GCD SUMS FROM POISSON INTEGRALS
AND SYSTEMS OF DILATED FUNCTIONS
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ABSTRACT. Upper bounds for GCD sums of the form

i (ged(ng, ng))>

iy (wme)®

are established, where (ny)1<k<n is any sequence of distinct positive integers and 0 < a <
1; the estimate for a = 1/2 solves in particular a problem of Dyer and Harman from 1986,
and the estimates are optimal except possibly for & = 1/2. The method of proof is based on
identifying the sum as a certain Poisson integral on a polydisc; as a byproduct, estimates
for the largest eigenvalues of the associated GCD matrices are also found. The bounds
for such GCD sums are used to establish a Carleson-Hunt-type inequality for systems of
dilated functions of bounded variation or belonging to Lip; /2, a result that in turn settles
two longstanding problems on the a.e. behavior of systems of dilated functions: the a.e.
growth of sums of the form chvzl f(niz) and the a.e. convergence of >~ ; ¢ f(ngx) when
[ is 1-periodic and of bounded variation or in Lip; /5.

1. INTRODUCTION

This paper studies two closely related topics: Greatest common divisor (GCD) sums of
the form

(1) Z (ng(nk?nﬂ))za

(ngne)®

k,0=1

for 0 < o < 1 and convergence properties of systems of dilated functions f(ngx) on the
unit interval [0,1]. Here (ng)g>1 is a sequence of distinct positive integers and f is a 1-
periodic real-valued function of bounded variation or belonging to the class Lip;/,. We
will introduce a new method for estimating sums of the form (1) and in particular solve a
problem posed by Dyer and Harman in [14]. In addition, using estimates for (1), we will
establish a version of the Carleson-Hunt inequality that settles two longstanding problems
regarding the a.e. behavior of systems of dilated functions.
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The study of GCD sums like (1) was initiated by Koksma who in the 1930s observed
that such sums can be used to estimate integrals of the form

N

(2) /0 (Z (1[a,b)({nk$})—(b—a))) dz,

k=1

where the notation {-} stands for fractional part. Integrals like (2) give in turn important
information about the distribution of the sequence ({nxx})i>1 for almost all x € (0,1). In
the case a = 1, G4l [18] proved that!

3) 1o~ (el ma)® o105 72,

N nEN
k(=1 ki

and he showed that this bound is optimal up to the value of the absolute constant c¢. In
1986, Dyer and Harman [14] proved that

N
1 d log N
) 1 ged(ng, ny) < C’exp( clog )
N}H R loglog N

for two absolute constants C' and ¢, and they used this estimate to prove results in metric
Diophantine approximation; Dyer and Harman found also that

N ))2e

— < c(a)exp ((log N (4-40)/(3-20)

v 2 e < e (05 ) )
for 1/2 < a < 1. In his monograph [22], Harman writes that “it is tempting to conjecture”
that the right-hand side of (4) can be replaced by a constant times exp (c\/ log N /log log N)
One of our examples given below will disprove this conjecture and show that here we can not
have a function smaller than exp(2 \/ (log N)/loglog N ) However, the following theorem,
which is our main result on GCD sums, will “almost” confirm Harman’s conjecture and
yield optimal upper bounds for (1) when 1/2 < o < 1.

Theorem 1. For every € > 0, there exists a positive constant C. such that the following
holds. For 0 < a < 1 and an arbitrary N-tuple of distinct positive integers ny,na, ..., Ny,
we have

1 >0 B < 6 (14 g, ).

o ()
where
gla, N) = (% + ?%) (log N)'=(loglog N)™@ + 2-(log N)=/2 1/2 < a < 1
50a(log N loglog N)'/? + (1 — 2a) log N, 0<a<1/2

'Here and in what follows we may assume that N > 3 so that loglog IV is well defined and positive.
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Theorem 1 is in fact a corollary to a more general result which can be given a function
theoretic interpretation on the infinite-dimensional polydisc D*°. The observation under-
lying this general theorem is that the GCD sum (1) can be written as a certain Poisson
integral evaluated at the point (pj_“) in D*°, where p; denotes the j-th prime number. Such
integrals can be computed for arbitrary points in D>, and our theorem is roughly speaking
stated in this generality. The proof requires a surprising blend of an intricate combinatorial
argument found in Gél’s work [18] and the explicit expression for the Poisson kernel on
polydiscs. Thus number theory plays a minor role in establishing Theorem 1 and enters
the discussion only at the final point, where we need information about the decay of the
sequence (p;“).

We will show by an example that Theorem 1 is best possible (up to a constant factor
in the exponent) when 1/2 < a < 1. We will also see that the blow-up of the constant in
front of the leading term in g(«, N) is of the right magnitude when o 1. We conjecture
that the blow-up of the same constant when a \, 1/2 is an artifact and that the estimate
in the range 1/2 < a < 1 should indeed extend to o = 1/2, which would then be optimal
too. On the other hand, as we will see, the estimates change abruptly when we pass from
a = 1/2to a < 1/2, as a consequence of the divergence of the series Y p;**; the slow
divergence when o = 1/2 is the reason why this is a particularly delicate case. The range
0 < a < 1/2, included here for the sake of completeness, is less subtle, and it is easy to
give an example showing that the estimate of Theorem 1 is essentially best possible.

The proof of Theorem 1 and the examples showing that our results are essentially optimal
will be presented in Section 3 below. An immediate consequence of our reformulation in
terms of Poisson integrals is that the corresponding matrices are positive definite. In the
subsequent Section 4, we will see that in turn Theorem 1 implies precise estimates for the
largest eigenvalues of these matrices, or, equivalently, for their spectral norms.

2. APPLICATIONS TO SYSTEMS OF DILATED FUNCTIONS

Our main application of Theorem 1, to be found in Section 5 below, will be to establish
a Carleson-Hunt-type inequality for systems of dilated functions of bounded variation
or belonging to Lip;/;. By standard arguments, this inequality will yield asymptotically
precise results for the growth of

() > flg)

N
k=1

and for the almost everywhere convergence of

(6) Z crf(ng)

for functions f of bounded variation or belonging to Lip;/, that satisfy

(7) [ +1) = f(2), / f(x)dx = 0.
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Such dilated sums arise in many problems in analytic number theory, Diophantine approx-
imation, uniform distribution theory, harmonic analysis, ergodic theory, and probability
theory. Estimating the sum (5) for centered indicator functions f = f,» = X(ap) — (b — a),
which are extended with period 1, is equivalent to measuring the uniformity (more precisely
the deviation from uniformity) of the distribution of the sequence (ngz)g>1 modulo 1, and
for ny = k very precise results are known. Khinchin [29] proved that the discrepancy of
the sequence (kz)i<g<n satisfies

NDy(z,2x,..., NX) < (log N)'*e a.e.

for every e > 0 and that this becomes false for e = 0. Here the discrepancy Dy (z1, ..., zyN)
of a sequence x4, ..., xy of real numbers is defined as
LN
Dy(x1,...,2xy) = sup |— fan(xr)],
( ) o<a<b<1 | N kz:; ol )

where again f,;, denotes the centered indicator function of the interval (a,b) C [0,1],
extended with period 1. Thus we have

N

> fas(kz)

k=1

< (log N)'e  ae.

(8)

uniformly for such centered indicators f,p, and, in view of Koksma’s inequality (see e.g.
[31], p. 143), uniformly for all 1-periodic functions f satisfying (7) and Vary(f) < 1. In
view of Schmidt’s lower bound [37] for the discrepancy of arbitrary infinite sequences, the
metric discrepancy behavior of (kx)g>1 is near to extremal.

For general (ny)r>1, the situation changes markedly. For f(x) = 2xo,1/2)(z)—1 (extended
to R with period 1) and ny = 2%, the terms of (5) reduce to the Rademacher functions, and
the law of the iterated logarithm implies that for almost all € (0,1) the sum (5) exceeds
(N loglog N)'/2 for infinitely many N. Berkes and Philipp [6] constructed a sequence
(ng)k>1 such that for f(z) = {x} — 1/2 and for almost all = the relation

> flnie)
k=1

holds for infinitely many N, providing an even faster growing sum (5). In the opposite
direction, R.C. Baker [3] showed, improving earlier results of Cassels [12] and Erdds and
Koksma [15], that for every increasing sequence (ng)x>1 of integers, the discrepancy of the
sequence (ngx)i<k<n satisfies

(10) Dy (mz,....,nyz) < N"V2(log N)**  ae.

9) > (Nlog N)'/?

for every € > 0. As a consequence, we have

> flx)| < VN(log N)***¢ ace.
k=1

(11)
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uniformly for all f satisfying (7) and Varp(f) < 1. There is a gap between (9) and (11);
in particular it is not known if the uniform estimate (11) holds for ¢ = 0 and all (ng)g>1.
For a fixed f € BV (i.e. without uniformity), Aistleitner, Mayer, and Ziegler [2] improved
the upper bound in (11) to

O (W(log NY*2(log log N)—1/2+€) ,

getting for the first time a bound better than O(v/N (log N)?/?). (Here, and in the sequel,
we write f € BV if Varjy f < o0.) Our Carleson-Hunt-type inequality will give the
following improvement of this estimate.

Theorem 2. Let (ng)r>1 be a strictly increasing sequence of positive integers, let f be a
function satisfying (7), and assume in addition that either f € BV or f € Lipijs. Then
for every e > 0,

< (Nlog N)Y*(loglog N)»**  a.e.

> flmw)

k=1

(12)

when N — 00.

This estimate is sharp up to the exact value of the exponent of loglog IV, as shown by the
following result of Berkes and Philipp [6, Theorem 1]: There exists an increasing sequence
(ng)k>1 such that

‘Zgil cos(2mnyr)

li = €.
ljr\?_,sol:,p (N log N loglog N)1/2 o a-e

The class Lip;/; represents an interesting limiting case in this context. Kaufman and
Philipp [28] proved that, under the lacunarity condition nyyq/n, > ¢ > 1 (k= 1,2,...),
the law of the iterated logarithm

N

> flmw)
k=1

holds uniformly for all f € Lip,, a > 1/2, with a fixed Lipschitz constant, and this fails for
a < 1/2. The case « = 1/2 remains open. In the case of Theorem 2, the proof shows that
for f € Lip,, @ > 1/2, the exponent 5/2 in (12) can be replaced by 1/2 and this exponent
is best possible.

The second consequence of our version of the Carleson-Hunt inequality deals with the
a.e. convergence of series of the form

(14) > af(nix)

13 < (Nloglog N)'/? a.e.
(13) (Nloglog V)

for 1-periodic functions f. By Carleson’s theorem [11], when f(z) = sin27x or f(x) =
cos 2mz, the series (14) converges a.e. provided that Y ;- ¢Z < co. Gaposhkin [20] showed
that this remains valid if the Fourier series of f converges absolutely; in particular, this
holds if f belongs to the class Lip, for some o > 1/2. However, Nikishin [36] showed
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that the analogue of Carleson’s theorem fails for f(x) = sgnsin27x, and it also fails for
some continuous function f. There is an extensive literature on this convergence problem
going back to the 1940s (see [7] and [19] for the history of the subject), and sufficient
a.e. convergence criteria have been obtained for various classes of functions such as Lip,,
0 < a < 1/2, L, BV, or spaces of functions defined via decay conditions on Fourier
coefficients, see e.g. [1, 7, 8,9, 10, 19, 21, 38]. However, except for Carleson’s theorem and
its immediate consequences, no precise a.e. convergence criteria for the series (14) have been
found. The following theorem gives an essentially complete solution to the convergence
problem for BV and a substantial improvement of known results for the class Lipy ;.

Theorem 3. Let f be a function satisfying (7) and assume in addition that either f € BV
or f € Lipyja. Let (c)p>1 be a real sequence satisfying

(15) Zci(log logk)” < o0
k=3

for some v > 4. Then for every increasing sequence (ny)g>1 of positive integers the series
Y re i cuf(ngx) converges a.e.

Using the optimality of Gal’s theorem and a probabilistic argument, we will in Section 6
show that for every 0 < 7 < 2 there exists an increasing sequence (ny)x>1 of positive integers
and a real sequence (cj)r>1 such that (15) holds, but > 7, ¢, f(ngx) is a.e. divergent for
f(z) = {x}—1/2. Thus apart from the precise value of the exponent of loglog k, Theorem 3
is best possible for f € BV. In the Lip;/, case, the argument in Section 6 gives a slightly
weaker counterexample, with loglog k in (15) replaced by logloglog k. On the other hand,
in the case of f € Lip,, 0 < a < 1/2, Theorem 3 of [5] gives an a.e. divergent series (6)
with

Zcz(log k)T < oo forall 0 <y <1-2a.

k=1
Comparing this result with Theorem 3, we see that there is an essential difference between
the convergence behavior of the sum (5) for a = 1/2 and o < 1/2. We conclude again that
Lip; /2 stands out as a particularly interesting limiting case.

We mention finally two additional applications of Theorem 1. First, we may obtain a
substantial improvement of the convergence criteria in [1] and [38] for the case 0 < a <
1/2; we will discuss this problem in a subsequent paper. Second, Theorem 1 yields an
improvement of a result of Harman [24] on metric Diophantine approximation. The effect
of replacing the estimate (4) in Harman’s original proof by our Theorem 1 is that a factor
of order exp (clog N/loglog N') becomes instead a factor of order exp (cy/log N'loglog V).
This result is connected with the Duffin—Schaeffer conjecture, a notoriously difficult open
problem from metric Diophantine approximation (see [22, 23]).

3. PROOF OF THEOREM 1 VIA TRIGONOMETRIC POLYNOMIALS ON D

We introduce multi-index notation suitable for our purposes. A multi-index is a sequence
= (M, 33 .. B8 0,0,..) consisting of nonnegative integers with only a finite number
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of them being nonzero. We let supp 8 be the finite set of positive integers j for which
B9 > 0; we write R(S) for the maximal element in supp 3. Two multi-indices 3 and
may be added and subtracted as sequences. Then § — p may fail to be a multi-index,
but the sequence |3 — u| = (|8Y) — u|) will again be a multi-index. We may multiply
multi-indices by positive integers in the obvious way and express any multi-index as a
linear combination of the natural basis elements e;, where e; is the multi-index supported
by {j} with eg-] ) = 1. We write B < pif U < p) for every j. For a sequence of complex
numbers z = (z;), we use the notation

RE)
j=1

we will sometimes write 2= for the number (2°)~1.

We write p = (p;) for the sequence of prime numbers ordered by ascending magnitude.
Using our multi-index notation, we may write every positive integer n as p® for a multi-
index § that is uniquely determined by n. If n, = p, then we may write

(ged(ne, ne))* 18—t
NNy

For an arbitrary sequence t of positive numbers in D> and a set of distinct multi-indices
B ={p,..., Bn}, we now define

N
1
- 18K —Bel
S(tB) = = 3
k=1
We set
Ly(N) = sup S(t, B),
B

where the supremum is taken over all possible sets B of distinct multi-indices (3, ..., On.
Our original problem concerning GCD sums has thus been transformed into the problem
of estimating I';(V) in the particular case when ¢ = (p; ).

For a minor technical reason, we introduce the following notation. Let : (0,1) — (0, 1)
be defined by the relation

20, 0<zxz<1/2
n(x) =
r, 1/2<z<1,

and for a sequence t = (¢;) with 0 < ¢; < 1, we set n(t) := (n(t;)). For a decreasing
sequence t of positive numbers in the sequence space ¢y, we define

{0 if £, < 1/2

K(t) =
®) max{j: t; > 1/2} otherwise.

We will prove the following general theorem.
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Theorem 4. Lett = (t;) be a sequence of positive numbers in D>*Ncy such that (1) = n(t)
is a decreasing sequence. Fix a positive number & > (log2)™1, and set ry = [£log N|+k(t).
Then, for arbitrary numbers 1 > vy > vy > - -+ > v, satisfying also vj > 7'j2 forl <75 <rp,
we have

(16) TN < [[( =) (1 —vy i)t [ (= ey d) "+ exp (oz_ﬁ),

j=1 k=rn+1 £=1

where C' is a positive constant depending only on &.

This theorem is clearly applicable when the sequence ¢ is in ¢2, but it can also be used
when the series > i t? is “slowly” divergent, as we will now see.

Proof of Theorem 1. We now take Theorem 4 for granted and show that it implies Theo-
rem 1. We begin with the case 1/2 < a < 1 and observe first that then

exp (C’ Z t£> (exp(c+ C'min(loglog N,1/(2a — 1)))

for some constant ¢. This inequality has the consequence that the exponential term in (16)
will contribute only with a fixed constant factor, independent of ¢, in C.. Assuming that
N is so large that (2a — 1)7%/2 < 71, we choose

o)

in the first term on the right-hand side of (16), with 7; = n(p;®). (The decay of 7; is a
minor technical point which can be dealt with by an obvious rearrangement of the sequence.
For smaller N, we set v; := 79 for all j. We choose § = 2 and note that p;* < 1/2 for
J = 3, whence we have 7; = 2p;“ for j > 3 and ry = [21log N] + 2. We set

vj := max(7;, (2a0 — 1)

Sy = max{l <j<ry:T1;>(2a-— 1)_1/27TN}

and split accordingly the first product into two factors. Hence, using the definition of 7,
we obtain

(17) 1II := ﬁ(l — )7 N1 — v_l 2 < H 1—2p;%) 2 < exp <(1 +5/2)4§:pj_°‘)

J=jo J=jo J=jo
and
TN
I, = H (1—v)7 11— U_ITJQ) ' < (1 - min(r, (20 — 1)_1/22p;§))_2TN
j=sn+1
(18) < Cexp((1+¢/2)8(2a —1)"*p *log N)

if jo and thus sy are large enough, with C' an absolute constant. By the prime number
theorem, we have p; = (1 + o(1))jlogj when j — oo, so that (17) and (18) become
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respectively

(19) IT; <exp ((1 +e)4 ZN(j logj)_a)

J=jo
and
(20) IL < Cexp ((1+¢€)8-27*(2c — 1)~"Y%(log N)*~*(loglog N)™)
if jo is large enough. The sum in (19) can be estimated as
N [(log N)'/?] TN
D (jlogj)™ < (logjo)™ > +2%(loglog N)™*» ™,
J=Jjo J=jo Jj=2

whence we finally get

8 1
(21) I < Cexp ((1 +¢) (1 — Oé(log N)l_a(log log N)™* + —

oY)

assuming again that jy is sufficiently large.
For the second product in (16), we obtain

N-1 N-1
15 := H (1-— vqf(}V)T,f)’l < exp <(1 +¢/2)v, 14 Z pj2a> .
IC:TN+1 j:T'N—‘rl

We appeal again to the prime number theorem and get

II; < Cexp ((1 +)4-2%(2a — 1)"*(log N)*(loglog N) ™ ) j—%)
j=rn+1
(22) < Cexp((14¢)8-27%2a —1)"*(log N)'*(loglog N)~*)
The desired estimate for the function g(«, n) in Theorem 1 follows from our three estimates
(21), (20), and (22), if we take into account that the contribution from the factors omitted
in the first product in (16) by the restriction on j, can be bounded by a constant C. which

is independent of «.
The case a = 1/2 is dealt with in the same way, the only difference being that we

now choose v; = max(n(pj_l/Q), (loglog N)'/2/(log N)'/2). Retaining the notation from the
preceding case and assuming that j, is large enough, we get respectively

I, < Cexp((1+¢)(16(log N)'2(loglog N)™'/% + (log N)1/4)) ;
I, < Cexp ((1 + €)4(log N log log N)1/2) ,
II; < Cexp ((1 + ¢)4(log N log log N)l/z) ’

where we in the last step used Mertens’s second theorem. Combining these estimates, we
arrive at the required bound for g(1/2, N) since we may assume that N is so large that
loglog N > 1.
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Finally, to deal with the case 0 < a < 1/2, we apply Hoélder’s inequality with exponents
1/(2a) and 1/(1 — 2a):

200
gcd Nk, Ng)) ged(ng, ny 1-4
N 107
N Z (g )® (Z (ngng)t/? > ’

k=1 k=1

and so the desired result follows from what was just proved in the case a = 1/2. |

To see to what extent Theorem 1 is sharp for 1/2 < o < 1, we consider the following
example: Set N = 2" and take nq,...,ny to be all square-free numbers composed of the
first r primes. Then

N(cd(nn
3 s )

k=1 (na70)

which follows from an argument in [18, p. 21]. By the prime number theorem, we therefore
get

(ged(ng, ng c —a —a
N MZI () > exp (1 — (log N)'~*(loglog N) >
for some positive constant c. Thus our estimate in Theorem 1 is of the right order of
magnitude when 1/2 < a < 1, as is the blow-up of the multiplicative constant 1/(1 — «)
int g(a, N) when o« 1. However, this example does not settle the cases a \, 1/2 and
a = 1/2. In fact, we see that there is a discrepancy of a factor loglog NV in the exponent
between our estimate and the lower bound obtained from the example. It seems likely that
the blow-up of the constant ¢(a) when a N\, 1/2 is an artifact. The trouble is that the
divergence of the series » i pj_l implies that the number of primes involved in the sum plays
a role. We believe the number of primes should be O(log N) when the sum is maximal,
but can only infer from our method of proof that this number is bounded by N — 1.

Our estimate is however essentially optimal when 0 < o < 1/2. To see this, it suffices
to consider the example ny = 2,ny = 3,...,nxy = py. Using the prime number theorem in
a similar way as in the proof of Theorem 1, we obtain that

ng(”MW)) 2 2a+1
— > c(log N)7*“ N~
N k;l (ngne)® c(log N)~

for a positive constant c. The reason for the abrupt change at « = 1/2 is that the relatively
fast divergence of >, p; 2@ (as in this example) plays a dominant role when 0 < o < 1/2.

We will now prepare for the proof of Theorem 4 by making the passage to Poisson
integrals as alluded to above. We let o denote normalized Lebesgue measure on the unit
polycircle T® and write

K

Pr((,2) = H —1 _|—€k|

k=1 |1 - <kzk|27
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which is the Poisson kernel for the unit polydisc D¥ at the point (. It is convenient in
this definition to allow ( to be a point in the infinite-dimensional polydisc D*°. The only
property of Pk needed is the identity

HlB=nl :/ 277 Pk (t, z)dok (2),
TK

valid for positive sequences ¢ in D*°, which is obtained by computing the integral over
TX as an iterated integral over K copies of the unit circle. It leads immediately to the
following lemma.

Lemma 1. For a positive sequence t in D>, arbitrary multi-indices By, ..., By with K =
max; R(f;), and complex numbers ¢, ..., cn, we have

(23) ﬁ: tPe=Pel e, = / ‘ Z CJ

k=1

,2)dok ().

The fact that the quadratic form on the left-hand side of (23) can be written as the
square of a norm was first observed in [34] in the special case when t = (p; ) and a > 1/2,
based on ideas from [25]. The present formulation seems more illuminating and leads to
an interesting problem for trigonometric polynomials on D*. We will take a closer look
at this problem in the next section, where we will estimate the #2-norm of the quadratic
form on the left-hand side of (23), or, in other words, the largest eigenvalue of the matrix
(t‘ﬂk_ﬁé‘)'

For the proof of Theorem 4, we only need (23) when ¢, = 1. Incidentally, this restriction
is crucial for the combinatorial argument that leads to Lemma 2 below, which is our next
auxiliary result. It is interesting to note that this lemma relies on the left-hand side of (23),
while the subsequent analytic part of the proof of Theorem 4 departs from the right-hand
side of this identity.

We will use a variant of Gal’s terminology: A set B of N multi-indices (i, ..., By is said
to be k-canonical for 0 < x < N if B € B and ¢; < 8 for some j with k < j < N imply
that 8 —e; € B. The following lemma is a modification of a theorem in [18, p. 17].

Lemma 2. Suppose B is a set of N multi-indices. Lett be a decreasing sequence of positive
numbers in D Ncy. If k(t) < N, then there exists a k(t)-canonical set of N multi-indices

={pB1,...., B} such that S(n(t),B') > S(t, B) and #Ujvzl supp 8, < N — 1.

Proof. We will modify B and ¢ by an inductive algorithm. We break the argument into
two parts, the first of which will give a set of multi-indices for which the union of their
supports has cardinality at most N — 1.

Part 1: It will be convenient to use the following terminology. We say that a multi-index /3
in B is j-maximal if j is in supp 8 but (89 + le; £ Iz for every p in B. We will construct

from B a new set B with the property that if 8 in B is j-maximal, then also § — e; is in
B, while at the same time S(t, B) > S(t, B). Writing B ={p, ..., On}, we see that, as a
consequence, we will have # U _, Supp ﬂj <N -—-1.
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Fix a positive integer j in |J, supp Bx. Let v be the largest integer such that ve; < 3
for some B in B. Suppose there is a j-maximal multi-index  in B such that ve; < 3 but
B —e; is not in B. For every such 3, we replace 8 in B by 8 — e;; we call the new set of
multi-indices B,. A term by term comparison shows that S(t, B,) > S(t, B).

If there is a j-maximal multi-index in B, with 3U) = u, then it must have the desired
property that also § — e; is in B,, and no further action is needed. In the opposite case,
we repeat the argument with v replaced by v — 1. The iteration terminates when either
the desired property holds for some B, with 1 <7 < v or j is not in the support of any
multi-index in Bj. .

We repeat this iteration for every j in (J, supp 8 and obtain thus the desired set B.

Part 2: By part 1, we may from now on assume that, for every j in |J, supp S, any
j-maximal multi-index 8 in B has the property that 5 — e; is in B. This is irrelevant for
the argument to be given below, but we need it to reach the desired conclusion about the
cardinality of (J; supp ;.

We now assume that n(t) < N. We fix a j > r(t) in J;supp 3; and divide B into
disjoint subsets by, ...,by (1 < ¢ < N), which we call j-chains of multi-indices, according
to the following rule: two distinct multi-indices 8 and p belong to the same j-chain b
if |8 — p| = ne; for some n > 0. This means that every element (3 in b is of the form
B =+ nej, where p9) =0 and g is thus a multi-index that characterizes the j-chain b.
We now modify each j-chain by by replacing it by the set

Bk = {M7M+ ej7 sy + (#b - 1)6]}7

and we set B := Uizl be.-
It is immediate that S(¢,b) > S(¢,b). To compare the terms of the sum corresponding
to pairs of multi-indices from different j-chains, we introduce the notation

S(t;a,b) = Z tA=nl

BEa,pedb

where a and b are two different j-chains. Sorting, by descending order of magnitude, the
possible values of | — u()| for all 3 and g in a and b and in @ and b, respectively, we
obtain the inequality

B€a,ueb, B =p0) BEa,ueb,B)£pul)

This implies that S(¢;a,b) < S(t + tje;;a,b) and, more generally, that S(t + t;e;, B) >
S(t, B).

The result follows if we make this modification in turn for every j in J, supp 8y for
which 7 > k(t). [

Proof of Theorem /. To simplify the notation, we write 7 := n(t). By Lemma 2, it suf-
fices to estimate S(7, B) for every k(t)-canonical set B = {fy, ..., Sy} of N multi-indices
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satisfying

N
# | Jsupp B < N — 1.
j=1
It is clear that we may assume that

N
U supp 8 ={1,2, ..., K}
j=1
for some K < N — 1 since we are seeking an upper bound for all sums S(7, B) and 7 is a
decreasing sequence. Note that we may write
K

Pe(r) =TJa-) | Y %

k=1 B:R(B)<K

‘2
By Lemma 1 and the orthonormality of the monomials z”, we therefore get

(24) S(r.B) = %Hu —2) S S e

B:R(B)SK \J:Bi<B

Let B; denote the set of those multi-indices 5 such that R(f) < K and # supp 8 < 7y,
and let By denote the set of all other multi-indices 5 with R(8) < K. By the Cauchy—
Schwarz inequality, we get

Z ZTﬂ—ﬁj <ZNZ7-55]
BeBx \j: B;<pB BeBz  j: B;<P

which may be written as
2

S ) -x » v

BeB2 \j: B;<B J=1 BeB2:B;<pB

Since B is assumed to be x(t)-canonical, # supp 5; < (log N)/log 2+ k(t) for every j, and
hence # supp(8 — ;) > elog N for a positive €, depending on our choice of £, when 3
is in By. We assume for convenience that elog N is an integer. Suppose 27']-2 > e~/ for
j=1,...,J < N—1. Then we may estimate the inner sum as an Euler product and obtain

J N-1
S ONPEE) <= ) [ (= e
BeB> 7=1 k=J
which means that
K 2 N-1

(25) [Ta=-=> [ D %) <Nexp(C)_ 15)

k=1 BEB2 \Jj: B;<B Jj=1



14 CHRISTOPH AISTLEITNER, ISTVAN BERKES, AND KRISTIAN SEIP

for a constant C' that only depends on €.
We next consider the summation over B;. Let § be an arbitrary multi-index in this set
with
Suppﬁ = {jla 731}7
where ¢ < ry by the definition of B;. For any numbers vy satisfying the hypothesis of
Theorem 4, we define a sequence wg by requiring

Gie) v fork=1,..1
U}ﬁ = .
0 otherwise.

We now apply the Cauchy—Schwarz inequality and get
2

Z B—B; < Z wﬁ Bj Z wg(ﬁ—ﬁk)TQ(ﬁ—ﬁk)

j: Bi<pB J: Bi<p k: Brp<pB
TN
SHl—U] Zwﬂﬂk 2(B—Bk)
j=1 k: Bp<pB

Now summing over 8 in B; and changing the order of summation, we get
2

(26) Z Z +B-B; Sﬁ 1_U3 Zzw (B=Pr) L2(8—Br)
BeBr \j: B;<pB j=1 k=1 BeB;

Since (v;) is a nonincreasing sequence, we have
W@ > U for j e suppBN{L,....,rn}
Ys = vy forjesuppfn{ry+1,...N—1}.

Plugging this estimate into the right-hand side of (26) and estimating the sum over § € B
in terms of an Euler product, we conclude that

TN N—-1
Z Z PP SNH(l—vj) N1 —ovitr)! H (1 — o lr)~h
BeB1 \j: B;<B j=1 k=rn+1

We finally observe that, in view of (24), this inequality along with the preceding estimate
(25) leads to the desired inequality (16). |

It is worth pointing out that the most essential use of Lemma 2 was to reduce the problem
to the case when the cardinalities # supp 3; are uniformly bounded by a constant times
log N. It would be desirable to find a way to arrive at this reduction without involving
the auxiliary sequence 7(t). In particular, if this could be done, then our method of proof
would allow us to recapture Gal’s theorem (3). Unfortunately, we may only conclude from
Theorem 4 that F(pjfl)(N) < (loglog N)*.
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4. SPECTRAL NORMS OF GENERALIZED GCD MATRICES

This section will show that we with little extra effort may obtain from Theorem 4 precise
estimates for the largest eigenvalues of the matrices (t'ﬁk_ﬂ”), which we will refer to as
generalized GCD matrices. Since, by (23), these matrices are positive definite, we see that

N _ _
Zk,f=1 twk ﬁeICkCg

A(N):= sup su
W)= s Sy lesl?
is the least upper bound for these eigenvalues, where the suprema are taken over respec-
tively all N-tuples of distinct multi-indices S, ...0x and all nonzero vectors ¢ = (cq, ..., cy)
in CV. We may also refer to A;(N) as the supremum of the spectral norms of the matrices
(1P for fixed N. The problem of estimating Ay(N) for ¢ = (p;*) was raised in [7, p.
10]. Based on purely arithmetical arguments, Hilberdink [26, pp. 362-363] gave precise
estimates for the spectral norms of our GCD matrices in the special case when p% = j or,
in other words, for the matrix corresponding to the first IV integers.
Trivially, Ay(N) > T';(IV). In the opposite direction, we have the following estimate.

Theorem 5. We have
Ay(N) < (e +1)([log N] +2) max Ty(n)

1<n<N
whenever t = (t;) is a decreasing sequence of positive numbers in ID>.

A few remarks are in order before we give the proof of this theorem. First, the result is
of interest only when ¢ fails to be in ¢! because if ¢ is in ¢!, then the easy estimate

N—-1
1+t
27 AN(N) < J
(21) RS | e

Jj=1

which can be obtained from the right-hand side of (23), will be uniformly bounded when
N — oo. Note that a special version of this estimate is given in [34, p. 152]. We will prove
both (27) and a corresponding estimate for the smallest eigenvalue of (¢%—5!) at the end
of this section, as a generalization of the result in [34, p. 152].

In our terminology, Dyer and Harman [14] obtained (4) from the estimate

clog N
loglog N )

J

A(pf1/2)(N) < C’exp (

Besides the results of [34] and [14], we are not aware of previous estimates of A;(N) for
any other values of t. If we combine Theorem 1 with Theorem 5, then we obtain precise
estimates for A,—a)(/N) when 0 < a < 1. From Gél’s theorem (3) and Theorem 5 we also
get ’

A(pj—l)(N> < ¢(log N)(loglog N)?

for an absolute constant ¢. A more subtle application of our estimates for GCD sums, to
be given in the next section, will lead to the better bound A1) (V) < (loglog N)L An
J
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interesting point is that this improved estimate is obtained from Theorem 1 and does not
require Gal’s theorem.

As an application of our result on spectral norms, we note that we may replace Ay in
Theorem 1.1 of [7, p. 10] by our quantity A(p;a)<N ) and then improve Corollary 1.2 of [7,
p. 11] significantly by using our estimates for A(p;a)(N).

The phenomenon captured by Theorem 4 and Theorem 5 is interesting from a function
theoretic point of view: While holomorphic polynomials F' of fixed L? norm (in terms of
their coefficients) are uniformly bounded at any fixed point in D> N ¢2 [13], this is not so
in general for the Poisson integrals of |F|?. Indeed, the two theorems give a surprisingly
precise statement about the relation between the growth of the number of monomials
involved in the polynomials and the growth of such Poisson integrals at points ¢ in the
complement of D*° N /. We believe it could be of interest to clarify how these estimates
relate to the distributional properties of polynomial chaos as studied for instance in [32].

Finally, we would like to emphasize the striking point that the combinatorial Lemma 2
seems indispensable in the deduction of our estimates for the spectral norms.

Proof of Theorem 5. We will estimate the quadratic form
N
Z t|5k—5zlck5£
k=1

for arbitrary multi-indices fy, ..., By and vectors ¢ = (cq, ..., cy) satisfying Zivzl ;> = 1.
We may clearly assume that the coefficients ¢; are nonnegative. Set

Co:=4j: el < c; < e’e}.

By the Cauchy-Schwarz inequality, we get

N 2 2
(28) ‘ Z cjzﬁj < ([log N] + 2) ‘ Z Cjzﬁj’ =+ Z ‘ Z 2P
7=1 Jig; <N-1 0:0<t<log N k:keCy
Using (23) and again the Cauchy—Schwarz inequality, we get

ful 2 o

j:CjSNfl

2

2
Pk (t,z)dok(z) < 1.

Applying (23) a second time, we also obtain

ful

k:keCy

CPrelt, 2)dor () < e~ (H#C) To(#Co),

which, by the definition of C, and the fact that ¢ is a unit vector, implies

Z /TK ’ Z Ckzﬁk)ZPK(t, 2)dog(z) < e? max Ty(n).

1<n<N
£:0<t<log N k:keCy
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Returning to (28) and making a final application of (23), we obtain the desired result
Ay(N) < ([log N] +2)(1 + €*) max_ Ly(n).

Let now A\¢(NN) denote the infimum of the smallest eigenvalues of the generalized GCD
matrices (t/%~%1) for fixed N. We obtain then the following generalization of the theorem
in [34, p. 152].

Theorem 6. We have

N-1 N-1

1- 1
J</\t ) < A(N +

e 1+t 3:1 1—-

(29)

whenever v = (x;) is a decreasing sequence of positive numbers in D>.

Proof. Note first that the expressions to the left and to the right are respectively the
minimum and the maximum of Py_;(¢, 2) when z varies over TV 1. Thus the estimates in
(29) follow from (23) if we first make the observation that it suffices to integrate over an
(N — 1)-circle to compute the L?(ox)-norm of a function of the form Z;\Ll ;2P [ |

5. A CARLESON-HUNT-TYPE INEQUALITY

We have now come to our main application of Theorem 1, namely to establish a Carleson—
Hunt-type inequality. To this end, we will require the following special case of the classical
Carleson-Hunt inequality [27, Theorem 1].

Lemma 3. There exists an absolute constant ¢ such that

1 M 2 N
/ max E ¢y, cos 2wk dr <c E ci
1<M<N
0 - = k=1 k=1

for every finite sequence (cx)i1<p<n-

Our generalized version of this inequality reads as follows (as in the introduction we
write f € BV for a function which has bounded variation on [0, 1]).

Lemma 4. For every function f satisfying (7) and either f € BV or f € Lipi/s, there
exists a constant ¢ such that the following holds. For every finite and strictly increasing
sequence of positive integers (ny)1<k<n and every associated finite sequence of real numbers
(ck)1<k<n, we have

1 M 2 N
4 2
(30) /0 (1£§L§N ]}_1 cef(ngx) > dx < c(loglog N) g_l i
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We do not know whether the exponent of loglog N is optimal in (30), but the following
argument shows that it can not be smaller than 2 for f in BV: If we choose f(z) = {z}—1/2,
then we have the identity

[ st staspas = et

12 mn

which has been first stated by Franel [17] and first proved by Landau [33]. Consequently
for this particular function f the left-hand side of (30) exceeds

By the optimality of Gal’s theorem (3), we know that A Pl y (V) > (loglog N)? in the

terminology of the preceding section, and therefore 2 is a lower bound for the exponent.
This can also be seen from Hilberdink’s computation of the spectral norm of the GCD
matrix ((ged(m,n))?/(m,n)),.—; (see [26]).

The argument just given also shows that Lemma 4 implies that A(p;l) (N) < (loglog N)*,

as announced in the preceding section. Since the maximal operator appearing in Lemma 4
is not needed in the computation of the spectral norm, one may suspect that we could do
better if our sole goal was to estimate A(pj—l)(N ). However, the proof given below does not
give any better bound if we remove the maximal operator on the left-hand side of (30).

Before turning to the proof of Lemma 4, we introduce the following conventions. We
write ¢ for appropriate positive constants, not always the same, which may depend on
f, but not on N or anything else. Any additional dependence is made explicit; we may
sometimes, for example, write ¢(¢) instead of c¢. We will use the notation

1/2

ot = ([ totwar)

where ¢ is assumed to be a real-valued function.

Proof of Lemma /. Let f be any function satisfying (7), and assume that either f € BV
or f € Lip;s2. To simplify the exposition, we assume that f is even so that its Fourier
series is a pure cosine-series:

[e.9]

f(z) ~ Z a;j cos2mjz.

J=1

Under the assumption that Y, ¢f = 1, the coefficients ¢ satisfying |cx| < N2 will give a
negligible contribution to the left-hand side of our maximal inequality. We may therefore
assume without loss of generality that N=2 < |¢;] < 1.

To make our proof as transparent as possible, we will first prove Lemma 4 when f € BV.
The proof for f € Lip;; is technically more involved and will be given subsequently. In
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what follows, we will use the notation

5 1 fori=0
)10 otherwise.

Proof in the case f € BV : By [39, p. 48], the Fourier coefficients a; of a function f in BV
satisfy

(31) laj| <ej™',  j>1
Set
J
(32) plz) = Zaj cos2mjz,  r(x)= f(x) - p(x),

where J will be chosen later. Then, by Minkowski’s inequality,

By (31) and Lemma 3, we have

M M
max g cep(nrx) ||| < E la;| || max E Ck COS 2T jnyx
LSMEN | £ 1<M<N

1/2
(34) < ¢(logJ) <Z ci) :

Estimating the second term on the right-hand side of (33) is more difficult. Let arbitrary
numbers 0 < M; < My < N be given. We want to find a good estimate for

Mo

Z cgr(ngx)

k=M;+1

(35)

We now sort the coefficients by size in the same way as we did in the proof of Theorem 5.
Hence, for every ¢ in {0, [2log N}, we define

(36) Ke={k: Mi <k<M, and e ' <|e|<e’}.
As observed above, we may assume that N2 < |¢| < 1 for 1 <k < N. Thus

’72 10g N] Mg

Z chr(nkx): Z cxr(ngr).

=0  kek, k=M;+1
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Now let an arbitrary ¢ in {0, [2log N} be fixed, and set N, := #K,. By (31) and the
orthogonality of the trigonometric system, we have

1 o0
/ E CkT nkx dr = 5 E E C1 Cloy A5y Qg 53'17"%1 —J2Nky

ke, k1,k2€Ky j1,j2=J+1

(37) < Z Z ]1j2 - jmkl —J2Mpy

k1,k2€y j1,j2=J4+1

Let v < w be two positive integers. Then, following an argument of Koksma [30], we have

Z (j1j2)_1 5]'111*3'211) < Z (j1j2>_l 5]'111*]'2111
Ji,je=J+1 J1,jo=1
i 1 ged(v, w) ged(v, w)
‘= j? v w
d 2
vw
On the other hand, as in [2, p. 104], we have
- o ged(v, w))?
Y (G12) 7 oo = > ((2—))
1 , J2ow
Jr.je=J+1 J2[(J+1) ged(v,w) /v]
2 (ged(v, w))?
<
— [(J+1)ged(v,w)/v] vw
< 2 ged(v, w)
- J w
2 ged(v, w)

(39) < 35

Let 0 < & < 1 be a number to be chosen later. Combining (38) and (39), we obtain

S G e < (220 (Gt

J1,j2=J+1
2 ged(v,w)?~®
40 = o\
( ) Je (vw)l—s/2

Thus the integral in (37) is bounded by

-2/ 3 ng(nk1 y Tlkq )2
Je (nklnk2)175/2 )

—€
ce

k1 ,]{:2 EK(K)

which, by Theorem 1 (for a« =1 —¢/2), is at most
ce 2 J7° N, exp (E(log Ng)5/2> )
£
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By Minkowski’s inequality, we therefore get the following estimate for (35):

Mo [2log N
Z cpr(ngx)l| < Z Z cxr(ngT)
k=My+1 (=0 ke,
[2log N c
< c Z e_ZNZl/zJ_E/2 exp (—(log Ng)E/Q) .
5
=0
Applying the Cauchy—Schwarz inequality, we infer from this bound that
Mo [2log N 1/2 N
¢
Z crr(ngx)|| < eJ 2 (log N)*/? Z e %N, exp(—(log N)E/Q)
k=M1+1 €
My 1/2 R
(41) < ¢J**(log N)'/? ( Z ci) exp (E(log N)E/Q) .
€
k=M+1

The constant ¢ in (41) is marked by " to indicate that its value (unlike the value of the
other constants denoted by ¢) does not change in the sequel. Without loss of generality,
we may assume that ¢ > 4. We now choose J by requiring that

0
(42) T2 = (log N)? exp (f(log N)5/2>

so that (41) becomes

M My 1/2 ;
Z cpr(ngz)|| < c ( Z ci) exp <——(10g N)s/z) :
k=My;+1 k=Mi+1 €

Now imitating the proof of the Rademacher—-Menshov inequality (see [35, p. 123]), we see
that this estimate implies

(43)

R N 1/2
)H < clog N exp (—g(logN)E/2> (Zcz) :

k=1

Choosing € = 1/(loglog N) and recalling that ¢ > 4, we see that the expression in (43) will
be bounded by ¢(3"5_, ¢2)*/2. On the other hand,

1 4¢
(44) logJ = log log N + 5 (log N2,

which is less than or equal to ¢(log log N)? with our choice of e. Thus (34) becomes

v 1/2
Z cxp(nz)||| < c(loglog N)? (Z ck> ,
k=1

which, together with (43), proves the lemma in the case f € BV.

max
1<M<N
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Proof in the case f € Lipy/ : If f € Lipy/s, then by [39, p. 241] we have
27n+1
(45) Z a? <e27™, m > 0.
j=2m+1
Note that if f € BV, then (45) also holds as a consequence of (31); thus the proof for the
case f € BV could have been included in the present proof. However, (45) is significantly

weaker than (31), which makes the proof in the present case more complicated. By the
Cauchy—Schwarz inequality, (45) implies that

am1
Z |a]" < C,
j=2m+1
and hence
J
(46) S lay| < clogJ
j=1

for any J > 1. Define p,r as in (32), with J to be chosen later. We estimate the second
term on the right-hand side of (33). To this end, assume that 0 < e < 1, and set

Sy = {2’" <j< 2™ty al < 2_’”(1_8)}, T = {27 +1,...,2"TIN\S,,..
Then from (45) it is clear that
(47) HTr, < c2m=2me,

Let 0 < M; < My < N be given, and let p denote the largest integer such that 2# < J.
Replacing all coefficients by their absolute values (which is permitted due to the orthogo-
nality of the trigonometric system), starting the summation at 2* instead of J and applying
Minkowski’s inequality twice we get

My 00 My am+l
Z cpr(ngz)|| < Z Z Z laj| |cx| cos2mingx
k=My+1 m=p || k=M, +1 j=2m+1
o0 Mo Mo
< Z < Z Z laj| |ex| cos 2mjngx|| + Z Z laj| |cx| cos2mingx ) :
m=p k=Mi+1j€Sm k=M1+1j€Tm

We reverse the order of summation and use Minkowski’s inequality along with (47), (45),
and the orthogonality of the trigonometric system to estimate the second norm on the
right-hand side of this inequality. Using also the definition of S, to deal with the first
norm, we therefore get:

Mo ~ Mo Mo 1/2
(48) Z cpr(ngz)|| < Z Z Zj_1+£|ck| COS 2T jnyx —|—02_m8< Z ci)
k=M;+1 m=p k=Mi+1 jE€Sm, k=M+1
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Now let m be fixed. We define Ky as in (36), and observe that
(49)

[(S Ermmtnm) arzat £ G B

kEK, jESM k1,k2 €Ly J1,j2=2m+1

Instead of (38), we get

G N =1 [ged(v, w) ged(v,w)\ 7
Z (j12) e Ojro—jow < ZjQ—Qa < v W
J1,J2=2"+1 j=1
(50) <, ged(v,w)**
- (vw)t== 7’
and as a replacement for (39), we have
o0
o (ged(v, w))?
> ) G = > g
P j2lem i) gedww)l 7

¢ (ged(v,w))tt?

(51) = om(-2) (yw)l/2te

Combining (50) and (51) with exponents 1 — 2¢ and 2¢, respectively, we have

S _9eN 1—2¢ 142¢\ 2€
N ged(v, w)*~? 1 (ged(v, w))
Z (]1]2) 5j1v—j2w < ¢ ( (,Uw)lfs om(1-2¢) (vw)1/2+s

J1,J2=2"+1
9N\ 1—2e+4e?
< 02—2m5(1—25) ng(U’ ’lU)
- VW

2\ l—¢
e (2l0P)

vw

(where we assume w.l.o.g. that ¢ < 1/5), and consequently (49) becomes

1 2 2—e
c—1+e . —2¢ —me (ng(nkl ) nk’2))

¢l cos2mingx | dax < ce 2 .
I R B T

keke j€ESm ki,ka€K (L)

As in (41), we therefore obtain the upper bound

Mo
Z Z 371 ep| cos 2mingx

k=Mi+1jESm

Mo

1/2
(52) < cQ‘mE/Q(logN)1/2< Z ci) exp (g(logN)5/2>.

k=M;+1
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Along with (48) this yields

s My 1/2
Z crr(npx)|| < eJ 72 (log N)l/2 ( Z ci) exp (E(log N)E/2> ;
k=M1+1 k=Mi+1 ©

which is identical to (41). Hence the rest of the proof can be carried out as in the case

when f € BV. |

Proof of Theorem 2 and Theorem 3. Assuming the validity of Theorem 3, the series (6)
converges a.e. for any (ng)i>1 and ¢ = (klogk)™/?(loglogk)~(/2+9) (¢ > 0) and thus
by the Kronecker lemma, (12) is valid. Thus Theorem 2 follows from Theorem 3, and it
suffices to prove Theorem 3. Let (ng)r>1 be an increasing sequence of integers and (c)g>1
a sequence of real numbers such that for some > 0 we have

o0

Z ¢ (loglog k)" < oo.
k=1

Let N,, be an increasing sequence of integers such that

loglog N,,, ~m” with v > 6/4.

Clearly
Nm+1 Nm+1
Z ¢ < (loglog N,,)~“+9 Z 2 (loglog k)*™° < ¢(loglog N,,)~“4+%)
k=N +1 k=N +1

and thus by Lemma 4 and the Chebyshev inequality we get, writing A for the Lebesgue

measure,
M
: >m 2
A <{x €(0,1) Nm—i-lrgnl\%}éNmH k_NZH cef(npx)| >m })

Nm+1
< cm4< Z ci) (loglog Nyps1)*

k=Npm+1

Nm+1
< cm4< Z ci) (loglog N,,,)*

k=Np+1
< em*(loglog N,,)° < em™2.

We set Sy(z) := Zgzl crf(ngr) and see that the latter estimate, along with the Borel-
Cantelli lemma, yields

M
_ — -2
(53> NmSI]r\}ag}]{Vm+l |SM SNm | Nm+121]\%§]vm+l k—NZ+1 Ckf(nkx) << m e

In particular, Y - |Sn,.,; — Sn,,| < 00 a.e., which implies the a.e. convergence of Sy, .
Using (53), we finally obtain the a.e. convergence of Sy. [
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6. DIVERGENCE OF SERIES INVOLVING DILATIONS OF {z} — 1/2

We finally turn to the example showing that Theorem 3 is essentially best possible for
the class BV. In what follows, we will use the notation ¢(x) := {2} —1/2. Our arguments
will be probabilistic and we will use the symbols P and [E with respect to the unit interval
equipped with Borel sets and the Lebesgue measure.

Theorem 7. For every 0 < 7y < 2, there exists an increasing sequence (ny)r>1 of positive
integers and a real sequence (cx)k>1 such that
cr(loglog k)? < oo,
k=1

but > oo | crp(ngx) is a.e. divergent.
We will need the following variant of Lemma 2 of [5].

Lemma 5. Let 1 < p; < q1 < p2 < q2 < ... be integers such that p,i1 > 16q.,; let

LI, Iy, ... be sets of integers such that I,, C [2Pm 29| and each element of I, is divisible
by 2Pm. Form > 1 and w € (0,1) set

Xy = Xp(w) = Z o(kw).

k€lm

Then there exist independent random variables Y1,Ys, ... on the probability space ((0,1), B, P)
such that |Yy| < card Iy, EY, =0 and

| X — Yo <277 for m > my,
where || - || denotes the L*(0,1) norm.
Proof. Let F,, denote the o-field generated by the dyadic intervals
(54) U; = [j271%m (j + 1)271%m]  0<j < 210
and set
& = &) == E(po(k-)| Fn), kel
Yo = Yi(w) = Y &(w).

k€lm

Since |p| < 1, we have [§| < 1 and thus |Y,,| < card I,,,. Further, by ¢ € BV the Fourier
coefficients of ¢ are O(1/k) and thus from Lemma 3.1 of [4] it follows that

l€x () — (k)| < (k271%0)V0 k€ Iy,
and since [, has at most 29" elements, we get
||Xm - Ym” < 2_qmv

which implies
| X — Yol <277 for m > my.
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Since pp,41 > 164, and since each k € I,,4; is a multiple of 2Pm+1 each interval U; in (54)
is a period interval for all ¢(kx), k € I,,.1 and thus also for &, k € I,,41. Hence Y,
is independent of the o-field F,,, and since F; C F5 C ... and Y,, is F,,-measurable, the
random variables Y7, Y5, ... are independent. Finally E&, = 0 and thus EY,, = 0. |

Proof of Theorem 7. We will actually prove a little more than what is stated in the theorem:
we show that for any positive sequence ¢, — 0 there exists an increasing sequence (ng)g>1
of integers and a real sequence (cg)x>1 such that

> ’

ci(loglog k)“er, < 00

k=1
and Y777 cpp(ngx) diverges ae. Let ef = sup;s,e; and let (¢x)p>1 be a sequence of
positive integers growing so rapidly that ¢y, 1/1, > 2 for k£ > 1 and

oo
*
E E:Mm—l < 00
m=1

where
M,, = Z U
k<m
Put 7 := v3. By the result of G4l [18] stated in the introduction, there exists, for each
m > 1, a sequence n\™ < n{™ < ... < nf;?n) of positive integers such that

1 Y 2
(55) / (Z so(n,im%)) dw > iy (loglog ;)2
0 k=1

(here, and in the sequel, ¢ denotes appropriate positive constants, not always the same).
Note that by the upper estimate in Gal’s theorem [18], the opposite inequality in (55) with
a suitable ¢ is automatically valid. We define sets

(56) FA A A0 U £ IR SIS (I
of positive integers by requiring
I .= gui” {ngm>, o nfﬁ)} o 1<k<r,m>1,

where a,(j") are suitable positive integers. (Here for any set {a,b,...} C R and p € R

we write u{a,b,...} for the set {Aa, \b,...}.) Clearly we can choose the integers a,(cm)

inductively so that the sets 1 ,im) in (56) satisfy the conditions assumed in Lemma 5 for
the sets I,,,. Since the left-hand side of (55) does not change if we replace every n,(gm) with

an,(gm) for some integer a > 1, setting

XM =X w) =Y e(iw),
)

jEIk



GCD SUMS FROM POISSON INTEGRALS AND SYSTEMS OF DILATED FUNCTIONS 27
then we have
2
(57) E(X™) = ctm(loglog tin)®

Note that, just as in the case of (55), the opposite inequality with a suitable ¢ is also valid
in (57). By Lemma 5, there exist independent random variables Yk(m) (1<k<ry,m>1),
such that [V™| < ¢, EY,"™ = 0 and

(58) S = v < oo
whence
(59) SMIX - <00 ae.

By (57) and (58) we have

2
E (Y,fm)) > et (log log 1)

Hence setting

2
1 Tm (m) ) Tm (m)
L = Y, o, =K Y, ,
VTmm loglog ¢y, ; g (; k

we get from the central limit theorem with Berry—Esseen remainder term (see e.g. [16, p.
544)), (7), and r,, = ¥3 , that

™y (m) _ nin
P(Zy >1) > P(;Yk ZCI"m) = L) = e oglog 4 )2

> 1—®(¢y) —o(l) > >0  for m > my,

where ® denotes the Gaussian distribution function and ¢; and ¢y are positive absolute
constants. Since the random variables Z,, are independent, the Borel— Cantelli lemma
implies that P(Z,, > 1 for infinitely many m) = 1 and consequently Y *_ Z,, is a.e.
divergent, which, in view of (59) yields that

™m

Z VTmm 10g10g U

In other words, ", cxp(ngx) is a.e. divergent, where

nkk>1i U Ufm)

m=1 k=1

X ,im) is a.e. divergent.

and .
2 .= for M, | <k<M,,.
T o tm(loglog )’ o R
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Now for M,,—1 < k < M,, we have by the exponential growth of (¢;)r>1 with quotient
q > 2 that

k< 2yt and loglog k < 2loglog ¥, for m > my.

Consequently for M,,, | < k < M,, we have

Hence

3 )
mem Mm—l

c;(loglog k)?ey, < c

Z ci(loglog k)’e, < c Z En,_, < 00,
k=1 k=1

which means that we have reached the desired conclusion.
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