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ABSTRACT. It is known that the discrepancy Dy{kxz} of the se-
quence {kxz} satisfies NDy{kz} = O((log N)(loglog N)'*¢) a.e.
for all ¢ > 0, but not for ¢ = 0. For n;, = 6%, § > 1 we have
NDy{npz} < (S +¢)(2N loglog N)'/? a.e. for some 0 < ¥y < 0o
and N > Ny if € > 0, but not for ¢ < 0. In this paper we prove,
extending results of Aistleitner-Larcher [6], that for any sufficiently
smooth intermediate speed W(N) between (log N)(loglog N)'*¢
and (N loglog N)l/2 and for any ¥ > 0, there exists a sequence
{ni} of positive integers such that NDy{nipz} < (X + ¢)T(N)
eventually holds a.e. for € > 0, but not for ¢ < 0. We also consider
a similar problem on the growth of trigonometric sums.

1. INTRODUCTION

A sequence {z}} of real numbers is said to be uniformly distributed
modulo 1 if

SHE <N (n) €[ah)} = b—a, (N o0)

for all 0 < a < b < 1, where (z) denotes the fractional part x —
[2] of a real number x. The discrepancy Dy{xy}, also denoted by
Dn(x1,...,2zN), is used to measure the speed of convergence:

1
Dy{ar} = sup N#{k < N: (k) € [a,0)} = (b—a)].
0<a<b<l1
For arithmetic progressions {kx} with = ¢ Q, Bohl [10], Sierpinski [24],
and Weyl [26] independently proved that they are uniformly distributed
modulo 1. A metric result of Khintchine [20] implies

NDn{kz} = O((log N)(loglog N)'**) a.e. foranye >0 (1)
and this fails for ¢ < 0. The discrepancy of exponentially growing

sequences has also been investigated extensively. By assuming the
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Hadamard gap condition
N1/ >qg>1 (k=1,2,...), (2)
Philipp [23] proved, using Takahashi’s method [25], that
1 — ND 1 664
2 < Tm winir) (166 —) e (3)
4\/5 N— /2N loglog N ~ f —1

For improvements of (3), see [3] for the lower bound, and [18] for the
upper bound. In case of geometric progressions, an exact law of the
iterated logarithm holds: for any 6 ¢ [—1,1] there exists a constant
S > 1/2 with

lim
N—oo /2N loglog N

If 7 ¢ Q for any j € N, then 3y = 1, otherwise ¥y > . For a
6 which is a power root of an integer, of a large rational number, or
of a ratio of odd integers, the concrete value of ¥y is evaluated. See
(12, 14, 15, 16, 17]. For conditions to have an exact law of the iterated
logarithm in (3), see [1, 5].

Since there is a big difference between (1) and (3), it is natural to
ask if for intermediate speeds W(N) between (log NV)(loglog N)'*¢ and
(N loglog N)'/2 one can find a sequence {n;} of integers such that the
growth speed of Dy{ngz} is U(N) in the above sense. For all v €
(0,1/2], Aistleitner and Larcher [6] constructed an increasing sequence
{ni} of integers such that NDy{nzz} = O(N?) and NDy{nwz} =
Q(N 7*5) a.e. for all € > 0. They also constructed (see [7]) a sequence
{nx} with polynomial growth such that NDy{n,z} = O((log N)**¢)
a.e. for all € > 0.

The main result of the present paper is the following

=5 a.e.

Theorem 1. Let {U(N)} be a sequence of real numbers. Assume that
there exists a constant Ny such that

0<U(N)<U(N+1) foral N> N, (4)
U(N) > (log N)(loglog N)'*¢  for some e >0 and N > Ny,  (5)
V(N + 1) — U*(N) = o(loglog ¥*(N)). (6)

Then for any ¥ > 0, there exists a sequence {ny} of positive integers
satisfying 1 < ngyqp —ng < 2 and
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Note that for the function ¥?(N) = N loglog N we have
U2(N + 1) — U*(N) ~ loglog U*(N)

and thus condition (6) means that the jumps of W?(N) are of smaller or-
der of magnitude than those of NV loglog N. Naturally, this implies that
U2(N) = o(Nloglog N) and thus the conditions of Theorem 1 bound
the function ¥?(N) between (log N)(loglog N)'™ and N loglog N and
require a certain smoothness of growth. Typical examples are W(N) =
N<(log N)?(loglog N )Y where the parameters «, 3,y are chosen so that
the order of growth of W?(N) is between the previous bounds. Note
that the theorem does not cover W(N) = (N loglog N)'/?; the existence
of {ny} with (7) is already proved in [4] for 0 < ¥ < oo, and in [2] for
¥ = 00. See also [9, 14].

As a related problem, we can ask if there exists a sequence {n;} such
that S | cos 2mnyx grows with a given speed W(N). The law of the
iterated logarithm by Erdés-Gél [11] states

- 1

A}l_I)I(l)O N Toslos ¥ ; cos2mnrr =1 a.e. (8)
for {n,} satisfying the Hadamard gap condition (2). As we will see
in Section 4, for any D > 0 there exists an increasing {n;} such that
(8) holds with the norming factor replaced by c¢v/N (loglog N)”. The
following theorem shows that any growth speed O(\/N (loglog N)P)
with small jumps is possible for > ;_, cos 2mn,x.

N

Theorem 2. Let {U(N)} be an sequence of real numbers. Assume that
there exists a constant Ny and D > 0 such that (4),

U(N) =00, and V(N +1)—T*N) =o((loglog¥?(N))?).

Then there exists a strictly increasing sequence {ny} of positive integers
such that

— 1
lim

N—o0 \I/<N)

N
Z cos2mnrr =1 a.e. (9)
k=1

In conclusion, we mention a number of open problems related to
our results. Let G denote the class of functions W(N), N = 1,2,...
such that for some increasing sequence {n;} relation (7) holds for
some constant 0 < X < oo. From Theorem 1 it follows that G
contains all smoothly increasing functions W(/N) with speed between
(log N)(loglog N)**¢ for some ¢ > 0 and (N loglog N)*/2. By a clas-
sical result of W. Schmidt (see e.g. Kuipers and Niedereiter [22], p.
109) for any infinite sequence {x;} we have NDy{zy} > clog N for
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infinitely many N with an absolute constant ¢ and thus G contains no
functions W(N) = o(log N). Hence assumption (5) in Theorem 1 is
nearly optimal; whether W(N) = (log N)(loglog N)*, 0 < o < 1 be-
longs to G remains open. Concerning upper bounds for functions in G,
the results of Baker [8] and Berkes and Philipp [9] imply that

NDpy{ngz} < const - NY?(log N)” a.e.

holds for all {n;} if v > 3/2 but not if v < 1/2. This implies that
for v > 3/2 we have N'/2(log N)” ¢ G and makes it plausible (but
does not prove) that (N log N)'/? € G. If this is true, condition (6) in
Theorem 1 can be replaced by

V(N +1) — U*(N) = o(log U*(N))
allowing all smoothly growing functions W(N) = O(N log N)*/2, an

essentially optimal result. Similar remarks hold for Theorem 2.

2. KEY PROPOSITION

We begin with proving a weaker version of Theorem 1.

Proposition 3. For any sequence {t)(N)} satisfying

$(0) =0, ¢(N) <N +1), (10)
(log N)(loglog N)'*¢ = o(x»(N))  for some & >0, (11)
YN +1) — 9A(N) < S(4V loglog (), (12)

there exists a sequence {ny} of positive integers satisfying 1 < ng,q —

ng <2 and
B A R (13)

Set G(zr) = z/(4 Vloglogx), where loglogz is meant as —oo for
x < 1. Note that G(z) is increasing. By (12), we can derive

PN+ 1) - V) 1
4Vloglog?(N) — 2

Let v; be the smallest v satisfying 2i3 < G(wQ(ig + 1/)) Note that
1o = 0. By (14), we have

G(w2(i3 + uz)) =2i" +e¢; forsome 0<e;<1/2. (15)
Set A; = NN (20— 1) 2] and n; = 2i3 — 2(i — 1)3.

G*(N +1)) = GW*(N)) < (14)
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By using (14), we have

m—§§2i3—2(i—1)3+6i—e,~_1
1

= G+ )~ G~ 1)+ u) < (%n Fr- ).

By n; > 2, we have
vi—vio1 > (3/2mi—1>m and v > 247 (16)
Set pup = 2v; +2(k —2:3) for k € Ay By pgispy = 20501 — 20ip1 +2 >
2U; + 2 > g3, we see that {py} is strictly increasing.
We now introduce some notation. Denote by 1,4 the indicator

function of [a, b), and put I[a,b) () = Ljap ((x)) — (b— a). Then we have
NDN{l'k}:NDN(Z’l,...,LEN = sup Zl[ab) l’k
0<a<b<1

Put S = {274 lENz-O,l,...,Zl},52<:{(a,b):a,bGS,a<b},

oo(t) \/C’t (1Vloglogt), and o, = +/(b—a)(1—(b—a)). Let
{ Xk} be a sequence of independent random variables satisfying P(Xj, =

1) = P(X), = —1) = 1/2.

Lemma 4. We have

lim ————
N—oco (bg

for all (a,b) € S*<, a.e., a.s.

Proof. Since py, is a strictly increasing sequence of integers, by Weyl’s
theorem [27], {,ukx} is uniformly distributed modulo 1 a.e. Hence,

—O'ab (17)

Z Lia,p) (i) X

By —Zl[ab UrT) N/ l[ab dy—Naab—>oo a.e.
if b —a # 0, 1. By Kolmogorov’s law of the iterated logarithm [21]

N
lim Ia ) X
Nooo ¢2(BN) ; [ J?)(:“k > k

we see that (17) holds a.s., a.e. if 0 < b —a < 1. Clearly (17) holds
if b—a =0, 1. Since S*< is countable, we see that (17) holds for all
(a,b) € S*<, a.s., a.e. By Fubini’s theorem, we have the conclusion. [

=1 as., ae,

Lemma 5. Suppose that | € N and 0 < i < 2!, we have
N

Z I[Q*%,Q*li—&-c) (prz) X,
k=1

< 4.7 a.e., a.s.

lim sup
N—oo ¢2( ) 0<c<2-t
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Proof. Denote 1) ((x)) simply by 1j,4) (). By noting

N 1
by = Z 1[2—li,2—l(i+1))<ﬂkx> ~ N/ 1[2—11,2—l(¢+1))(y) dy = N27' ae.
k=1 0

and by following the proof of Lemma 4 of [13], we can prove

N

Z Lio-tig-tite) () Xi
k=1

Thus together with the law of the iterated logarithm

sup <V10-27t a.e., a.s.

im
N—oo ¢2(N) 0<c<2-!

lim sup = lim —— a.s
8.,
N%000<C<2 1(252 N_>OO¢2
we have the conclusion. O

For 0 <a < b <1, take l with b —a > 27! and take the largest ¢ and
j such that 27% < a < 2~ j < b. Then we have 1,4 = Lp-1;0-1j) —

Lio-t50)+ 11214 and 1[ab) = 1[2 1j2—15)— 1[ z’a)‘i‘l[g sz),Wthh implies

max lim ——
0<i<j<2l N—oo (bg

21[2 13,2=15) ,ukl'>X
k=1

N
Z 1[a b) ka
k=

N
Z 2-ti,2-t5) (k) X

k=1

< lim sup
N—=00 g<a<b<1 ¢2

< max lim ——
0<i<j<2l N—oo ¢2

+2 max lim sup
0<i<2! N=00 (g cq<o-1 ¢2(

“lita) <:ukx>X

By applying two lemmas above, we have

1 — 1
— < lim sup

1
< —+8-27 12 a.e., a.s.
2 7 N—oop<ach<i ¢2( 2

Z Lia,0) (i) X

which implies

N

Z [a,b) ka

k=

lim  sup = a.e., a.s. (18)

N—00 g<g<b<l §Z52




A METRIC DISCREPANCY RESULT WITH GIVEN SPEED 7
By the relation NDy{z +y} = NDy{xr} and (1), we have
1 D, (MQ(i—1)3+15177 H2(i—1)342T5 - - - Mo T) = mDm{Qk::v} = O((log 77@')2)-

Noting NDy{prz} < 25:1 10i D, (1h2(i—1)3 41T, fo(i—1)3 42, - . . , plos ) for
N € Aj, we have
J
NDy{ppz} = O(Z(log m)2> = O(N'"*(log N)?) =o(VN) ae.
i=1
by j — 1 < (N/2)Y3. This together with (18) implies
1

lim sup ——
N—oo 0§a<Il?§1 ¢2(N)

N
~ Xp+1 1
E L) {pe) kz ‘:Z a.e., a.s. (19)
k=1

Note that {u} and {2k — 1} are mutually disjoint. Let {\;} be an
arrangement in increasing order of {ug} U {2k — 1}. By pop = 2v;, we
have #{k : pp < 2v;} = 263 and #{k : 2k — 1 < 2i;} = v;, and thereby
we have #{k : \y < 2u;} = 20° + v; and Ay, = 2. We set

e A & 2N,
"T(Xe+1)/2 M € 2N,

In = #{k < N : X\, ¢ 2N}, Jv = #{k < N : Y, =1, Ny € 2N},
and Hy = #{k < N : Y, =1} = Iy + Jy. We have Iy, = #{k <
2034v; 1 Ay € 2N} = #{k : 2k—1 < 2u;} = v; and Hyp ), = Jogs 4o, +1i.
By the law of large numbers we have Jos,, ~ %#{k D < 20 =43
a.s. By (14), we have

. 1 , 1 .
|G (¥*(Hais y,)) =G (02 (1 4+14)) | < §|H2i3+ui—(23+%‘)\ = §|J2i3+w—23|-
Dividing by G (¢?(i® + v;)) = 2i* + e;, we have

‘GW.(H”*”)) - 1( < 1‘ hivw T g
23 + ¢e; 2123 +¢; 23+ ¢

Therefore we have G (¢?(Hoyay,)) ~ 2i3+e; ~ 203 ~ 2Jy.,, a.s. Since
Jn and Hy are increasing, for N € [(i — 1)® + v;_1,4% + v;] we have

G0 (Hag o)) _ G2 (HN) _ G(2(Hao )

1~
22344, - 2JN = 2J53-1)3 4w,

~1

Y

and thereby,
2Jy ~ G(V*(Hy)) as. (20)
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By (1), we see NDy{(2k — 1)z} = O((log N)(loglog N)'*</2), which
implies NDy{(2k — 1)z} = o((log N)(loglog N)'*¢) or

Z i/[a,b)<>\kx>ykz

k<N:A,g2N

lim sup =0 a.e.,as. (21)

N—oo g<q<b<1 AN

for Ay = (log Iy)(loglog Iv)e. Since Hy > Iy, it is valid for Ay =

(log Hy)(loglog Hy)¢. Because of (11), we see that (21) holds for Ay =
V24 (Hy).

By (19), we have

_ 1

lim sup —

a.e., a.s.
N—00 g<q<b<1 llN 4

Z I[a,b) (Ae1) Yy

k<N:\,€2N

for Ay = gbg(#{k < N: )\ € QN}). By Jy ~ %#{k: < N : X\ € 2N}
a.s., we see that (22) is valid for Ay = v/2 é2(Jy) ~ ¢2(2Jy). (20) and
$3(G(WV*(N))) ~ 20*(N) imply ¢3(Jn) ~ ¢5(G(V*(H)))/2 ~ ¢*(Hy)
a.s. Hence (22) holds for Ay = v/24(Hy). Combining these, we have
— 1
lim sup ——

N—=00 g<q<b<1 \/§¢(HN)
Denoting by {ns} the subsequence {\; : Y, = 1}, we have (13) a.s.

Z I[a,b) </\kx>Yk

=1

1
= — a.e., a.s.
4 )

N
k

3. PROOF OF THEOREM 1

By (6), we have U?(N) = o(N loglog ¥?(N)) and G(¥?(N)) = o(N).
For any C' > 0, we see G(¢%(N)) ~ CN and hence G(V?(N)) <
G(¢%(N)) or W?(N) < ¢Z(N) for large N. Since it holds for any
C > 0, we see that U?(N) = o(¢Z(N)).

By (6), we can take N7 > Ny such that for all N > Ny,

1
(2V2ZU(N +1))? — (2V2SU(N))? < 5 log log(2V2 SW(N))2. (23)
Take ¢ € (0,1) such that ¢?(N;) < (2v/2X¥(N;))? holds. We have
(2v2 XU (N))? < ¢2(N) for large N > N;. Denote N, the minimum of
such N. Putting

. ¢C(N) N < N27
YIN) = {2\/52\11(]\7) N > Ny,

it is clear that ¢(N) satisfies (10) and (11). As to the condition (12),
we first prove it for ¢?(N).

In the case loglog(N+1) > 1,i.e. N > 15, we see (N+1)(log log(N+
1) — loglogN) < ((N 4+ 1)/N)/logN < 2/log15 < loglog15 <
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loglog N and (N + 1)loglog(N + 1) — Nloglog N < 2loglog N. If
cloglogN < 1, then 2cloglogN < 2 < 1(4 Vv loglog¢?(N)). If
cloglog N > 1, then 2cloglog N < $loglog N < 1 loglog(cN loglog N) <
(4 V loglog ¢*(N)). Therefore, when loglog(N + 1) > 1, we have
Q2N + 1) — ¢2(N) < 2cloglog N < £(4 V loglog ¢2(N)). When
loglog(N + 1) < 1, clearly we have ¢2(N + 1) — ¢2(N) < ¢ < 1 <
5(4Vloglog ¢p2(N)).

By ¢*(N2) = ¢*(No — 1) < (2V2EU(N,))? — ¢2(No — 1) < ¢2(Ns) —
®?(Ny — 1) together with (23), we conclude that ¢ (N) satisfies (12).

Hence we can apply Proposition 3 to have the conclusion.

4. PROOF OF THEOREM 2
Take an integer d > D V 2 to satisfy
U*(N +1) — U*(N) = o((loglog ¥*(N))?). (24)

Put My, = 2¢71(%), L, = min{n | ¥2(n) > (2¢7/d!) Mj,(log log M;)?},
and LZF = Lk + Mk+1 — Mk
There exists K _ such that maxy<y, U(N) < (2471 /d!) My, (log log M;,)?
for all £ > K_. From now on, we consider only for k¥ > K_, for which
we have L, > Nj.
By (24) and W?(L; — 1) < (2¢71/d!) My (log log M},)?, we have
(271 /d!) My (log log M.)" < W*(Ly)
= o((loglog W*(Ly, — 1))%) + ¥*(L;, — 1)
< o((log log( My (log log My)?)) + (2%~ /d!) My, (log log My)?,
W2(Ly,) /(2471 Jd)) My, (log log My )¢ — 1, loglog W?(Ly,) — log log M, — 0
and log log U?(Ly) ~ loglog M}, in turn. Combining
U*(Lit1) — ULy — 1)
> (2971 /d!) (M1 (log log My41)" — My, (log log My)?)
> (2971 /d) (M1 — My)(log log My 1)

and \IJQ(Lkﬂ) — \IJQ(Lk —1) = (Lyy1 — Ly + 1)0((10g log \112(Lk+1))d),
we have

Mk+1 - Mk < 0((10g lOg \PQ(Lk+1>>d) _ 0<1)
Lii1— L, +1 = (2¢71/d!)(log log My 41)® '

Hence we see that there exists a K, such that

Lk—f—l — Ly > Mk:—H — M, ie., Lk+1 > L; (k’ > K()) (25)
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By (24) we have U?(N) < o(N(loglog U?(N))?), Thereby log U*(N) <
log N + dlogloglog U?(N), and log ¥?(N) < 2log N or U?(N) < N?
for large N. Hence W?(N) = o(N(loglog N)¢). Hence we see U2(M,) =
O(Mk(log log Mk)d) = O(\I’2<Lk)>. It implies M}, < L;, for large k. Take
such & > K, and denote by ky. We see My, < L,.

We define an non-decreasing sequence {ax} of positive integers as
below. Put a; = -+ = ai, = 3, take ap,+1 large enough to satisfy
Ako+1 > Gk, and

1 . 3 _
'VI::)H = QGkSﬂ =5 ko O+ (L — 1 — My,) = Vio+1- (26)
For k > ko, inductively take ay o large enough to satisfy agio > axy1
and

1 3 _
7k+2 2@’213 > 5 Zﬁ + (Liy1 — LZ) = Vito- (27)

Put p; = ag. Since p; satisfies the Hadamard gap condition p;+1/p; >
aj+1 > 3, by the law of the iterated logarithm we have

Z cos 2mp;x

=1 a.e.

lim Z cos 2mp;x hm

N—oo Cbl N—oo ¢1

(28)

From this, we drive

d

—
lim Z H cos2mpm, & =1 a.e. (29)
d
N=0 G (N) 1<my<-<mg<N j=1 ’
For a function f(my,...,mg) on {1,..., N}¢ define a signed measure

von{l,...,N}¥ by

v(A)= Y flm,...,ms) (AC{L,..., N}

Let J = {(j,k) | 1 <j,k <N, j#k}. For (j,k) € J, put Ay =
{(ma,...,mq) €{1,..., N} | m; =my}.
Putting

d
f(my,...,mg) = Hcos 27 P, @
j=1
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and by applying the inclusion-exclusion principle

u({l,...,N}d\ UAj) = v({L. . N} =3 w(Ay)

jeJ jeJ
+ Y (A5 N4, . y(ﬂ A; )
J1.J2€J:51732 jed

we see that

Z H COS 2T Ppy, @ — (Z coS 27Tpkx>

mi,...mg<N:m;#my((j,k)€J) j=1

can be bounded by a linear combination of

B8 N
H Z cos™ 21 prx

=1 k=1

(o +---+ag=d, m%fcaj > 2).
‘]:

Note that we can verify
B

N
H Z cosY 21 prx

j=1k

0< lim

N—)oo d

=0 a.c.

B N
— 1
<|| Iim —— E cos™ 2T prx
oo OLN)™ 1= .

because
N
lim ———— cos® 2mppx| < hm ——— =0
N—oo ¢1 Z pk N—oo ¢1( )Oc
holds for av > 2. Hence by (28) we have
1 d
1\}1_13;0 W Z H COS 2T Py, @

ma,...,mg<Nmj#Emy ((5,k)€J) =1

and thereby we see (29).
Let Sy be a collection of (by,bs,...) € {—1,0,1}N such that b; = 0
for all large 7.

Lemma 6. The mapping Sy > (b1, ba,...) — >.2, bial € Z is injec-
tive.
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-1, -1
Proof. Because of |> ;") bat| < 3.7 at_, < 3al, we have

1
Zblaz € ((b[ — %)af, (bI + %)Cé)a

=1

and if b; # 0, then

I
< 3 1 1,3

E ba; € (—§a§, —§a§> U <§a§, §a§> =:CI. (30)

i=1

Take (by,bo,...) € Sy and (by,b,...) € Sy and assume Y >, bial =
Sooo bial. By putting I = max{i | b; # 0} and I’ = max{i | b, # 0},
then we see that Y_>° bal € Cr and Y ;2 bal € Cp. By 3af < laft],
we see that C; (I = 1, 2, ...) are mutually disjoint and max{i |
b; # 0} = max{i | b, # 0}. Because <(b —3)ad, (b+ %)a%) (beZ)

are mutually disjoint, we see by = V). Hence we have Zf;ll bai =

Zf;ll blai. In the same way, we can verify b; = b, for all i < I, and see

that the mapping is injective. U
By this lemma, we see that

Pmy + Ed—1Pmyg_ + -+ €1Pmy (31)

with m; <mo < --- <mgandeq, ..., g4 = £1 are all distinct. Denote
by {l;} the arrangement in increasing order of this family.
Note that My equals to the number of the sum of the type (31) with

my <mg<---<mg<kandey, ..., g4 ==x1 By (30),
1 3
li € (5@%, 5&%), (MN—l <1 < MN) (32)
Clearly
d 1

H COS 27 Py, T = a1 ¢08 27 (pmy + Ed—1Pmy_, + -+ + €1Pmy )T,

j=1
and

d | My
Z Hcos 2T P, T = 2a-1 Zcos 2mlix.
k=1

1<mi<---<my<N j=1
Hence by (29), we have

My

o
]\}1_13;0 W ; COS 27le$ =1 a.e. (33)
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Put
Q
By(z) = max cos 2mlx|.
N( ) MN+1<Q<Mp 1 Z F
E=Mpy4+1

By the Carleson-Hunt inequality [19] we have

1 1 Mpy 1 4
/ By(z)dzx < C’/ ( Z cos 27rlka:) dx
0 0

k=Mpn-+1

where C' is an absolute constant. Put

d-1
Cy(z) = Z Hcos 27 Py, T

mi,...,mq_1 SN—Lim;#m;(i#£5) j=1

By
Myt d
Z cos 2l = 2971 Z H COS 2T P, X
k=Mpn-+1 m1<---<mg_1<mg=N j=1
2d71
= TCN(x) cos 2r Nz
we have

d—1

/01 B (2)dz < 0(27)4/01 ' (x)

As before, by the inclusion-exclusion principle, we see that |C(z)| can
be bounded from above by a linear combination of

B N-1

H Z cos™ 2mprx

j=1 k=1
Put S =37 ajl(a; > 1) and T =327 1oy =1). S+T =d—11is
clear. For a > 2, we bound ‘chv:_ll oS 27rpkx‘ < N < N%/2 to have

B N-1 N-1
Z COS 2T i

H Z cos™ 21 prx
k=1

j=1 k=1

(a1 4+-ag=d—1,a; > 1).

T
f§<DJS/2

By applying Theorem 8.20 of Zygmund [28], we have
B N

1 4
/ <H > cos™ 2mx) dz = O(N*N*T) = O(N?-D).
0

j=1 k=1

Therefore we have

!  ['/Bn(x)\*
4 _ 2(d—1) N
/0 By(z)dz = O(N ) and Ngl/o ( N2 ) dx < o0.
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By applying the Beppo-Levi Theorem we have By = o(N%?) a.e. By
noting My ~ N92%71/d! and combining with (33), we have

im .
N=oo /(24-1/d!)N (log log N)

N
= Z cos2mlix =1 a.e. (34)

i=1

Put
l; it 1 < M,
N — leo +(i—MkO) if Mko <1< Lkm
) Do r, if L <i< L,

npr o+ (+1- L) it Ly <i < Ly (k> ko),

We can verify that {n;} is strictly increasing. Actually by (32) and
(26), we see

nLkO = le0+1 > 7];—&—1 > ’}/];0_’_1 > leO —+ (Lko —1- Mko) = nLkO*h
and by (27) we see for k > ko,
Nipsr = W1 > Vo = Vo > bty + (L — L) =0y, o1

Put B = [1, My, |UUS, [ L, If), F = N\ B, Ey = EQ[1,N],
Fy =Fn[1,N], and ny = #*Ex. By np, = M, + 1, we have U?(L;) ~
(2d_1/d!)nL,c (loglog nLk)d. By U2(Lj11) ~ ¥%(Ly), we have

U*(N) ~ (297 /) (log log v ) (35)

By (34), we see that

— 1
lim — E cos2mm;x =1  ae.
N—oo AN

i€bN

holds for Ay = /(29-1/d!)nyloglogny, and by (35) we see that it
holds for Ay = ¥(N).
If N € [Lf ,, L), we have |Z£L¥71 cos 2mn;z| < 2/|sinwz|. By

W2(N) ~ g, loglogng, ~ (2¢71/d")k?loglog k, we can see that

E CoS 2mn;x

Hence we can verify (9).

Ne[L;_;.Ly)
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