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Abstract This work considers the accurate and efficient finite element simulation of three-
dimensional eddy current problems. We review the application of H and A based formulations
for multiply connected domains for the cases where the conductor has a handle and/or a hole.
We focus on an hierarchical hp-finite element discretization of the A based formulation that
is gauged by regularization. Based on an explicit kernel splitting of the underlying hp-finite
element basis, we present a novel preconditioning technique for eddy current problems. We
demonstrate its validity on multiply connected domains and include a series of numerical
examples to show the effectiveness of the proposed approach.

Keywords eddy current problems, multiply connected domains, hp-finite elements , efficient
preconditioning
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1 Introduction

The governing equations for the eddy current model [19], in a time-harmonic setting, are

curl E = −iωµH, (1a)

curl H = σE + J
S , (1b)

∇ · D = ρV , (1c)

∇ · B = 0, (1d)

where E, H , D and B are the electric, magnetic, electric displacement and magnetic dis-
placement fields, respectively. The term J

s represents external current sources, which are
assumed to be divergence free. The complex imaginary unit is i =

√
−1. The quantities

ω, ǫ, µ, σ and ρV are the (angular) frequency, permittivity, permeability, conductivity and
volume charge density, respectively. As standard µr = µ/µ0 is the relative permeability,
µ0 = 4π10−7Hm−1 is the permeability of free space, ǫr = ǫ/ǫ0 is the relative permittivity and
ǫ0 = 8.85 × 10−12F/m is the permittivity of free space. The electric and magnetic fields are
linked to the electric and magnetic displacement fields by the constitutive relationships

D = ǫE, B = µH . (2)

Equations (1a)-(1d) represent a quasi-static approximation of the time harmonic Maxwell
equations and are easily obtained if one assumes that that the displacement currents in
Ampere’s law are negligible and one substitutes Ohm’s law, J = σE + J

s, for the volume
current density, J . For a given length scale L, this model reduction is an acceptable approach
if either

√
ǫµLω ≪ 1, or ǫω/σ ≪ 1,

holds, see eg [19, 5, 36] for a justification. For the problems under consideration in this
work, the ratio ǫω/σ is of the order of 10−16 and so the eddy current model represents a very
acceptable approximation. The problem set-up considered here comprises of a conducting
region ΩC , where σ(x) ≥ σ0 > 0, which is surrounded by an infinite non conducting region
Ω∞

N , where σ = 0. Furthermore, we initially assume a trivial topology, such that the conductor
has no handles or cavities (holes) and a given divergence-free source J

s in the non-conducting
domain. The situation is illustrated in Figure 1. Later, we shall consider what happens when
the assumptions about the topology are relaxed.

On neglecting the displacement current, the eddy current problem reduces to a magne-
tostatic problem in Ω∞

N and we claim the magnetic and electric field to decay at infinity
as

lim
|x|→∞

H(x) = O( 1
|x|2 ), lim

|x|→∞
E(x) = O( 1

|x|2 ).

Numerically, the unbounded region can be handled in a number of different ways, for instance
by the coupling of finite and boundary elements eg [56, 37, 16, 55, 38, 75, 14, 44, 45, 21, 79, 74,
19]. A number of other alternatives are also described by Bossavit [19] (Chapter 7). However,
for simplicity, we assume that Ω∞

N is truncated a finite distance from the conductor by a
bounding box M , denote the truncated non conducting region by ΩN = Ω∞

N ∩M , and impose
an appropriate boundary condition on ∂M .
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Figure 1: Illustration of an eddy current problem of a solid conductor ΩC surrounded by an
infinite non-conducting region Ω∞

N and excited by a coil with current J
s

There are a number of possible formulations of the quasi-stationary Maxwell equations
(1a)-(1d) in terms of primal variables or auxiliary vector or scalar potentials as well as hybrid
formulations. A review of several variants can be found in Biro [13], and in earlier works eg
Biro and Preis [15]. Hiptmair and Sterz [36] have investigated different excitation possibilities
for eddy current problems expressed in terms of primal and potential variables. There is also
considerable discussion concerning the application of these different formulations to multiply
connected domains, for example [19, 36, 31, 16, 62].

In this work we pick out the following two variants: First, a formulation which describes
(1a)-(1d) only in terms of the magnetic field, namely the H based formulation, and, secondly,
the A based formulation relying on the introduction of an auxiliary magnetic vector potential
A. Depending on the problem under consideration and its topological properties, and the
formulation adopted, one sometimes also makes use of scalar magnetic potentials ψ and scalar
electric potentials Φ. For these different eddy current formulations, the vector valued fields
H and A are conformingly discretized with tangential continuous finite elements, which were
first proposed by Nédélec [57, 58]. The lowest order Nédélec elements of the first kind are
commonly known as edge elements as their is a single degree of freedom associated with each
edge. The scalar electric or magnetic potentials lie in H1(Ω) and hence are discretized by
standard continuous finite elements. The corresponding lowest H1 approximation consists
of the standard nodal hat functions associated with the vertices of the elements. A general
overview of finite element methods for Maxwell’s equations can be found, for example, in the
book by Monk [54].

Higher order finite elements, in particular hp-finite elements, offer superior approxima-
tion properties as it is known that using the correct combination of mesh subdivision (h-
refinement) and polynomial enrichment (p-refinement) leads to exponential convergence of
the finite element solution for problems with smooth solutions as well as piecewise analytic
solutions with singularities due to re-entrant corners and edges [4, 68, 66, 24, 25]. Crucial
to the efficient implementation of the hp-finite element method are hierarchic sets of basis
functions for higher order Nédélec and continuous elements. Several variants of these basis
functions have been proposed including, Webb and Forghani [76], Webb [73], Demkowicz
et al. [27, 59], Ainsworth and Coyle [1, 2], Bossavit [20] and Schöberl and Zaglmayr [65].
In the context of computational electromagnetism, these elements have been applied to a
range of applications including eigenvalue computation [35, 3, 23] and electromagnetic scat-
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tering [28, 26, 22, 52, 46, 51, 49, 50, 53] where evidence of accurate solutions and exponential
convergence, for the correct combination of h and p refinements, has been demonstrated.

In order to apply hp-finite elements to practical problems an efficient means of solving
the linear system is required. Efficient solution techniques for eddy current problems include
multigrid preconditioning approaches developed by Hiptmair [32], Arnold et al. [9], Reitzinger
and Schöberl [60], Becket al. [12] and Bachinger et al. [11] as well as related work on precondi-
tioning similar systems eg [6]. Nevertheless, these methods are mainly designed, and applied,
to finite element discretizations with fixed or low polynomial degrees. The hierarchic basis
functions proposed by Schöberl and Zaglmayr lend themselves to a parameter-robust iterative
two-level solver: Assuming that an appropriate h-version solver on the low-order space (the
coarse level) is available, simple block Jacobi smoothing is sufficient on the high-order level
(the fine level). This preconditioning technique is described and analysed in [65, 78] and has
been modified for wave propagation problems by Ledger [48, 47]. In this work, we combine
and extend these strategies by further exploiting the discrete space splitting of the underlying
hierarchical hp-finite element basis and suggest an improved version of a hierarchical hp-finite
element solver for eddy current problems.

The paper proceeds as follows: The first part describes several different variational formu-
lations that are commonly used for solving the eddy current problem. In particular, the H

based and the A based formulations will be discussed in detail for simply connected domains
in Section 2. In Section 3 the appropriate treatment of eddy current problems on multiply
connected domains will be discussed and the necessary modifications to the H based and
the A based formulations will be outlined when handles and cavities (holes) are present in
the domain. The relative merits of the H based and A based formulations are discussed in
Section 4. In the second part of the paper, an hp-finite element approach to the solution of the
A based formulation of the eddy current solution on multiply connected domains will be in-
troduced. An improved preconditioner is introduced as a novel contribution, which allows the
rapid solution of the linear equation and consequently the efficient solution of these problems.
Section 5 describes the choice of hp-finite element basis functions as introduced in [65, 78]
and Section 6 describes an efficient preconditioning technique for this finite element basis.
Numerical results are presented in Section 7, which show the application of these techniques
to eddy current problems set on simply connected and multiply connected domains.

2 Variational approaches to the solution of eddy current prob-

lems

We first introduce some notation and review some basic results on the function spaces em-
ployed in this work.

2.1 Basic assumption and notations

In the sequel reference will be made to the following definitions: Let Ω = interior(ΩN ∪
ΩC),ΩN ,ΩC ⊂ R3 be bounded, open Lipschitz-domains with ΩC ∩ ΩN = ∅. We refer to the
unit outward normal vector on boundaries by n. In this section we assume the conducting
domain ΩC as well as Ω to be contractible (simply connected with connected boundary [19]).
This assumption will be weakened in Section 3.

Furthermore, we introduce the following notation: Let [[u×n]] := u|Ω1
×n1 + u|Ω2

×n2
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denote the jump of the tangential component of a vector quantity u over some interface
Γ = ∂Ω1 ∩ ∂Ω2 between two disjoint regions Ω1 and Ω2. Here, n1 denotes the outer normal
vector on ∂Ω1 and n2 = −n1 the outer normal vector of ∂Ω2. We use the analogous notation
for the jump in the normal component, namely [[u · n]] := u|Ω1

· n1 + u|Ω2
· n2.

In the variational framework we refer to the L2(Ω)-inner product by (u,v)Ω :=
∫
Ω u(x) ·

v(x)dx.

2.2 Function spaces and mapping properties of differential operators

In view of a variational formulation of Maxwell’s equations, we introduce the following scalar
and vector-valued function spaces:

H1(Ω) := {v ∈ L2(Ω) : ∇v ∈ (L2(Ω))3},
H(curl,Ω) := {u ∈ (L2(Ω))3 : curl u ∈ (L2(Ω))3},
H(div,Ω) := {u ∈ (L2(Ω))3 : div u ∈ L2(Ω)}.

The de Rham sequence

R
id−→ H1(Ω)

∇−→ H(curl,Ω)
curl−→ H(div,Ω)

div−→ L2(Ω) (3)

is fundamental in the functional as well as in the numerical analysis of Maxwell’s equations
[19, 57, 8, 33, 30, 25, 54]. It summarises the relation between the above function spaces and
the mapping properties of their natural differential operators. For contractible domains the
de Rham sequence (3) is exact [19, 8], namely

R = {v ∈ H1(Ω) : ∇v = 0},
∇H1(Ω) = {v ∈ H(curl,Ω) : curl v = 0},

curlH(curl,Ω) = {v ∈ H(div,Ω) : div v = 0},
divH(div,Ω) = L2(Ω).

The range of a differential operator in the sequence is not only a subset but really coincides
with the nullspace of the succeeding differential operator. Finally, the divergence operator is
surjective.

Remark 2.1. Analogous de Rham sequences can be formulated for function spaces obeying
boundary conditions, see eg [33, 54]. Considering the subspaces of functions having zero
canonical trace

H1
0 (Ω) := {v ∈ H1(Ω) : v = 0 on ∂Ω},

H0(curl,Ω) := {u ∈ H(curl,Ω) : n × u = 0 on ∂Ω},

the null space of the curl operator (for a topologically trivial domain Ω) is

∇H1
0 (Ω) = {v ∈ H0(curl,Ω) : curlv = 0}.
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2.3 Variational formulation of the H based formulation

One suitable formulation for solving eddy current problems is the H based formulation, which
can be traced back to the early work by Bossavit and Vérité [21]. The H based formulation
is best expressed as

curlE = iωµH in Ω, (4a)

curlH = σE + J
s in ΩC , (4b)

curlH = J
s in ΩN , (4c)

with boundary and interface conditions

n × H = 0 on ∂Ω, (4d)

[[n × H ]] = 0 on ∂ΩN ∩ ∂ΩC , (4e)

[[n × E]] = 0 on ∂ΩN ∩ ∂ΩC . (4f)

Remark 2.2. For simplicity, we truncate Ω∞
N by imposing n × H = 0 on the truncated

boundary ∂Ω with ΩN 6= ∅. In the paper of Bossavit and Vérité [21] an alternative approach
to the truncation ΩN , which allows ∂Ω to brought close to, or if suppJ

s ⊂ ΩC , on the surface
of the conductor ∂ΩC itself, is employed.

Following Hiptmair and Sterz [36] we define

V(Js) = {v ∈ H(curl,Ω), curlv = J
s in ΩN ,n × v = 0 on ∂Ω},

the weak form of this problem can then be written as: Find H ∈ V(Js) such that

(σ−1 curl H, curl v)ΩC
+ iω(µH ,v)Ω = (σ−1 curlJs,v)ΩC

∀v ∈ V(0). (5)

In the case of current excitation, with suppJ
s ⊂ ΩN , one chooses a field H

s ∈ H(curl,Ω) such
that curlHs = J

s in ΩN and the weak form becomes: Find H = H
s + H

′ with H
′ ∈ V(0)

such that
(σ−1 curl H , curl v)ΩC

+ iω(µH ,v)Ω = 0 ∀v ∈ V(0). (6)

Note that in the topologically trivial case, which is precisely the case shown in Figure 1,
H

′ can be written in the simple form H
′ = −∇ψ′ in ΩN , where ψ′ ∈ H1

0 (ΩN ) is a scalar
potential. Other types of excitation are discussed by Hiptmair and Sterz [36]. Note that this
formulation is also often referred to in the literature as the H − ψ 1 formulation (eg [79]).

2.4 Variational formulation of the A based formulation and gauging con-
ditions

A second possible formulation for solving the eddy current problem is the A based formulation.
This formulation is based on fulfilling (1d) exactly by introducing a vector potential A, which
is such that B = curlA. This vector potential is not unique. In the conducting region ΩC

1We adopt the convection that the variables used in ΩC are listed first and those used in ΩN are listed
second.
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we uniquely define the vector potential by temporal gauging such that E = −iωA. Following
Hiptmair and Sterz [36] we denote this as the A based formulation:

curl µ−1 curl A + iωσA = 0 in ΩC , (7a)

curl µ−1 curl A = J
s in ΩN , (7b)

with boundary and transmission conditions

n × A = 0 on ∂Ω, (7c)

[[n × A]] = 0 on ∂ΩN ∩ ∂ΩC , (7d)

[[n × µ−1 curlA]] = 0 on ∂ΩN ∩ ∂ΩC . (7e)

Note that this is often referred to as the A
∗−A formulation (eg [13]), which indicates that the

modified vector potential, A
∗, is used in ΩC and the vector potential A is used in ΩN

2. We
remark that in the non-conducting domain, ΩN , the above formulation is still ungauged and
that A is defined up to gradients ∇H1

0 (ΩN ). As previously mentioned, there are several ways
to account the restriction to a bounded domain Ω, here we claim that (7c) implies n×E = 0
on the outer boundary ∂Ω.

We introduce a parameter κ that is such that κ = 0 in the non-conducting domain ΩN

and κ = iµ0ωσ in the conducting domain ΩC . The weak formulation of (7) then reads as
follows: Find A ∈ H0(curl,Ω) such that

(µ−1
r curl A, curl v)Ω + (κA,v)ΩC

= (µ0J
s,v)ΩN

∀v ∈ H0(curl,Ω). (8)

2.4.1 Gauging strategies in ΩN

Due to vanishing κ in the non-conducting domain ΩN the solution A ∈ H0(curl,Ω) is unique
only up to gradient functions in ΩN . There are various ways to enforce uniqueness, which
include working with factor spaces or by introducing further constraints on the solution. One
commonly used choice is the Coulomb gauge

divA = 0 in ΩN . (9)

In a weak sense the Coulomb gauge is equivalent to A being orthogonal to all gradients
∇H1

0 (ΩN ) (continuously extended by zero onto Ω). This leads to a mixed problem of the
form: Find A ∈ H0(curl,Ω) and Φ ∈ H1

0 (Ω) such that

(µ−1
r curl A, curl v)Ω + (κA,v)Ω + (∇Φ,v)ΩN

= (µ0J
s
v)ΩN

, (10a)

(∇Ψ,A)ΩN
= 0, (10b)

for all v ∈ H(curl,Ω) and for all Ψ ∈ H1
0 (ΩN ), where Φ is a Lagrange multiplier, which has

been introduced in order to enforce the Coulomb gauge in weak sense.
As an alternative, and following [10, 65, 78], we introduce the primal perturbed problem:

Let ε > 0 be a small perturbation parameter, then: Find A
ε ∈ H0(curl,Ω) such that

(µ−1
r curl A

ε, curl v)Ω + (κAε,v)ΩC
+ (εAε,v)ΩN

= (µ0J
s,v)ΩN

∀v ∈ H0(curl,Ω). (11)

2In this work we choose not to make a distinction between A
∗ and A.
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The analysis of [11, 78] for the perturbed version of the magnetostatic regime carries over to
the perturbed eddy current problem (11): The unique solution A

ε of the perturbed problem
lies in H0(curl,Ω)∩ (∇H1

0 (ΩN ))⊥. There holds ‖A−A
ε‖H(curl,Ω) ≤ c · ε ‖J s‖H(curl,Ω)∗ where

the constant c is independent of ε and A denotes the solution of the mixed problem (10).

Remark 2.3. The perturbation parameter ε is chosen as 0 < ε ≪ |κ|. Hence, for a stable
numerical discretization the solver has to be robust as ε → 0 (see Section 6 and [65, 9, 32,
78, 60]).

In view of a compact notation we introduce a perturbed parameter

κ̃ :=

{
ε in ΩN

κ in ΩC
. The weak problem then reads: Find A

ε ∈ H0(curl,Ω) such that

(µ−1
r curl A

ε, curl v)Ω + (κ̃A
ε,v)Ω = (µ0J

s, v)ΩN
∀v ∈ H0(curl,Ω). (12)

Remark 2.4. In Section 5.2 we introduce an alternative gauging strategy of (8), which en-
ables a reduced hp-finite element discretization to be realised.

3 Multiply connected domains

In this section we wish to give a concise review of the way in which the H based and A based
formulations can be applied to problems with multiply connected domains. Specifically, we
consider conductors, ΩC , that have either a handle or a cavity (hole), which are excited by
divergence-free current sources in the form of coils located in ΩN . Our review draws on the
existing literature [21, 55, 79, 74, 77, 16, 37, 19, 36, 62], which considers the application of
different formulations of the eddy current problems to multiply connected domains.

In the case of general Lipschitz domains the classical de Rham sequence (3) is no longer
an exact sequence. The range of a differential operator in the sequence (3) is still a subspace
of the null space of the preceding operator, but the spaces no longer coincide [19, 8, 7].
In such cases finite dimensional cohomology spaces must be added to regain exactness. The
dimension of these spaces depend on the topological properties of the domain in consideration,
Ω, precisely on its Betti numbers.
The zeroth Betti number, β0(Ω), is the number of connected parts of Ω, which for a bounded
connected region in R

3 is always 1. The first Betti number, β1(Ω) is the genus, i.e. the
number of handles of Ω, while the second Betti number, β2(Ω) is one less than the number
of connected parts of the boundary ∂Ω, i.e. the number of holes.

In particular, in the situation where Ω contains β1(Ω) handles, a non-bounding orientated
path, known as a loop can be associated with each handle. For β1(Ω) loops, one can also
construct β1(Ω) cuts of Ω that can be represented by piece wise orientated surfaces, known
as Seifert surfaces. If Σ1, · · · ,ΣN , where N := β1(Ω), stands for the complete set of cuts,
then every curl free vector field in Ω \ (Σ1 ∪ · · · ∪ ΣN ) can be expressed as the gradient of
a scalar field. However, if one considers a curl free vector field in all of Ω it need not be a
gradient but instead there exists a finite dimensional cohomology space H1(Ω) ⊂ H(curl,Ω)
with dimH1(Ω) = β1(Ω) such that

{u ∈ H(curl,Ω), curl u = 0} = ∇H1(Ω) ⊕H1(Ω) (13)

In a similar way if β2(Ω) 6= 0 this would indicate that there are divergence free fields in
Ω that are not expressed as the curl of some vector field. For further details we refer to
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[41, 42, 19, 62, 34, 36, 31] and references therein.

To illustrate the importance of this we consider a number of selected concrete examples.

3.1 A conductor with a handle

The concept of a handle is best realised by considering the image of a coffee cup. Clearly,
conductors are rarely of this shape, but, topologically speaking, this is the same as a torus or
a conducting plate with a hole piecing through it. The conductor plate shown in Figure 2 is
often referred to as a conducting plate with a hole eg [29], however, to avoid confusion with
our second example we shall refer to it as a conducting plate with a handle. For this example,
β0(ΩC) = β0(ΩN ) = 1, β1(ΩC) = β1(ΩN ) = 1 and β2(ΩC) = β2(ΩN ) = 0.

Js

Γ Ν

ΩC  N
Σ

Γ
 C

 C
Σ

A

B

Ω
N

Figure 2: Illustration of an eddy current problem of a conductor ΩC with a handle surrounded
by an non-conducting region ΩN and current excitation J

s by a coil (note that ∂Ω is not
shown)

We first examine the application of the H based formulation to this problem, making the
naive (and ultimately incorrect) choice that H

′ = −∇ψ′ in ΩN . The validity of the approach
can be investigated by considering the contour integral of H · τ along the loop ΓN yielding

∮

ΓN

H · τdl =

∮

ΓN

(Hs −∇ψ′) · τdl =

∮

ΓN

H
s · τdl −

∮

ΓN

∇ψ′ · τdl =

=

∫

SN

curl H
s · nds− (ψB − ψA) =

∫

SN

J
s · nds, (14)

where the contour integral of the tangential component of H
s is converted to a surface integral

with the help of Stokes theorem. The surface SN is the surface that is enclosed by the contour
ΓN . The relation ψB = ψA follows since the location of B is the same as A and the value
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of ψ′ at these points must be the same for a single–valued potential. On the other hand,
considering an integral of the normal component of curl H on the surface SN yields

∫

SN

curl H · nds =

∫

SN

(Js + J
e) · nds, (15)

where J
e = σE is the eddy current in the conductor. Consequently, making the choice

H = −∇ψ′ in ΩN is unable to correctly predict the fields when a conductor has a handle. To
overcome this, a cut, ΣN , is usually introduced in the hole that has been punched through
the conductor and the scalar potential ψ′ is allowed to jump at this location [19] . The jump
in the potential means that it is multiply valued so that the jump at the cut corresponds to

ψ′|Σ+

N

− ψ′|Σ−

N

=

∫

SN

J
e · nds, (16)

and consequently, the fields are correctly predicted. This is also what the theory predicts:
since β1(ΩN ) = 1 there exists a loop, ΓN , and with it is associated a cutting surface,
ΣN . Curl free fields in all of ΩN , that are not gradients of a scalar field, can be rep-
resented by a finite dimensional cohomology space H1(ΩN ) ⊂ H(curl,ΩN ) of dimensional
dimH1(ΩN ) = β1(ΩN ) = 1, which, is in turn, represented by the jump in ψ′ at ΣN

3. A
common misinterpretation is that the cut is introduced in order to convert a multiply con-
nected domain into one that is simply connected eg [71], it is noteworthy that a statement
along these lines led to a heated debate in the literature [18, 43]. The correct mathematical
definition of a cut has been proposed by Kotigua [41], its purpose being to make every curl
free field equal to the gradient of a scalar in Ω minus the cut(s) [19]. For further details of
the computational implementation see [19] and [41, 42] where an algorithm for the detecting
the location of the cutting (or Siefert) surface is described.

Reconsidering the contour integral of H ·τ along the loop ΓN , we next consider the validity
of the A based formulation. A similar approach to that performed in equation (14) yields

∮

ΓN

H · τdl =

∮

ΓN

µ−1 curl A · τdl =

∫

SN

curlµ−1 curlA · nds =

=

∫

SN

(Js − iωσA) · nds =

∫

SN

(Js + J
e) · nds, (17)

and consequently the fields are correctly predicted in this case as one does not attempt to
represent curl free fields as the gradient of scalar functions.

3.2 A conductor with a cavity (or hole)

The concept of a cavity (or hole) is best realised by considering the illustration shown in
Figure 3. In this figure a conducting plate containing an internal cavity Ω0 is shown. Also
depicted is a surface S1, which is located in ΩN and that totally encloses the conductor. The
region between the outer boundary of the conductor ∂ΩC \ ∂ΩC ∩ ∂Ω0 and the surface S1

is denoted by Ω1. For this example, β0(ΩC) = β0(ΩN ) = 1, β1(ΩC) = β1(ΩN ) = 0 and
β2(ΩC) = β2(ΩN ) = 1.

3In a similar manner, due to the existence of the loop, ΓC , and associated surface, ΣC , curl free fields in all
of ΩC , which are not gradients of a scalar field, can be represented by a finite dimensional cohomology space
H

1(ΩC) ⊂ H(curl, ΩC) of dimensional dimH
1(ΩC) = β1(ΩC) = 1.

10



Js

Ω
N

S

n

1

CΩ
0Ω

Ω1

Figure 3: Illustration of an eddy current problem consisting of a conducting plate ΩC with a
cavity Ω0. Also shown is an arbitrary surface S1 which totally encloses the conductor. The
current excitation J

s is by a coil in ΩN (note that ∂Ω is not shown)

We first examine the application of the H based formulation to this problem, the validity
of the approach can be considered by considering the surface integral of n ·B on the surface
S1 ∫

S1

n · Bds =

∫

Ω1+ΩC+Ω0

∇ · Bdx =

∫

Ω0

∇ · Bdx 6= 0, (18)

where Ω1 corresponds to the volume between the surface S1 and the conductor and the Ω0

to the volume of the cavity. The last equality follows since Maxwell’s equations tell us that
∇ · B = 0 in Ω1 and ΩC . However, in the cavity, Ω0, we have notably not assumed this to
be true since if ∇ · B = 0 in Ω0 there would be no need to consider a cavity. The case of
∇ · B 6= 0 in Ω0 corresponds to the presence of a magnetic monopole, which, incidentally,
could also be modelled by this formulation.

In the case of A based formulation, the surface integral becomes

∫

S1

n · Bds =

∫

Ω1+ΩC+Ω0

∇ · curl Adx = 0, (19)

and consequently, the A based formulation, when unmodified, cannot be used to model a
magnetic monopole. This is also what the theory predicts: since β2(ΩC) = 1 there exists
a finite dimensional cohomology space H2(ΩC) ⊂ H(div,ΩC) of dimension dimH2(ΩC) =
β2(ΩC) = 1 and it is precisely this which represents the divergence free fields that are not
the curl of some vector field. However, as the situations in which one might wish to model a
magnetic monopole are rare we shall not pursue it further.

11



4 Which approach to follow

In the previous section we have illustrated two possible situations where eddy current problems
contain a multiply connected domain. We observed that for the case of a conductor with a
handle, the H based formulation, with the choice of H

′ = −∇ψ′ in ΩN , required the insertion
of cut in order to correct the fields although the A based formulation did not. In the case of
the conductor with a cavity, the H based formulation is able to correctly predict the fields,
although the A based is not. However, as the case of a conductor with a handle is of greater
practical relevance this shall be our focus.

For multiply connected domains with handles, one might be tempted to think that the
A based formulation is superior as it does not require the insertion of a cut into the compu-
tational domain. Nevertheless, there are other computational related drawbacks associated
with the standard A based formulation: Firstly, in the non–conducting region this formu-
lation requires discretization of a vector field rather than a scalar field, which may lead to
a greater number unknowns as there are generally a larger number of edges in tetrahedral
meshes than vertices. Secondly, a conforming discretization of the A based formulation (with-
out gauging in ΩN ) results in singular linear system. This system may be solved iteratively
provided that the right hand side is consistent [61]. If one applies gauging in ΩN by regular-
ization (as in (12)), the resulting linear system is ill conditioned due to the choice of a small
regularization parameter. Hence, one needs parameter-robust solvers in order to achieve sta-
ble solutions. To overcome these difficulties a popular choice is the so called A,Φ-A (often
also referred to as the A,V -A formulation) in which the vector potential is used in ΩC and
ΩN and a scalar potential is used in ΩC [62, 13, 15, 17], the incorporation of the Coulomb
gauge for this formulation is discussed for example in [15]. However, the A,Φ-A, formula-
tion needs the right treatment of cuts for the scalar potential Φ and also leads to a coupled
problem at first hand. A comparison of the iterative solution of the ungauged A based and
ungauged A,Φ-A formulations when BiCG iterative solver with incomplete Cholesky factori-
sation preconditioner have been presented in [38]. These results indicate that, for this choice
of preconditioner, the latter formulation performed better and the former experienced prob-
lems at higher frequencies. Further computational comparison between gauged formulations
can be found in [15, 17].

In this work we will follow the A based formulation described by (7). In the remain-
ing part of the work we present an accurate discretization of (8), which uses an efficient
parameter-robust solution technique incorporating a special variants of gauging by regular-
ization introduced in Section 2.4.1, and a new problem-adapted preconditioner. Thereby, we
overcome the difficulties usually associated with this formulation.

5 Conforming discretization by hp-finite elements

This section presents a brief review of the main concepts of hp-finite elements and reduced
basis gauging as introduced in [65, 78], which will be the starting point for the construction
of efficient preconditioners for the eddy current problem following in Section 6.

For the discretization we assume a conforming regular simplicial triangulation of Ω, which
we denote by Th. We refer to the set of its vertices by Vh, to the set of the edges by Eh and
to the set of the faces by Fh.
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5.1 Tangential-continuous hp-finite elements and explicit kernel splitting

An H(curl)-conforming finite element discretization relies on tangential continuity between
element interfaces. The construction of low-order tangential-continuous elements - the Nédélec
elements - date back to the work of Nédélec [57, 58]. There are several construction variants
of high order H(curl)-conforming basis functions, eg Demkowicz et al. [27, 59], Ainsworth
and Coyle [1, 2] and Bossavit [20]. An essential property in all these constructions is the
exactness of the discrete de Rham sequence - the discrete version of (3):

R
id−→ H1(Ω)

∇−→ H(curl,Ω)
curl−→ H(div,Ω)

div−→ L2(Ω)⋃ ⋃ ⋃ ⋃

R
id−→ Wh,p+1

∇−→ Vh,p
curl−→ Qh,p−1

div−→ Sh,p−2

(20)

In view of building an efficient preconditioner for the eddy current problem we rely on the
special construction principle of the H(curl)-conforming space Vh,p as introduced in [65].

We start with an arbitrary low-order vertex, high-order edge-face-cell based splitting of
the hierarchic scalar H1-conforming finite element space

Wh,p+1 := Wh,1 ⊕
∑

edges E∈Eh

WE
p+1 ⊕

∑

faces F∈Fh

WF
p+1 ⊕

∑

cells I∈Th

W I
p+1 ⊂ H1(Ω), (21)

as is common in the hp-framework see eg [25, 66, 67]. Here, the low-order space, Wh,1, is
the classical scalar finite element space of continuous, piecewise linear hat functions. Its
hierarchic edge-, face-, cell-based enrichment (21) allows for arbitrary varying polynomial
degrees on each edge, face, and cell. In the case of a uniform polynomial degree we obtain the
space of polynomials of total degree p+ 1, i.e. Wh,p+1|T := P p+1(T ) on each element T ∈ Th.

Exploiting the locality of the gradients of the high-order edge-, face- and cell-based basis
functions it is possible to construct a low-order edge, high-order edge-face-cell based splitting
of the H(curl)-conforming finite element space, which takes the following form

Vh,p := V N0

h ⊕
∑

edges E∈Eh

∇WE
p+1 ⊕

∑

faces F∈Fh

∇WF
p+1 ⊕ Ṽ F

p ⊕
∑

cells I∈Th

∇W I
p+1 ⊕ Ṽ I

p . (22)

This is a direct sum of the discrete subsets of H(curl,Ω). The low-order space V N0

h correspond
to the lowest-order Nédélec space as introduced in [58]. The sub-spaces denoted by a tilde
are local, linearly independent, and conforming completions of the face-based and cell-based
gradient spaces. They are chosen such that firstly, the desired approximation order for Vh,p

is obtained and secondly, that the exactness property

Vh,p ∩∇H1(Ω) = ∇Wh,p+1, (23)

holds. Detailed construction principles of the space splitting (22), as well as a concrete set of
appropriate basis functions for tetrahedral elements can be found in [65]. Its generalisation
to other element types can be found in [78].

The principal point of the splitting (22) is the explicit representation of the high-order
gradient fields, which, among other advantages, plays a major role in the construction of
parameter-robust and powerful preconditioners as presented in [65, 78] and is further exploited
in the following sections.
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5.2 Reduced basis gauging in non-conducting domain ΩN

In the sequel, we further distinguish between the sub-meshes of the conducting and the non-
conducting domains. We denote the sub-triangulations of Th corresponding to ΩN and ΩC

by T N
h and T C

h , respectively. Moreover, we refer to edges, faces and cells in the conducting
domain ΩC by equipping the set of vertices, edges and cells by the additional index C.

The special construction of the H(curl)-conforming hp-discretization (22) easily allows to
skip the explicit higher-order gradients corresponding to the interior of ΩN . We define the
reduced basis

V red
h,p := V N0

h ⊕
∑

E∈EC

h

∇WE
p+1 ⊕

∑

F∈FC

h

∇WF
p+1 ⊕

∑

F∈Fh

Ṽ F
p ⊕

∑

I∈T C

h

∇W I
p+1 ⊕

∑

I∈Th

Ṽ I
p . (24)

There holds

V red
h,p |ΩN

∩∇H1
0 (ΩN ) = ∇Wh,1|ΩN

∩∇H1
0 (ΩN ) with ∇Wh,1 ⊂ V N0

h . (25)

The Galerkin approximation of the ungauged weak formulation (8) on the reduced space
reads: Find A ∈ V red

h,p ∩H0(curl,Ω) such that

(µ−1
r curl A, curl v)Ω + (κA,v)ΩC

= (µ0J
s,v)ΩC

∀v ∈ H0(curl,Ω), (26)

where a special variant of gauging introduced in Section 2.4.1 for the continuous problem
is imposed on the reduced finite element space. In order to ensure unique solvability of
(26) we impose a gauging condition on the low-order gradients ∇Wh,1 ⊂ VN0

by adding a
regularization term analogous to

∫
ΩN

εA ·vdx for the low-order Nédélec space VN0
space only.

For the purpose of a concise presentation, we recall the definition of the perturbed parameter

κ̃ =

{
ε in ΩN

κ in ΩC
.

5.3 Resulting equations

Following the approach outlined above, the resulting parametric dependent algebraic systems
of equations is: Find x ∈ C

M such that

Kx = b, (27)

where K is a complex symmetric matrix. Below, we adopt two different presentations for K.
Firstly, we decompose the degrees of freedom (d.o.f.) into those associated with low-

order Nédélec space (subscript N0), the high-order edge functions (gradients, subscript E),
the high-order face functions (subscript F ) and the high-order cell functions (subscript I).
Following [65, 78] we have that

K =







AN0N0
0 AN0F AN0I

0 0 0 0
AFN0

0 AFF AFI

AIN0
0 AIF AII


 +




MN0N0
(κ̃) MN0E(κ) MN0F (κ) MN0I(κ)

MEN0
(κ) MEE(κ) MEF (κ) MEI(κ)

MFN0
(κ) MFE(κ) MFF (κ) MFI(κ)

MIN0
(κ) MIE(κ) MIF (κ) MII(κ)





 . (28)
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This matrix is comprised of terms originating from the stiffness matrix entries Aij =
∫
Ω µ

−1
r curlϕi·

curlϕj dx and the mass matrix entries Mij(κ) =
∫
Ω κϕi · ϕj dx, where ϕi is a typical basis

function.
The second decomposition proves useful for the introduction of our novel preconditioning

technique. For this decomposition, we begin by decomposing the d.o.f.’s into those associated
with the low-order Nédélec space (N0), the high-order gradient functions (in ΩC , subscript
g) and the remaining non-gradients functions (in Ω, subscript n). By reordering the degrees
of freedom, we can express K as

K =







AN0N0
0 AN0n

0 0 0
AnN0

0 Ann


 +




MN0N0
(κ̃) MN0g(κ) MN0n(κ)

MgN0
(κ) Mgg(κ) Mgn(κ)

MnN0
(κ) Mng(κ) Mnn(κ)





 . (29)

Moreover, due to the special construction of the H(curl)-conforming basis functions, we iden-
tify, using appropriate superscripts for E, F and I, that

Kgg =




KEE
gg KEF

gg KEI
gg

KFE
gg KFF

gg KFI
gg

KIE
gg KIF

gg KII
gg


 ,

Knn =

(
KFF

nn KFI
nn

KIF
nn KII

nn

)
,

Kgn =




KEF
gn KEI

gn

KFF
gn KFI

gn

KIF
gn KII

gn


 ,

and note Kng = (Kgn)T . The identification of gradients and non-gradients was presented and
proved in previous works [65, 78] to obtain parameter-robustness of any block-type Jacobi
preconditioner for an elliptic parameter-dependent curl-curl problem as soon as the low-order
space is treated correctly (see [65, 9, 32]). In this work, we use this explicit identification
once more in order to treat gradients and non-gradients separately in the construction of a
preconditioner for eddy current problems.

6 Efficient preconditioning

The proposed iterative approach for solving (27) consists of applying a preconditioner and a
suitable iterative solution technique. The complex nature of K means that certain iterative
solution techniques are not guaranteed to converge. Notably this includes the conjugate
gradient algorithm, which is only guaranteed to converge for real symmetric positive definite
matrices. The complex nature of the matrix limits the choice of iterative solution technique to
those which can cope with matrices with complex eigenvalues, of which Generalised Minimum
Residual (GMRES) and variants of Biconjugate Gradients (BICG) algorithms are possible
candidates. In particular, the stabilised version of the BICG algorithm is preferred to standard
BICG in order to overcome the difficulties associated with the breakdown of the standard
version [63]. Despite these methods being suitable for complex matrices they may be slow
to converge for large practical problems without a suitable preconditioner C−1. It is recalled
that a good preconditioner is one that is cheap to compute and is such that P−1K ≈ I where
I is the identity matrix [63].
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Schöberl and Zaglmayr have presented a parameter robust block Jacobi preconditioner,
which is applied to magnetostatic and eigenvalue problems in [65], and, additionally, to eddy
current problems in [78]. Using the decomposition of the d.o.f.’s presented in (28) this pre-
conditioner takes the form P−1 = C−1 with

C =




KN0N0
0 0 0

0 K̃EE(|κ|) 0 0

0 0 K̃FF (|κ|) 0

0 0 0 K̃II(|κ|)


 (30)

where the tilde is used to indicate that the block itself is block diagonal, i.e. only the d.o.f.’s
associated to a single entity, an edge, a face or a cell, is used. When this preconditioner is
expressed in terms of the alternative decomposition of the d.o.f.’s (29) it becomes

C =




KN0N0
0 0

0 Cnn Cgn

0 Cng Cgg


 , (31)

where the blocks associated with the high-order gradient basis functions reduce to scaled mass
matrices

Cgg = block diag (K̃EE
gg (|κ|), K̃FF

gg (|κ|), K̃II
gg (|κ|))

= block diag (M̃EE
gg (|κ|), M̃FF

gg (|κ|), M̃ II
gg (|κ|)),

and

Cgn =




0 0

K̃FF
gn (|κ|) 0

0 K̃II
gn(|κ|)


 =




0 0

M̃FF
gn (|κ|) 0

0 M̃ II
gn(|κ|)


 = (Cng)

T ,

while the non-gradient block is

Cnn = block diag (K̃FF
nn (|κ|), K̃II

nn(|κ|))
= block diag (ÃFF

nn + M̃FF
nn (|κ|), ÃII

nn + M̃ II
nn(|κ|)).

In the above, the tilde again indicate that the blocks are block diagonal.
The numerical experiments included in this work show that a substantial improvement

is obtained for eddy current problems by exploiting the fact that the blocks of the system
matrix, K, which are associated with the high-order gradient basis functions, reduce to scaled
mass matrices and adopting a revised preconditioner for the iterative solution of Kx = b. By
adopting the decomposition (29), the revised preconditioner takes the form P−1 = D−1 with

D =




KN0N0
0 0

0 Dgg 0
0 0 Dnn


 , (32)

where

Dgg = block diag (iM̃EE
gg (|κ|), iM̃FF

gg (|κ|), iM̃ II
gg (|κ|),

Dnn = block diag (ÃFF
nn + M̃FF

nn (|κ|), ÃII
nn + M̃ II

nn(|κ|)).
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For the gradient block this special scaling in the preconditioner implies
D−1

gg (block diag(K̃gg)) = I. By expressing the preconditioner in this way the application of the
inverse of the high-order blocks corresponds to the solution of a linear system with a positive
definite matrix, which, for the gradient blocks, is then post multiplied by 1/i = −i. As these
blocks are positive definite the application of the inverse can be achieved approximately by
using a standard iterative solver, such as conjugate gradients, or exactly by using a direct
solver. The low order space plays a special role and therefore the application of K−1

N0N0
is

achieved by using a (sparse) direct solver.
As p is increased the number of cell-based d.o.f.’s grows rapidly. In particular, for three–

dimensional problems, they grow at the rate O(p3). The cell-based d.o.f.’s are independent
between each element and consequently a substantial reduction in the size of the linear system
can be achieved by performing static condensation. This approach is adopted during the finite
element assembly process, for further details see eg [39, 66]. After static condensation, the
condensed gradient blocks will no longer solely scaled by κ. Nevertheless, motivated by the
concept presented above, we still apply the same scaling, i|κ|, to the former gradient-blocks
in the preconditioner for the condensed system and, as will be documented by the numerical
experiments in the following section, this still yields a substantially improved iterative solver.

In the next section we investigate the benefits of the new preconditioner for a simple
model problem. This is followed by an application of the approach to a set of challenging
three–dimensional benchmark problems, which include both simply connected and multiply
connected geometries.

6.1 Application of preconditioners to a model problem

The performance of the proposed iterative technique is first explored for a model problem in
two–dimensions. The model problem relates to the solution of

curl µ−1
r curl A + κA = µ0J in Ω, (33a)

n × A = 0 on ∂Ω, (33b)

where the domain, Ω, consists of two conducting cylinders, each of radius 2×10−3m, separated
by 4.1 × 10−3m and surrounded by a non–conducting medium. The conductivity of the
cylinders is initially set as σ = 104S/m, the angular frequency is set as ω = 100π and the
relative permeability is set to one, µr = 1. For this problem, our interest lies in the ability
to efficiently solve the linear system rather than the actual solution of the problem. As the
choice of right hand side does not influence the performance of the iterative solution technique,
Dirichlet boundary conditions on ∂Ω and the vector J were arbitrarily set. The setup of the
model problem is shown in Figure 4. The regularization parameter in the non–conducting
region was set as ε = 10−5, which is approximately 11 orders of magnitude smaller than κ in
the conducting region.

To test the preconditioners proposed in Section 6, an unstructured mesh of 492 triangular
elements is employed and uniform polynomial degrees p = 1, 2, 3, 4 considered in turn. For
each discretization, the eigenspectrum of the preconditioned linear system P−1K using the
matrices P = C and P = D is investigated. The eigenspectra of the preconditioned system
matrices are shown in Figure 5. From this figure we can see a clear difference in the eigenspec-
tra of the preconditioned systems. For the choice P = C we observe that, for all polynomial
degrees considered, the eigenspectrum exhibits a wide degree of scattering of the points and
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Figure 4: Illustration of a two–dimensional model problem used for the testing of the precon-
ditioner

there is no clear pattern to the spectrum. On the other hand, the choice of P = D yields an
eigenspectrum that exhibits a strong clustering about a point which is bounded away from
zero. For both preconditioners, the changes in the eigenspectra of the preconditioned systems
are small for increased p.

Given the strong clustering of the eigenvalues exhibited by the preconditioner P = D we
expect this preconditioner to converge faster than preconditioner P = C. The number of
iterations required for BICG (stabilised) and GMRES to reach a relative residual of 10−5 is
now investigated for the two preconditioning strategies and the different discretization. The
results of this investigation are shown in Figure 6. From this figure we can observe that the
number of iterations required to reach convergence using the preconditioner P = D is always
less than when than when the preconditioner P = C is employed. The preconditioner P = D
requires around 40% less iterations than P = C for this example. Comparing the BICG
(stabilised) and GMRES iterative approaches, we observe that the convergence of GMRES is
far smoother than that of BICG, the former exhibiting a linear convergence with almost every
iteration leading to a reduction in the relative residual and the latter exhibiting somewhat
more erratic convergence, although, in the majority of iterations, the relative residual is still
reduced. Furthermore, we observe that the number of iterations is larger for BICG than
GMRES, for the same choice of preconditioner. But, this does not necessarily mean that
GMRES requires less computational effort than BICG. A single iteration of BICG requires two
matrix products while GMRES requires only one, however, the cost of the GMRES iteration
increases (in terms of floating point operations) as the the iteration progresses [40]. To prevent
the iterations of GMRES from being becoming too expensive, a restart is performed every 5
(inner) iterations, which also limits the number of previous solution vectors that are required
to be stored. If more solution vectors are stored a further reduction in the number of iterations
would be obtained, although this would be at the expense of greater storage requirements.

As previously remarked, the choice of basis functions implies that the preconditioners are
robust in κ̃ [65]. This is also borne out in numerical experiments, Figure 7 shows the iterations
obtained when the GMRES iterative solution algorithm was applied to the iterative solution
of Kx = b and preconditioners P = C and P = D are applied to problems where the
regularization parameter was fixed at ε = 10−5 and σ in the conducting regions was chosen
as 104, 105, 105, 107S/m in turn. In Figure 7 we observe how the number of iteration remains
robust with respect to varying κ̃ for both the preconditioner P = C and the preconditioner
P = D.
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Figure 5: Two-dimensional model eddy current problem (33): The eigenspectra of P−1K for
the preconditioners P = C and P = D, a mesh of 492 unstructured triangular elements and
the polynomial degrees p = 1, 2, 3, 4
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Figure 6: Two-dimensional model eddy current problem (33): The convergence of the iterative
solvers BICG and GMRES for the preconditioners P = C and P = D, a mesh of 492
unstructured triangular elements and the polynomial degrees p = 1, 2, 3, 4
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Figure 7: Two-dimensional model eddy current problem (33): The convergence of the iterative
solvers GMRES for the preconditioners P = C and P = D, for varying σ, a mesh of 492
unstructured triangular elements and the polynomial degrees p = 1, 2, 3, 4

7 Benchmark problems

The preconditioner P = D was seen to be clearly beneficial over P = C for the previ-
ous two–dimensional model problem. The effectiveness of the preconditioner will be now be
demonstrated for two three–dimensional benchmark problems. The benchmark problems con-
sidered have been chosen from the set of problems proposed as part of series of COMPUMAG
workshops. The problems are known as the TEAM (Testing of Electromagnetic Analysis
Methods) benchmark problems [70] and are well established for testing computational elec-
tromagnetics software. Specifically, the benchmark problems 6 and 7 will be considered. The
benchmark problem 6 consists of a conducting sphere in a uniform magnetic field for which
an analytical solution is available (eg [56]). Numerical results for this benchmark problem
have been reported using a variety of methods (eg [56, 69]). The second, and more challeng-
ing problem, consists of a conducting plate with a handle. This problem has no analytical
solution, although experimental results [29] as well as other computational data [29, 38, 79]
are available for making comparisons.

7.1 Conducting sphere in a uniform magnetic field

The TEAM benchmark problem 6 consists of a conducting sphere in a uniform magnetic
field. The sphere has radius 0.05m and material properties µr = 20 and σ = 107Sm−1. The
surrounding free space has µr = 1 and σ = 0. The magnetic flux density is B = (0, 0, 1)T

and the angular frequency is ω = 100πrads−1. This geometry represents a simply connected
region.
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Figure 8: Conducting sphere in a uniform magnetic field: The convergence of GMRES using
the preconditioners P = C and P = D, for the meshes of 3697 and 8982 tetrahedral elements
and the polynomial degrees p = 0, 1, 2, 3, 4

For the simulations, the computational domain was truncated with rectangular outer box
on which n × A was specified. The regions between the sphere and the outer box as well
as inside the sphere were triangulated by unstructured meshes of tetrahedral elements using
the FLITE mesh generator [72]. Using the mesh generator a coarse mesh of 3697 elements as
well as a finer mesh of 8982 elements were generated. The regularization parameter for this
example was set as ε = 10−6 in the non–conducting region, which is approximately 9 orders
of magnitude smaller than κ in the conducting region. On each mesh elements of uniform
polynomial degrees p = 0, 1, 2, 3, 4 were considered. The performance of the preconditioners
P = C and P = D for the iterative solution of the linear system using the GMRES algorithm,
for each of the described discretizations, is shown in Figure 8.

Just as in the two dimensional model problem, we see that the choice of preconditioner
P = D is far superior to using P = C. In this case, for both meshes, the preconditioner
P = D needs only approximately 50% of the iterations required by P = C to reach the
relative tolerance of 10−5.

The approximation of the geometry is undertaken separately to the field. If the linear
geometry from the mesh generator is used, the surface of the sphere is poorly represented
for the coarse meshes considered. The poor representation of the surface of the sphere limits
the accuracy of the finite element approach when p refinement is performed. To overcome
this, the approach previously described by Coyle and Ledger [23] is adopted to obtain an
accurate description of the geometry. This approach involves the correction of the linear
geometry along edges and faces. The degree of correction is expressed in terms of g where
g+1 implies the polynomial degree of the geometry approximation. A suitable error measure
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Figure 9: Conducting sphere in a uniform magnetic field: The convergence of ‖Je−J
e
H‖2

L2(∂Ωc)
against numbers of degrees of freedom, for meshes of 3697 and 8982 tetrahedral elements, the
polynomial degrees p = 0, 1, 2, 3, 4 and different orders of geometry correction

Je
Hx Je

Hy

Figure 10: Conducting sphere in a uniform magnetic field: The distribution of the eddy
current on the surface of the sphere J

e
H = (Je

Hx, J
e
Hy, 0) computed using the mesh of 3697

tetrahedra and p = 4.

for measuring the approximation of the eddy current is the L2 type norm

‖Je − J
e
H‖2

L2(∂Ωc)
=

∫

∂Ωc

|Je − J
e
H |2ds. (34)

The computed eddy current is obtained from J
e
H = −iσAH and the analytical eddy current

from the formulae in [56]. The error measure is computed for the meshes of 3697 and 8982
tetrahedral elements and uniform polynomial degrees p = 0, 1, 2, 3, 4 in turn when the order
geometry correction are g = 0, 1, 2. The results of this investigation are shown in Figure 9. The
different curves indicate different orders of geometry correction and the points along the curve
represent increasing polynomial degree. When the degree of correction is g = 0 the geometry
is not corrected and we observe that the error obtained by performing p refinement stagnate
for both meshes at around 1%. However, for g = 1 and g = 2 performing p refinement leads
to a rapid reduction in ‖Je −J

e
H‖2

L2(∂Ωc)
, which does not stagnate for the polynomial degrees

considered. The downward shaping curve indicates that the convergence is exponential.
Contours of the computed solution for the eddy current on the surface of the sphere when

the mesh of 3697 elements and p = 4 elements are used are shown in Figure 10. These
contours compare well with the contours of the eddy current distribution computed using the
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Figure 11: Conducting sphere in a uniform magnetic field: The distribution of the eddy
current on the surface of the sphere J

e = (Je
x, J

e
y , 0) obtained from the analytical solution

analytical solution [56] shown in Figure 11. The contours of the eddy currents obtained using
the mesh of 8982 tetrahedra and p = 4 elements was also similar.

7.2 Asymmetrical conducting plate with a handle

The team benchmark problem 7 consists of a conducting plate with a handle 4, which is
placed eccentrically, is set asymmetrically in a non–uniform magnetic field [29]. The field is
produced by a coil whose current varies sinusoidal with time. The dimensions of the problem
can already be found in several sources [29, 38, 79] and therefore are not reproduced here. The
conductivity of the plate is 3.256 × 107Sm−1, the maximum Ampere turn of the coil is 2742
and the frequencies operation are 100πrad s−1 and 400πrad s−1. The relative permeability
is µr = 1 everywhere. The benchmark problem represents a multiply connected domain, due
to the presence of a loop passing through the plate. For computational purposes, the domain
is truncated at a finite distance form the conducting plate where the boundary condition
n×A = 0 is applied. A mesh of 7308 unstructured tetrahedral elements was then generated
using the NETGEN mesh generator. Figure 12 shows a screen shot of the various components
involved in the simulation as entered using the NETGEN open-source mesh generator [64].

Numerical results are presented in Figures 13 and 14 for the convergence of the precon-
ditioned iterative solution strategy using the preconditioners P = C and P = D. Figure 13
shows the convergence of GMRES for uniform polynomial degrees p = 0, 1, 2, 3, 4 when the
frequency of operation was set as ω = 100πrad s−1. The results presented in Figure 14
are for uniform polynomial degrees p = 0, 1, 2, 3, 4 when the frequency operation was set as
ω = 400πrad s−1. The regularization parameter was set to be ε = 10−4 in the non–conducting
region, which means that it is approximately 8 orders of magnitude smaller than κ in the con-
ducting region, for both frequencies of operation. The tolerance for the relative residual was
set as 10−8.

From Figures 13 and 14 it is clear that the number of iterations required by preconditioner
P = D to reach the required tolerance is substantially lower than that required by P = C
for the same polynomial degree and frequency of operation. The increase in iterations for
higher p observed when the preconditioner P = D is applied is also much smaller than when

4We recall from Section 3.1 that this example is often referred to as a “conducting plate with a hole” in
the literature
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Figure 12: Illustration of a screen shot of the geometry for the TEAM benchmark problem
7 using the NETGEN software showing the coil in green and conducting plate with a handle
in blue
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Figure 13: Conducting plate with a handle in a non–uniform magnetic field with ω =
100πrad s−1 : The convergence of GMRES using the preconditioners P = C and P = D, for
ε = 10−4, a mesh of 7308 tetrahedral elements and the polynomial degrees p = 0, 1, 2, 3, 4
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Figure 14: Conducting plate with a handle in a non–uniform magnetic field with ω =
400πrad s−1: The convergence of GMRES using the preconditioners P = C and P = D,
for ε = 10−4, a mesh of 7308 tetrahedral elements and the polynomial degrees p = 0, 1, 2, 3, 4

the preconditioner P = C is applied. Although the preconditioners are robust in κ̃, a small
variation in the number of iterations occurs for different values of ω due to the the rounding
errors that accumulate when the iterations are performed.

To investigate the accuracy of the computations, the variation of the eddy current along
an axis on the surface of the plate is plotted and compared against experimental results for
both frequencies. Specifically, the quantity

χ = sign
√
χ2

R + χ2
I , (35)

which was also used in [29], where χR and χI are the real and imaginary parts of a complex
quantity and sign = ±1 depending on whether χR is positive or negative, is computed for the
y components of eddy current, Je

y , along the line y = 72 × 10−3m, z = 19 × 10−3m.

The results of this investigation for ω = 100πrad s−1 and ω = 400πrad s−1 are shown in
Figure 15. For both frequencies we first observe that increasing p leads to rapid convergence
of the eddy current Je

y . Secondly, for both frequencies, when p ≥ 3 the agreement between
the computed solutions and the experimental results is excellent.

The computed contours of J
e for ω = 100πrad s−1 on the surface of the conducting plate

for p = 4 elements is shown in in Figure 16. The corresponding contours for ω = 400πrad s−1

are shown in Figure 17.

8 Conclusions

In the first part of the work, we have presented a brief review of different formulations for
solving the eddy current problem on multiply connected domains and through the presenta-
tion of two concrete examples highlighted the importance of using the correct mathematical
treatment, which is available in the literature, eg [36, 19, 31] and references therein.

In the second part, we presented an accurate, efficient solution procedure for the A based
formulation of the eddy current problem on multiply connected domains with handles. We
utilised a hp-finite element discretization and presented an improved block Jacobi precon-
ditioner, which treats gradient blocks in a more natural way, as a novel contribution. The
preconditioned system exhibited an eigenspectrum that is clustered and bounded away from
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Figure 15: Conducting plate with a handle in a non–uniform magnetic field: The convergence
of Jy on the line y = 72 × 10−3m, z = 19 × 10−3m for increasing p and a comparison of the
experimental and numerical values for Jy, when ω = 100πrad s−1 and ω = 400πrad s−1
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Figure 16: Conducting plate with a handle in a non–uniform magnetic field with ω =
100πrad s−1: The contours of J

e on the surface of the conducting plate for uniform uni-
form p = 4 elements across a mesh of 7308 unstructured tetrahedral elements

Je
x Je

y Je
z

Figure 17: Conducting plate with a handle in a non–uniform magnetic field with ω =
400πrad s−1: The contours of J

e on the surface of the conducting plate for uniform p = 4
elements across a mesh of 7308 unstructured tetrahedral elements
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0 in the complex plane, improving the efficiency of iterative solution techniques such as
GMRES. Computational results showed that this led to a saving of between 40% − 75% in
iterations for no additional computational effort. Furthermore, the use of hp-finite elements
enabled accurate solutions to be computed that were in excellent agreement with analytical
and experimental benchmark solutions.

For certain eddy current problems, in order to accurately resolve the small skin depth,
one may prefer alternative discretizations, which might include the use of hybrid meshes and
local mesh refinement. The H(curl)-conforming basis proposed by Schöberl and Zaglmayr
allows for such discretization and the preconditioner described in this work can be trivially
extended to these.
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