |φ(2πx)| < 1 for x > 0 and the boundedness of X1 implies that all
moments of X1 are finite. Thus the characteristic function φ is infinitely many times
differentiable, and consequently the right hand side of (4.3) and thus also Ax,f are
infinitely many times differentiable on (0,+∞).

Finally, we study the properties of Ax,f for general smooth f .

Lemma 6. Assume that X1 has a bounded density with a bounded derivative. Then
the function Ax,f is a continuous function of x for all x > 0 and limx→∞Ax,f = ∥f∥2.

Proof. Applying Lemma 3 for the random variable X̂1 = X1x it follows that

sup
0≤t≤1

|P(Skx ≤ t)− t| ≤ µ2x
2ρk−2

x where (4.5)

where again, Skx is meant mod 1 and

ρx = sup
r∈Z\{0}

|ψ(rx)|, ψ(s) = E(e2πisX1), µ2 = EX2
1 . (4.6)

Using the assumptions on the density p of X1 and integration by parts, we see that

|ψ(s)| =
∣∣∣∣∫ 1

0

e2πisxp(x)dx

∣∣∣∣ ≤ C11s
−1 (s > 0), (4.7)

and thus the right hand side of (4.5) cannot exceed

µ2x
2(C11/x)

k−2 = µ2C
2
11(C11/x)

k−4 (k ≥ 4). (4.8)

Fix now 0 < A < C11. Clearly ψ(s) is continuous for all s and as we noted earlier,
|ψ(s)| < 1 for any s ̸= 0 and lims→∞ |ψ(s)| = 0. Thus for x > A we have |ψ(x)| ≤
1 − δA, where δA is a positive number depending on A. Now if x ≥ 2C11, the
expression in (4.8) decreases exponentially in k, uniformly in x. On the other hand,
if A < x < 2C11, then ρx ≤ 1− δA and thus the right hand side of (4.5) is bounded
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by µ2(2C11)
2(1− δA)

k−2 and again we have exponential decay in k, uniformly in x.
Thus (4.5), together with the Lipschitz property of f , implies that

|Ef(u+ Skx)− Ef(u+ V )| ≤ C12(ρ
′)k

for any 0 ≤ u ≤ 1 and x ≥ A where C12 and ρ′ < 1 are positive constants also
depending on A and the distribution of X1. Multiplying the last inequality with
f(u) and integrating with respect to u we get

|Ef(U)f(U + Skx)− Ef(U)f(U + V )| ≤ C13(ρ
′)k

for x ≥ A where U is a uniform (0, 1) random variable independent of V and Sk.
Since

Ef(U)f(U + V ) =

∫ 1

0

∫ 1

0

f(u)f(u+ v)dudv = 0

by (1.1), we proved that uniformly for x ≥ A, the terms of the sum in (1.6) decrease
exponentially and thus the sum converges uniformly over [A,∞). But by the Lips-
chitz property of f all terms of the sum in (1.6) are continuous functions of x, the
sum of the series and thus Ax,f also are continuous over [A,∞) and since A > 0 was
arbitrary, Ax,f is continuous over (0,∞), as stated.

Next we prove that for any fixed k ≥ 1 we have

lim
x→∞

Ef(U)f(U + Skx) = 0, (4.9)

i.e. every term of the sum in (1.6) tends to 0 as x → ∞. Since the series converges
uniformly over [A,∞) for any A > 0, this implies that its sum also converges to 0
as x → ∞, i.e. limx→∞Ax,f = ∥f∥2. As before, (4.9) will follow if we show that
Ef(u+ Skx) → 0 as x→ ∞ for any fixed k ≥ 1 and any u ∈ (0, 1). Since, together
with the function f(x), the function f(x+ u) also satisfies (1.1), it remains to show
that for any fixed k ≥ 1 we have Ef(Skx) → 0, or equivalently∫ 1

0

f(ux)gk(u)du −→ 0 as x→ ∞, (4.10)

where gk is the density of Sk. To this end we first note that if h(u) is the indicator
function of a subinterval (a, b) of (0, 1), then∫ 1

0

f(ux)h(u)du −→ 0 as x→ ∞. (4.11)

This is clear, since
∫ b

a
f(ux)du = x−1

∫ bx

ax
f(v)dv and because of (1.1) the last integral

is bounded by 2
∫ 1

0
|f(v)|dv. It follows then that (4.11) holds for any stepfunction in

(0, 1) and thus by a simple approximation argument, for any bounded measurable
function in (0, 1). This proves (4.10) and thus (4.9) is established, completing the
proof of Lemma 6.
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