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Abstract

We prove that if I are disjoint blocks of positive integers and n; are inde-
pendent random variables with uniform distribution on I, then

N
N2 Z(sin 2mngx — E(sin 2nyx))
k=1

has, with probability 1, a mixed Gaussian limit distribution relative to the
interval (0,1) equipped with Lebesgue measure. We also investigate the case
when n; have continuous uniform distribution on disjoint intervals I on the
positive axis.

1 Introduction

Salem and Zygmund [7] proved that if (ny) is a sequence of positive integers satisfying
the Hadamard gap condition

Ngr1/Mp > q > 1 (k=1,2,...) (1.1)
then the sequence sin 2mnix, £ > 1 obeys the central limit theorem, i.e.

N
N7Y2N " sin 2mnge — N(0,1/2) (1.2)
k=1

with respect the the probability space (0,1) equipped with Borel sets and Lebesgue
measure. Here the exponential growth condition (1.1) can be weakened, but as Erdés
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3] showed, there exists a sequence (ny,) growing faster than e¥* such that the CLT
(1.2) fails. On the other hand, using random constructions one can find slowly growing
sequences (ng) satisfying (1.2). Salem and Zygmund [8] proved that if &, &, ... are
independent random variables on some probability space (€2, F,P) taking the values 0
and 1 with probability 1/2—1/2 and (ny) denotes the set of indices j such that &; =1,
then with P-probability 1, the CLT (1.2) holds. For this sequence (ny) we have ny ~ 2k
and by the theorem of "pure heads" we have ny1 —ng = O(log k). Berkes [1] showed
that if N = U2l where Iy, Iy, ... are disjoint intervals of positive integers such
that |Ix| — oo, and ny,ne,... are independent random variables on some probability
space (2, F,P) such that ny is uniformly distributed on I, then with P-probability 1,
sin 2ngx satisfies the CLT (1.2). Thus, given any positive sequence wy — 00, there
exists an increasing sequence (ny) of positive integers such that ng,1 — ng = O(wy)
and sin 27ngx satisfies (1.2). In [1] the question was raised if the CLT (1.2) can hold
for any sequence (ny) with ngi; — np = O(1). Bobkov and Gotze [2] showed that
the answer to this question is negative, and in particular, if in the construction in |[1]
we choose || = d for k = 1,2,..., then with probability 1, the limit distribution of
N=Y25N  sin27ng is mixed normal. On the other hand, Fukuyama [4] showed,
using another type of random construction, that for any 0 < 02 < 1/2 there exists
a sequence (ny) of integers with bounded gaps nyi1 — ny such that (1.2) holds with
a limiting normal distribution with variance o2. The purpose of the present paper is
to return to the random models in [1], [2] and investigate the case of constant block
sizes || = d, allowing arbitrary gaps between the blocks. We will prove the following

result.
Theorem 1. Let Iy, I, ... be disjoint blocks of consecutive positive integers with size d
and let ny,na, ... be a sequence of independent random variables on a probability space

(Q, A, P) such that ny is uniformly distributed over Ij.. Let A\y(x) = E(sin2mngx).
Then P-almost surely

Z(sin 2mngr — Ag(x)) N N(0,g) (1.3)

k=1

Sl

over the probability space ((0,1),B, ), where B is the Borel o-algebra in (0,1), X\ is

the Lebesgue measure,
sin? drx

9(z) = 3 (1 - m) (1.4)

and N(0,g) denotes the distribution with characteristic function fol e~ 9@ 2 g

Here g > 0 and N(0, g) is the distribution of ,/g(, where ( is a standard normal
random variable on (0, 1), independent of g. Clearly, N (0, g) is a variance mixture of
zero mean Gaussian distributions.

Note that S_0, Ai(z) = E(3 p, sin 27n,,x) is the averaged version of 35, sin 2mn,
a nonrandom trigonometric sum and Theorem 1 states that the fluctuations of the



random trigonometric sum fo:l sin 2mngx around its nonrandom average part always
have a mixed normal limit distribution. If U2, |Ix| = N, i.e. there are no gaps between
the blocks Iy, then Y, Ay(z) = O(1) for any fixed = and thus (1.3) holds without
the Ak (z), yielding the result of Bobkov and Gétze [2]. Letting Ay denote the number
of integers between [, and I, (the "gaps"), we will see that the CLT (1.3) also holds
with A\x(z) = 0 if A is nondecreasing and A, = O(k") for some v < 1/4. If Ay grows
at least exponentially, then so does the sequence (Ay), where A; denotes the smallest
integer of I. Now

M) = ST o (A 4 dJ2 — 1/2)a (1.5)

dsin Tz

and from the CLT of Salem and Zygmund [7] it follows that the limit distribution of
N=V25N N\i(x) is N(0,g*), where
. sin? drx
g (x)
By Theorem 1, the limit distribution of N~1/2 Z,]f:l(sin 2 — Ap(z)) is N(0, g)

with ¢ in (1.4) and the convolution of these two mixed Gaussian laws is N(0,1/2),
which is exactly the limit distribution of N="/23N sin2zwngz by the theorem of

(1.6)

2d2 sin® wx

Salem and Zygmund, since (ny) grows exponentially. Thus the pure Gaussian limit
distribution of N~!/2 Z]kvz1 sin 2mngx is obtained as the combination of two mixed
Gaussian distributions N(0, g) with ¢ in (1.4) and N(0, g*) with ¢* in (1.6).

It is worth noting that for any fixed x € (0, 1), sin 2mngz — A\x(z) are independent,
uniformly bounded mean zero random variables on (€2, .4, P) and

E(sin 2mnx — A\p(2))? = E(sin? 27mn,x) — A3 (z)
1 1 ’
= Z sin 2mjx — (3 Z sin 27zj> = g(z)
JEIk JE€lk

by elementary calculations. Thus by the law of the iterated logarithm we have for
any fixed z € (0,1) with P-probability 1

) 1
lim sup

Nooo V2N loglog N

By Fubini’s theorem, with P-probability 1 relation (1.7) holds for almost every z €

Z(sin 2 — A\ () = Vg(x). (1.7)

N
k=1
(0,1) with respect to Lebesgue measure, yielding the LIL corresponding to (1.3). Ac-
tually, the previous argument also shows that for any fixed x € (0,1) we have (1.3)
over the probability space (2, A, P), with N (0, g) replaced by N(0, g(z)). However,
Fubini’s theorem does not work for distributional results and thus we cannot inter-
change the role of x € (0,1) and w € 2 and we will need an elaborate argument in
Section 2 to prove Theorem 1.

Formula (1.4) shows that for any 0 < x < 1 we have lim, ., g(x) = 1/2 and thus
for large d the sequence sin 2wnx — A\, (x) nearly satisfies the ordinary CLT and LIL

3



with limit distribution N(0,1/2) and limsup = 1/2, just as lacunary trigonometric
series with exponential gaps. Formally, this is not surprising since for large d the
expected gaps E(ngy1 — ng) in our sequence are large. As the pictures of g for d = 3
and d = 10 below show, however, the near CLT and LIL actually hold for relatively
small values of d such as d = 10. Thus the reason of the near CLT and LIL is not
solely large gaps in the the sequence (ny) but the random fluctuations of the sequence
(ng) as well.

The analogue of Theorem 1 is valid also in the case when n, ns, . . . have continuous
uniform distribution over the intervals I1, I, .... To formulate the result, define the
probability measure p on the Borel sets of R by

: 2
pu(A) = l/ (smx) dx, ACR.
7r T
A

Theorem 2. Let ny,ng,... be a sequence of independent random variables on a
probability space (Q, A,P) such that ny has continuous uniform distribution on the
interval [Ay, Ax + B], where A1 — Ay > B+2, k=1,2,.... Let \p(x) = E(sinngx).
Then P-almost surely

\/L_ Z sinngr — A\p(7)) A F (1.8)

with respect to the probability space (R, B, 1), where the characteristic function of F

o= [ (2 (1 4B gy 19

2 Proofs

We will give the proof of Theorem 2, where the calculations are slightly simpler. Let
() = sinngr — E(sinngx)
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and
1 N
UF &

By A1 — A > B+ 2 and the fact that

+oo . 9
/cosax (smx) de =0 for |a|>2 (2.10)
x

—00

(see e.g. Hartman [5]) it follows that for every fixed w € € the functions ¢y are
orthogonal over L?(R) and thus elementary algebra shows that the L?(R) norm of
| Ty — Tiys| is at most C'/v/N for N> < M < (N + 1)® with an absolute constant C.
Hence to prove (1.8) it suffices to show that Tys Ly F P-as.

A simple calculation shows that

1 Ap+B 1
Ai(z) = E(sinngz) = — / sintzdt = —(cos Apx — cos(Ag + B)x)
B J4, Bz
2sin(Bx/2
_ 2si(Br/2) oA+ B2 e (2.11)
x
and 1 [AtB sin Bx
E(cos2niz) = 3 /Ak cos 2txdt = B cos(2Ay, + B)x.
Thus
1
Ep; (1) = E(sin® npw) — M\i(z) = 5(1 — E(cos 2n,1)) — A ()
1  sin Bz 4sin®(Bx/2)
=—— 2A; 4+ B)r — ———""2 sin?*(A;, + B/2
5~ 3Ba cos(2A;, + B)x Bz St (Ar + B/2)x

(1 2sin*(Bz/2) n 2sin*(Bx/2)  sin Bx
2 B2y? B2? 2Bz

—) cos(2Ay + B)x.

From (2.10), Ay — Ax > B + 2 and elementary trigonometric identities it follows
that the functions cos(24;, + B)x are orthogonal in L7 (R) and thus the Rademacher-
Menshov convergence theorem implies that > .-, k™' cos(2A, + B)x converges j-
almost everywhere. Consequently, the Kronecker lemma implies

N
) 1
lim N Z cos(2Ay + B)x =0 iw— a.e.

N—oo
k=1
and thus

N .
.1 5 1 4sin*(Bx/2)
Jim 2Bkl = 3 (1 T g ) kTR
Since for fixed = pi(z) — Epi(x), k = 1,2,... are independent, uniformly bounded,
zero mean random variables, the strong law of large numbers yields
X
lim — > (p}(x) —Epi(z)) =0 P-—as.

N—ooo [V
k=1



and thus we conclude that for p-a.e.  we have P-almost surely

4sin®*(Bx/2)
J&E%ONZ% ( B—> - (212)

By Fubini’s theorem, P-almost surely the last relation holds for p-almost all z € R.
Fix A € R. Using |pg(x)| < 2 and

exp(z) = (1 + 2) exp (%2 + 0(22)> z—0

we get

o ()~ (25042

as N — oo, uniformly in = and the implicit variable w € 2. Thus the characteristic

function

¢TN(A)=/_ eXP( Z%) /_exp< Zw%) o

of Ty with respect to the probability space (R, B, i) can be written as

G1y (A / H <1 + —SOk ))

For simplicity let

g(x) =

1 (1 B 4sin2(B:C/2)) |

2 B2y?
Using 1 + z < e* and |gg(x)| < 2 we get

ﬁ (1 * \j_)\ﬁﬁ(l’))‘ = ﬁ (1 N %2%2(@)1/2

k=1 k=1
)\2 N 2 2)\2
< — < .
< exp oN ,;1 or-(z) ] <e (2.13)

and thus the dominated convergence theorem and (2.12) imply P-almost surely

+OON

1y (A / H (1 + —gok )) exp (=A\2(x)/2) % (Sizaj)zdm +o(1).




Since the characteristic function ¢(A) of F' in (1.8) is given by (1.9), to prove that
Tns Ny P-a.s., it remains to show that letting

Ty = yw[ﬂ (1 + \j—%@k(x)> - 1] exp (—A\2g(x)/2) % (81233)2(195,

k=1
we have
Tys —2 0,
Clearly
By < | / [H (1+ ) - 1] [ (1- o) - 1]
x exp (—Ag(x)/2) exp (—Ng(y)/2) du(x)du(y). (2.14)

Now using the independence of the ¢y and Epy(z) = Epi(y) = 0 we get

_E IN[ (1+ T (1- j—%mw)] ~1

=5|[1(1+ e~ Jra + G wy))] -1
= H I+ /\W‘I’k(xvy)) 1,

where Wy (z,y) = Epi(z)pr(y). Thus interchanging the expectation with the double
integral in (2.14) we get

+00 +oor N

E[ly|? = / / 1T (1 + %Z\I/k(x,y)> - 1] X

o k=1

x exp (=Ng(x)/2 = Ng(y)/2) du(w)dp(y)

“+00 +00 N

g// H(l—l—%z\lfk(a:,y))—l

oo —oo k=1

dp(x)dp(y).

Using |¥(z,y)| < 4 and |log(1 + x) — x| < Cz? for all |z| < 1 and some constant
C > 0, one deduces for all sufficiently large N,

N N
\2 A2 160\
g [T (1+ 30t ) = 30 Jato) < 2225




Thus letting

we get, using Gy (z,y) < 4\?, that

I (1 n )‘_2\11k(x,y)) = exp {Gn(z,y) + ON'/N)} = 1+ O(|Gn(z,y)|) + O(1/N).

k=1 N
Thus
+00 +00
EvP <G |+ [ [ Gxlew)lduta)duty) .15

for some constant C;. In view of Ap; — A > B+ 2 and (2.10), for any A\; €
[Ag, Ak + B], A2 € [A, A; + BJ, k # [, sin \jz and sin Az are orthogonal in Li(R),
which implies that ¢ and ¢, are also orthogonal in LZ(R). Since Wy (z,y)¥(z,y) =
Eor(x)oi(x)er(y)ei(y), it follows that

+00 +00

/ / (o, y) Wi, y)dpu(@)dp(y) =0 for k £

—00 —00

and thus by the Cauchy-Schwarz inequality the last integral in (2.15) is O(N~/2).
Hence E|T'y|> = O(N7Y2) and thus 3. E|Tys|? < oo, implying > |[[ys|?> < oo and
NeN NeN

[I'ys — 0 P-a.s., completing the proof of (1.8).
In conclusion we prove the claim made after Theorem 1, namely that if the size of
the gaps Ay between the blocks I is nondecreasing and satisfies

A, =O0K), v<1/4 (2.16)

then
N
N~Y2 Z () — 0 a.s.
k=1

and thus (1.3) holds with Ay(x) = 0. Since we proved our main limit theorem in the
continuous case of Theorem 2, we prove our claim also in the context of Theorem 2
in which case we also assume that the intervals [Ay, Ay + B| have integer endpoints.
In view of (2.11) it suffices to show that

N
N~2 Z R a.s. (2.17)
k=1

and here nothing changes if we replace x by 27z. In the case of constant Ay we have
Ay, = Dk + D* for some constants D > 0 and D* and (2.17) is obvious by an explicit



computation of the sum. Thus we can assume Ay 1 0o, and then also A1 — Ag T oc0.
Recalling that the A are integers, let us break the sum fozl e? 4k into subsums

Zny = > A T T (2.18)

kSN, Ak+1—Ak:T
Clearly Zy, consists of M, consecutive terms of 25:1 e2m 4k for some M, > 0 and
thus in the case M, > 1 we have for some integer P, > 0,

My—1

§ : eQm'(PT—l—jr):v

J=0

i 1 C

Z e27TijT:l? < <

Z = A
| Nﬂ“‘ = — |627rz7"ac _ 1| — <TCC'>7

except when rz is an integer, where C' is an absolute constant and (t) denotes the
distance of ¢t from the nearest integer. From a well known result in Diophantine
approximation theory (see e.g. Kuipers and Niederreiter |6, Definition 3.3. on p. 121
and Exercise 3.5 on page 130), for every ¢ > 0 and almost all  in the sense of Lebesgue
measure we have (nz) > cn~ (1) for some constant ¢ = ¢(z) > 0 and all n > 1. This
shows that Zy, = O(r'*¢) a.e. and since by (2.16) the largest  actually occurring in
breaking S5, €™ into a sum of Zy,’s is at most C; N7, we have

N
E 6271'1'Akx
k=1

by 7 < 1/4, upon choosing ¢ small enough.

<Cy Y r'=0o(VN) ae

TSClN'Y
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