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Abstract

In this paper we present a finite element analysis for a Dirichlet boundary control
problem where the Dirichlet control is considered in a convex closed subspace of the
energy space H

1/2(Γ). As an equivalent norm in H
1/2(Γ) we use the energy norm

induced by the so–called Steklov–Poincaré operator which realizes the Dirichlet to
Neumann map, and which can be implemented by using standard finite element
methods. The presented stability and error analysis of the discretization of the
resulting variational inequality is based on the mapping properties of the solution
operators related to the primal and adjoint boundary value problems, and their
finite element approximations. Some numerical results are given, which confirm on
one hand the theoretical estimates, but on the other hand indicate the differences
when modelling the control in L2(Γ).

1 Introduction

In this paper, the focus is on the a priori error analysis of the finite element approximation
to minimise the cost functional

J (u, z) = F(u) +
1

2
̺‖z‖2V , (1.1)

where the state u is the unique solution of a second order elliptic partial differential equation
in a polygonal bounded domain Ω, satisfying a Dirichlet boundary condition u = z on
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Γ = ∂Ω. The non–negative cost functional F(u) describes, e.g., some physical quantity to
be minimised, while ‖z‖2V reflects either the costs of the control z ∈ U ⊂ V, or represents
some regularization when considering, for example, an inverse source problem. Note that
V is an appropriate Hilbert space to be specified, and U ⊂ V is a convex closed subset
which describes additional constraints on the control.

For a general analysis on optimal control problems governed by partial differential
equations we refer to, e.g., [28, 41], for numerical methods to solve related variational
inequalities, see, e.g., [13], and for a more recent overview on the theory and numerics of
optimal control problems, see, for example, [16].

Optimal control problems (1.1) with a Dirichlet boundary control play an important
role, for example, in the context of computational fluid mechanics., see, e.g., [12, 15], and
the references given therein. In [15], the cost functional J (u, z) = F(u) is the domain
integral over the strain tensor of the velocity field u satisfying the steady state Navier–
Stokes equations with the Dirichlet boundary condition u = z ∈ U ⊂ H1/2(Γ). A similar
minimisation problem is considered in [12], where the cost functional J (u, z) is either
written as boundary integral to describe the work needed to overcome the drag exerted on
a given body, or equivalently as a domain integral over the strain of the velocity, and some
additional boundary integral. In both cases, the cost functional J (u, z) describes an energy
in H1(Ω), or equivalently, in the Sobolev trace space H1/2(Γ). Hence, when considering the
minimisation problem (1.1) subject to a Dirichlet boundary value problem, V = H1/2(Γ)
appears as a natural choice [3]. To obtain smoother optimal solutions one may even consider
more regular cost functionals: In [21], V = H2(Γ) is considered where the norm ‖ · ‖H2(Γ)

is realized by using the Laplace–Beltrami operator on the boundary Γ. Note that such an
approach requires sufficient regularity of the domain Ω which is assumed to be of the class
C2,1. In [28], several Neumann and Dirichlet boundary control problems with observations
in the domain Ω and on the boundary Γ are considered from an analytic point of view.
To describe the involved Sobolev norms on the boundary Γ, in particular H−1/2(Γ) and
H1/2(Γ), certain fractional powers of the Laplace–Beltrami operator are used which seems
to be complicated from a numerical point of view. The situation simplifies when U = L2(Γ)
is used as control space. But in this case, the associated partial differential equation
has to be considered within an ultra–weak variational formulation, see, for example, [28],
and [4] for an appropriate finite element approximation using standard piecewise linear
basis functions. The use of the ultra–weak variational formulation of the primal Dirichlet
boundary value problem in the context of an optimal control problem requires the adjoint
variable p to be sufficiently regular, i.e., p ∈ H2(Ω) ∩H1

0 (Ω). Since the adjoint variable p
itself is the unique solution of the adjoint partial differential equation with homogeneous
Dirichlet boundary conditions, either a smooth boundary Γ, or a polygonal or polyhedral
but convex domain Ω has to be assumed. For related finite element approximations, see,
e.g., [8, 10, 14, 26, 30], or [44] in the case of a finite dimensional Dirichlet control. Several
variational formulations of Dirichlet control problems are discussed in [25]. To include
a Dirichlet boundary condition u = z ∈ L2(Γ) in a standard variational formulation,
alternatively one may consider a penalty approximation of the Dirichlet boundary condition
by using a Robin boundary condition, see, e.g., [3, 17, 19, 20]. Again, sufficient smoothness
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of the boundary Γ has to be assumed.
The aim of this paper is to present a numerical analysis of an energy space finite element

approach when the control z is considered as an element of the boundary trace space
H1/2(Γ), where an equivalent norm is induced by the so–called Steklov–Poincaré operator
which realizes the Dirichlet to Neumann map. Note that in this case the costs represent
the energy of the harmonic extension of the Dirichlet control z. The main difference to
the more common approach when using L2(Γ) as control space appears in the optimality
condition. In particular, the Steklov–Poincaré operator links the Dirichlet control to the
normal derivative of the adjoint variable. The related optimality condition results then
in a higher regularity of the control, and requires less assumptions on the smoothness
of the adjoint variable. Indeed, the use of H1/2(Γ) as control space reflects the proper
mapping properties of the Dirichlet to Neumann map which appears within the optimality
condition. As a consequence, we also obtain higher order convergence results for the
approximate finite element solution. Instead, when using L2(Γ) as control space, Dirichlet
and Neumann boundary data are identified with each other. In particular for polygonal
and polyhedral domains Ω the control z will then be zero in all corner points which seems
to be not motivated from the application in mind.

The paper is organised as follows: In Sect. 2, we describe the considered Dirichlet
boundary control problem, the primal boundary value problem, and the reduced cost func-
tional as well as the related adjoint boundary value problem. The minimiser of the reduced
cost functional is characterised as the unique solution of a variational inequality of the first
kind. The finite element discretization of the variational inequality is described in Sect. 3,
where also finite element approximations of both the primal and adjoint boundary value
problems and related error estimates are given. These approximations are used to describe
and to analyse the finite element discretization of the perturbed variational inequality. The
main results of this paper are the error estimates as given in Corollary 3.8. Some numerical
results are finally given in Sect. 4, where we also give a comparison with the more common
approach when considering the control in L2(Γ).

For the ease of presentation we restrict our considerations to the case of a convex and
polygonal bounded domain. However, the presented approach applies to general two–
and three–dimensional Lipschitz domains when taking into account related results on the
regularity of the solutions and on appropriate finite element approximations.

For an overview on the used Sobolev spaces in the domain and on the boundary, see,
for example, [1, 31, 37, 40].

2 Dirichlet control problems

Let Ω ⊂ R
2 be a convex polygonal bounded domain with boundary Γ = ∂Ω. As a

model problem, we consider the Dirichlet boundary control problem to minimise the cost
functional

J(u, z) =
1

2

∫

Ω

[u(x)− u(x)]2 dx+
1

2
̺|z|2H1/2(Γ) (2.1)
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subject to the constraint

−∆u = f in Ω, u = z on Γ, (2.2)

and where the control satisfies the box constraints

z ∈ U :=
{
w ∈ H1/2(Γ) : ga ≤ w ≤ gb on Γ

}
. (2.3)

We assume f ∈ L2(Ω), u ∈ L2(Ω), ̺ ∈ R+, ga, gb ∈ H1/2(Γ), and ga < gb on Γ.
The choice V = H1/2(Γ) ensures the well–posedness of the standard variational for-

mulation of the Dirichlet boundary value problem (2.2). There are several possibilities to
describe a (semi–)norm in H1/2(Γ), e.g., by using the Sobolev–Slobodeckii semi–norm

|z|2H1/2(Γ) =

∫

Γ

∫

Γ

[z(x)− z(y)]2

|x− y|n
dsxdsy,

other realizations rely on the use of Fourier or multilevel representations which imply
equivalent (semi–)norms in H1/2(Γ). However, since H1/2(Γ) is the boundary trace of
H1(Ω), we may also consider the equivalent Dirichlet trace norm

‖z‖H1/2(Γ) = min
Z∈H1(Ω):Z|Γ=z

‖Z‖H1(Ω).

In particular, for any z ∈ H1/2(Γ) there exists the harmonic extension uz ∈ H1(Ω) as the
unique solution of the homogeneous Dirichlet boundary value problem

−∆uz = 0 in Ω, uz = z on Γ. (2.4)

Using Green’s first formula, this motivates the use of the semi–norm

|z|2H1/2(Γ) :=

∫

Γ

∂

∂nx
uz(x)uz(x) dsx =

∫

Ω

|∇uz(x)|
2 dx,

which describes the energy of the harmonic extension uz ∈ H1(Ω) of the Dirichlet control
z ∈ H1/2(Γ). By introducing the Steklov–Poincaré operator S : H1/2(Γ) → H−1/2(Γ),

(Sz)(x) :=
∂

∂nx

uz(x) for almost all x ∈ Γ,

which realizes the Dirichlet to Neumann map related to the Dirichlet boundary value
problem (2.4), we can rewrite the semi–norm as

|z|2H1/2(Γ) = 〈Sz, z〉Γ (2.5)

where 〈·, ·〉Γ denotes the duality pairing of H−1/2(Γ) and H1/2(Γ).
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2.1 Primal boundary value problem

To rewrite the Dirichlet boundary control problem (2.1)–(2.3) by using a reduced cost func-
tional, we introduce a linear solution operator describing the application of the constraint
(2.2). Therefore we consider the homogeneous partial differential equation (2.4) with the
control as Dirichlet boundary condition, and an inhomogeneous partial differential equa-
tion with zero Dirichlet boundary conditions to describe a particular solution. Let uf be
the weak solution of the Dirichlet boundary value problem

−∆uf = f in Ω, uf = 0 on Γ, (2.6)

i.e., uf ∈ H1
0 (Ω) is the unique solution of the variational problem

∫

Ω

∇uf(x) · ∇v(x) dx =

∫

Ω

f(x)v(x) dx for all v ∈ H1
0 (Ω). (2.7)

The solution of the Dirichlet boundary value problem (2.2) is given by u = uz + uf ,
where uz ∈ H1(Ω) is the weak solution of the Dirichlet boundary value problem (2.4). By
applying the inverse trace theorem, see, e.g., [22, 31, 40] or [37, Theorem 2.22], there exists
a bounded extension Ez ∈ H1(Ω) for z ∈ H1/2(Γ). With uz = u0 + Ez, the variational
formulation of the Dirichlet boundary value problem (2.4) is to find u0 ∈ H1

0 (Ω) such that

∫

Ω

∇u0(x) · ∇v(x) dx = −

∫

Ω

∇Ez(x) · ∇v(x) dx for all v ∈ H1
0 (Ω). (2.8)

By using standard arguments we can ensure the unique solvability of the variational for-
mulations (2.7) and (2.8), respectively. Due to the compact imbedding H1(Ω) ⊂ L2(Ω) we
may introduce the bounded solution operator H : H1/2(Γ) → L2(Ω), uz = Hz. Hence we
can write the solution of the primal boundary value problem (2.2) as u = Hz + uf .

2.2 Reduced cost functional and adjoint boundary value problem

By using u = Hz+uf , we can write the cost functional (2.1) as the reduced cost functional

J̃(z) =
1

2
〈H∗Hz, z〉Γ + 〈H∗(uf − u), z〉Γ +

1

2
‖uf − u‖2L2(Ω) +

1

2
̺〈Sz, z〉Γ, (2.9)

where H∗ : L2(Ω) → H−1/2(Γ) is the adjoint operator of H : H1/2(Γ) → L2(Ω). For the
application τ = H∗ψ ∈ H−1/2(Γ), ψ ∈ L2(Ω), we have

〈τ, ϕ〉Γ = 〈H∗ψ, ϕ〉Γ = −〈
∂

∂n
p, ϕ〉Γ for all ϕ ∈ H1/2(Γ), (2.10)

where the adjoint variable p is the weak solution of the Dirichlet boundary value problem

−∆p = ψ in Ω, p = 0 on Γ, (2.11)
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i.e., p ∈ H1
0 (Ω) is the unique solution of the variational problem

∫

Ω

∇p(x) · ∇q(x) dx =

∫

Ω

ψ(x)q(x) dx for all q ∈ H1
0 (Ω). (2.12)

Finally, by using Green’s first formula we can rewrite (2.10) for ϕ ∈ H1/2(Γ) as

〈τ, ϕ〉Γ = −〈
∂

∂n
p, ϕ〉Γ = −

∫

Ω

∇p(x) · ∇Eϕ(x) dx+

∫

Ω

ψ(x)Eϕ(x) dx, (2.13)

where E : H1/2(Γ) → H1(Ω) is again the bounded extension operator.

2.3 Optimality condition

To characterise the minimiser of the reduced cost functional (2.9) we introduce the self–
adjoint and bounded operator

T̺ := H∗H + ̺S : H1/2(Γ) → H−1/2(Γ) (2.14)

satisfying
‖T̺z‖H−1/2(Γ) ≤ c

T̺

2 ‖z‖H1/2(Γ) for all z ∈ H1/2(Γ),

and define
g := H∗(u− uf) ∈ H−1/2(Γ).

Hence we can rewrite (2.9) as

J̃(z) =
1

2
〈T̺z, z〉Γ − 〈g, z〉Γ +

1

2
‖uf − u‖2L2(Ω). (2.15)

Lemma 2.1 The operator T̺ as defined in (2.14) is H1/2(Γ)–elliptic, i.e., there exists a

positive constant c
T̺

1 such that

〈T̺z, z〉Γ ≥ c
T̺

1 ‖z‖2H1/2(Γ) for all z ∈ H1/2(Γ).

Proof. For z ∈ H1/2(Γ), let uz = Hz ∈ H1(Ω) be the harmonic extension satisfying the
Dirichlet boundary value problem (2.4). Then, by (2.5)

〈T̺z, z〉Γ = ‖Hz‖2L2(Ω) + ̺〈Sz, z〉Γ = ‖uz‖
2
L2(Ω) + ̺‖∇uz‖

2
L2(Ω) ≥ min{1, ̺}‖uz‖

2
H1(Ω),

and the assertion follows from the trace theorem.

Since U ⊂ H1/2(Γ) is convex and closed, and since T̺ is self–adjoint and H1/2(Γ)–elliptic,
the minimisation of (2.15) is equivalent to solving a variational inequality to find z ∈ U
such that

〈T̺z, w − z〉Γ ≥ 〈g, w − z〉Γ for all w ∈ U . (2.16)
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Since (2.16) is an elliptic variational inequality of the first kind, we can use standard
arguments as given, for example in [6, 13, 28, 29], to establish unique solvability of the
variational inequality (2.16).

In what follows we will give another characterization of the solution z ∈ U of the vari-
ational inequality (2.16) as a Dirichlet trace of a solution of a bilateral Signorini boundary
value problem. We introduce

λ := T̺z − g = H∗[Hz − (u− uf)] + ̺Sz = H∗(u− u) + ̺Sz = −
∂

∂n
p+ ̺

∂

∂n
uz,

where p is the unique solution of the adjoint Dirichlet boundary value problem

−∆p = u− u in Ω, p = 0 on Γ, (2.17)

and where uz is the harmonic extension of z. Then we can rewrite the variational inequality
(2.16) as

〈λ, w − z〉Γ ≥ 0 for all w ∈ U .

Since the solution z ∈ U is uniquely determined, we introduce the active zones

Γa := {x ∈ Γ : z(x) = ga(x)} , Γb := {x ∈ Γ : z(x) = gb(x)} ,

and the inactive zone
Γn := Γ\(Γa ∪ Γb).

Let us first investigate the behavior of the solution z in the vicinity of the upper bound
gb. For an arbitrary test function w ∈ U with w ≤ z we define a non–negative function
ϕ := z − w ∈ H̃1/2(Γ\Γa) satisfying

ϕ(x) = 0 for x ∈ Γa, 0 < ϕ(x) ≤ z(x)− ga(x) for x ∈ Γ\Γa.

Hence we have
〈λ, ϕ〉Γ ≤ 0

for all appropriate test functions ϕ. By using a scaling argument we conclude λ ≤ 0 in the
sense of H−1/2(Γ\Γa). In the same way we find λ ≥ 0 in the sense of H−1/2(Γ\Γb) when
considering the lower bound, and we conclude

〈λ, ψ〉Γ = 0 for all ψ ∈ H̃1/2(Γn) = H̃1/2(Γ\Γa) ∩ H̃
1/2(Γ\Γb),

i.e., λ = 0 in the sense ofH−1/2(Γn). Hence we have obtained the complementary conditions

λ ≤ 0 for z = gb,
λ = 0 for ga < z < gb,
λ ≥ 0 for z = ga

which have to be understood as above.
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Finally we have that uz ∈ H1(Ω) is the unique solution of the Signorini boundary value
problem

−∆uz = 0 in Ω (2.18)

with the bilateral constraints on Γ

uz ≤ gb, ̺
∂

∂n
uz ≤

∂

∂n
p for uz = gb, uz ≥ ga, ̺

∂

∂n
uz ≥

∂

∂n
p for uz = ga, (2.19)

and

̺
∂

∂n
uz =

∂

∂n
p for ga < uz < gb. (2.20)

Note that the complementary conditions (2.19) and (2.20) are nothing than the Karush–
Kuhn–Tucker conditions which are related to the variational inequality (2.16).

Related to the regularity of solutions of the Dirichlet boundary value problem of the
Laplace equation in a convex polygonal bounded domain Ω we introduce the Sobolev trace
space H

3/2
pw (Γ) = H2(Ω)|Γ of piecewise smooth functions, i.e. for g ∈ H

3/2
pw (Γ) there exists

the unique harmonic extension ug ∈ H2(Ω) satisfying

−∆ug = 0 in Ω, ug = g on Γ = ∂Ω. (2.21)

Now we are in a position to formulate a regularity result for solutions of the bilateral
Signorini problem (2.18)–(2.20).

Theorem 2.2 Let Ω ⊂ R
2 be a convex polygonal bounded domain. Let u ∈ L2(Ω) and

f ∈ L2(Ω) be given. Moreover, we assume ga, gb ∈ H
3/2
pw (Γ), ga < gb. For the solution

of the bilateral Signorini problem (2.18)–(2.20) we then have uz ∈ H2(Ω), and therefore

z ∈ H
3/2
pw (Γ).

Proof. For the solution of the adjoint boundary value problem (2.17) we first have

p ∈ H2(Ω). For ga, gb ∈ H
3/2
pw (Γ) there exist harmonic extensions ua, ub ∈ H2(Ω) as defined

in (2.21).
Let z ∈ H1/2(Γ) be the unique solution of the variational inequality (2.16), and let

uz ∈ H1(Ω) be the harmonic extension, which satisfies the bilateral Signorini boundary
value problem (2.18)–(2.20), i.e.

−∆uz = 0 in Ω, uz = gb on Γb, uz = ga on Γa, ̺
∂

∂n
uz =

∂

∂n
p on Γn, (2.22)

where in addition we have the constraints

̺
∂

∂n
uz ≤

∂

∂n
p on Γb, ̺

∂

∂n
uz ≥

∂

∂n
p on Γa, ga < uz < gb on Γn.

Since the given boundary data of the mixed boundary value problem (2.22) are sufficient
regular, it remains to consider boundary points where the boundary condition changes from
an inactive zone to an active one. In particular we investigate the existence of singularity
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functions in the vicinity of those points. In contrast to boundary value problems with mixed
boundary conditions of Dirichlet and Neumann type, no singularity functions appear in
the case of Signorini boundary conditions.

Without loss of generality let x0 ∈ Γa ∩Γn. By introducing local polar coordinates, see
Fig. 1

x = x0 + r

(
cosφ

sin φ

)
for r > 0, φ ∈ [0, φ0], φ0 ∈ (0, π],

@
@

@
@

@
@

x0 Γn

Γa

φ0

Ω

Figure 1: Local polar coordinates in the vicinity of x0.

the solution uz can be written in the vicinity of x0 as

uz(x) = ũz(r, φ) = rα[A cosφ+B sinφ] + ureg

z (x), α ∈ (0, 1),

where ureg

z ∈ H2(Ω) is the regular part. To determine the coefficients A and B of the
singular part we consider the Signorini type boundary conditions on Γa and Γn, respectively.

For x ∈ Γn, i.e. φ = 0, and nx = (0,−1)⊤, the normal derivative of uz reads

∂

∂nx
uz(x) = αrα−1[A sin(α− 1)φ− B cos(α− 1)φ]|φ=0 +

∂

∂nx
ureg

z (x),

and for the Neumann boundary condition on Γn we obtain

̺
∂

∂nx
uz(x) = −̺αrα−1B + ̺

∂

∂nx
ureg

z (x) =
∂

∂nx
p(x).

Since the regular functions p, ureg

z ∈ H2(Ω) do not contain any singularity, we conclude
B = 0. On Γn we also have the complementary condition ga = ua < uz, which gives for
φ = 0

F (r) := ũz(r, 0)− ũa(r, 0) = rαA+ ũreg

z (r, 0)− ũa(r, 0) > 0 for r > 0.

Recall that ũz(0, 0) = uz(x0) = ua(x0) = ũa(0, 0). A first order Taylor expansion of the
regular part then gives

0 < F (r) = rαA+ r
d

dr
[ũreg

z (r, 0)− ũa(r, 0)]|r=r̃ for some r̃ ∈ (0, r),
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and therefore,

rα−1A+
d

dr
[ũreg

z (r, 0)− ũa(r, 0)]|r=r̃ > 0, for some r̃ ∈ (0, r), r > 0.

Since the first order derivative of the regular part is bounded for all r̃ ∈ (0, r), we conclude
A ≥ 0 when considering r → 0.

For x ∈ Γa, i.e. φ = φ0, we have

uz(x) = ũz(r, φ0) = rαA cosαφ0 + ureg

z (x) = ua(x),

from which we conclude

α0 =
π

2φ0
≥

1

2
for φ0 ∈ (0, π].

For x ∈ Γa the normal vector is nx = (− sinφ0, cosφ0)
⊤. Therefore, the normal derivative

of uz on Γa is given as

∂

∂nx
uz(x) = −Aα0r

α0−1 sin[(α0 − 1)φ+ φ0]|φ=φ0
+

∂

∂nx
ureg

z (x).

The complementary Neumann condition on Γa then reads

̺
∂

∂nx
uz(x) = −̺Aα0r

α0−1 + ̺
∂

∂nx
ureg

z (x) ≥
∂

∂nx
p(x),

from which we conclude A ≤ 0. Hence, together with A ≥ 0 this gives A = 0, i.e. no
singularity function occurs, in particuluar we have uz ∈ H2(Ω).

Remark 2.1 Although we have given a proof of Theorem 2.2 for the particular case of a

convex and polygonal bounded domain only, we may comment on more general situations

as follows:

1. As explicitely shown in the proof of Theorem 2.2 the solutions of Signorini boundary

value problem do not involve any singularity function. This remains true for smooth

boundaries. For a more general discussion of bilateral Signorini boundary conditions,

see, e.g., [2, 43].

2. In the case of additional Dirichlet or Neumann boundary conditions one may have

only a reduced regularity, see, e.g., the example as given in [24, p. 617f.].

3. Depending on the regularity of the given data one may even have higher regularity

results than proven in Theorem 2.2, but even for smooth data one cannot expect more

than uz ∈ H5/2−ε(Ω), i.e. z ∈ H2−ε(Γ).

4. In the case of a non–convex polygonal bounded domain we can not ensure p ∈ H2(Ω)
which would also reduce the regularity of the solution of the bilateral Signorini prob-

lem.
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3 Finite element approximations

For the ease of presentation we consider the case where Ω is a convex two–dimensional
polygonal bounded domain. Let

S1
h(Ω) := span{ϕk}

M
k=1 ⊂ H1(Ω), S1

h,0(Ω) := span{ϕk}
MΩ

k=1 ⊂ H1
0 (Ω) (3.1)

be some conforming finite element spaces of, e.g., piecewise linear and continuous basis
functions ϕk, which are defined with respect to some admissible domain triangulation Ωh

of mesh size h. Let

S1
h(Γ) := S1

h(Ω)|Γ = span{φi}
MΓ

i=1 ⊂ H1/2(Γ) (3.2)

be the boundary finite element space of, e.g., piecewise linear and continuous basis functions
φi which are the boundary traces of the domain basis functions ϕMΩ+i as given in (3.1).
For continuous functions ga and gb we define the discrete convex set

Uh :=
{
wh ∈ S1

h(Γ) : ga(xi) ≤ wh(xi) ≤ gb(xi) for all nodes xi ∈ Γ
}
.

Then the Galerkin discretization of the variational inequality (2.16) is to find zh ∈ Uh such
that

〈T̺zh, wh − zh〉Γ ≥ 〈g, wh − zh〉Γ for all wh ∈ Uh. (3.3)

Theorem 3.1 Let z ∈ U and zh ∈ Uh be the unique solutions of the variational inequalities

(2.16) and (3.3), respectively. We assume ga, gb ∈ H
3/2
pw (Γ) implying z ∈ H

3/2
pw (Γ). Then

there hold the error estimates

‖z − zh‖H1/2(Γ) ≤ c h ‖z‖
H

3/2
pw (Γ)

(3.4)

and

‖z − zh‖L2(Γ) ≤ c h3/2 ‖z‖
H

3/2
pw (Γ)

. (3.5)

Proof. The error estimate (3.4) follows from an abstract theory for the boundary element
approximation of variational inequalities [38, Theorem 3.4]. The error estimate (3.5) follows
from the Aubin–Nitsche trick for variational inequalities in H1/2(Γ), see [38, Corollary 4.6].
Note that T̺ : H

1(Γ) → L2(Γ) which follows from the mapping properties of all operators
which are involved in the definition of T̺.

Remark 3.1 For a more regular solution z ∈ H2−ε
pw

(Γ) we obtain an almost quadratic

order of convergence when considering the error in L2(Γ), see [38].

Although the error estimates (3.4) and (3.5) seem to be optimal, the operator T̺ as con-
sidered in the variational inequality (3.3) does not allow a practical implementation, since
this would require the discretizations of the composed solution operator H∗H and of the
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Steklov–Poincaré operator S, which are not possible in general. Hence, instead of (3.3) we
need to consider a perturbed variational inequality to find z̃h ∈ Uh such that

〈T̺̃z̃h, wh − z̃h〉Γ ≥ 〈g̃, wh − z̃h〉Γ for all wh ∈ Uh, (3.6)

where T̺̃ and g̃ are appropriate approximations of T̺ and g, respectively. The following
theorem presents an abstract consistency result, which will be used to analyse the finite
element approximations of the Steklov–Poincaré operator S, and of the primal and adjoint
boundary value problems.

Theorem 3.2 Let T̺̃ : H1/2(Γ) → H−1/2(Γ) be a bounded and S1
h(Γ)–elliptic approxima-

tion of T̺ satisfying

〈T̺̃zh, zh〉Γ ≥ c
T̺̃

1 ‖zh‖
2
H1/2(Γ) for all zh ∈ S1

h(Γ)

and

‖T̺̃z‖H−1/2(Γ) ≤ c
T̺̃

2 ‖z‖H1/2(Γ) for all z ∈ H1/2(Γ).

Let g̃ ∈ H−1/2(Γ) be some approximation of g. For the unique solution z̃h ∈ Uh of the

perturbed variational inequality (3.6) there holds the error estimate

‖z − z̃h‖H1/2(Γ) ≤

(
1 +

1

c
T̺̃

1

[c
T̺

2 + c
T̺̃

2 ]

)
‖z − zh‖H1/2(Γ) (3.7)

+
1

c
T̺̃

1

[
‖(T̺ − T̺̃)z‖H−1/2(Γ) + ‖g − g̃‖H−1/2(Γ)

]
,

where zh ∈ Uh is the unique solution of the discrete variational inequality (3.3).

Proof. The unique solvability of the discrete variational inequality (3.6) follows from the

S1
h(Γ)–ellipticity and boundedness of T̺̃. We further obtain

c
T̺̃

1 ‖zh − z̃h‖
2
H1/2(Γ) ≤ 〈T̺̃(zh − z̃h), zh − z̃h〉Γ

≤ 〈T̺̃zh, zh − z̃h〉Γ + 〈g̃ − g, z̃h − zh〉Γ + 〈T̺zh, z̃h − zh〉Γ

≤
[
‖(T̺̃ − T̺)zh‖H−1/2(Γ) + ‖g − g̃‖H−1/2(Γ)

]
‖zh − z̃h‖H1/2(Γ) .

The assertion now follows from the triangle inequality, and by using the boundedness of
T̺ and T̺̃, respectively.

It remains to define a suitable approximation T̺̃ := H̃∗H̃ + ̺S̃ which is based on finite

element approximations H̃ and H̃∗ of the primal and adjoint boundary value problem as
well as on the approximation S̃ of the Steklov–Poincaré operator.
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3.1 Primal boundary value problem

The application of the solution operator uz = Hz = u0 + Ez, u0 ∈ H1
0 (Ω), is given as the

unique solution of the variational problem (2.8). The finite element approximation of (2.8)
is to find u0,h ∈ S1

h,0(Ω) such that

∫

Ω

∇u0,h(x) · ∇vh(x) dx = −

∫

Ω

∇Ez(x) · ∇vh(x) dx for all vh ∈ S1
h,0(Ω). (3.8)

By using Cea’s lemma, see, e.g., [5] or [37, Theorem 8.1], and by using the approximation
property of S1

h,0(Ω), see, e.g., [37, Theorem 9.10], we conclude the unique solvability of the
Galerkin formulation (3.8) as well as the error estimate

‖u0 − u0,h‖H1(Ω) ≤ c h |u0|H2(Ω). (3.9)

By applying the Aubin–Nitsche trick, see, e.g., [5] or [37, Theorem 11.1], we also obtain
an error estimate in L2(Ω),

‖u0 − u0,h‖L2(Ω) ≤ c h2 |u0|H2(Ω). (3.10)

However, instead of the variational problem (3.8), we will consider a perturbed variational
problem to find an approximate solution ũ0,h ∈ S1

h,0(Ω) such that

∫

Ω

∇ũ0,h(x) · ∇vh(x) dx = −

∫

Ω

∇QhEz(x) · ∇vh(x) dx for all vh ∈ S1
h,0(Ω), (3.11)

where Qh : H1(Ω) → S1
h(Ω) denotes a quasi–interpolation operator [35]. Since the per-

turbed variational problem (3.11) admits a unique solution ũ0,h ∈ S1
h,0(Ω), a finite element

approximation H̃z of the solution operator Hz = u0 + Ez can be defined by

H̃z := ũ0,h +QhEz. (3.12)

Lemma 3.3 The approximate solution operator H̃ : H1/2(Γ) → L2(Ω) as defined in (3.12)

is bounded. Moreover, for z ∈ H
3/2
pw (Γ) there holds the approximation error estimate

‖Hz − H̃z‖L2(Ω) ≤ c h2
[
|u0|H2(Ω) + ‖z‖

H
3/2
pw (Γ)

]
. (3.13)

Proof. The boundedness of H̃ : H1/2(Γ) → L2(Ω) follows from the stability of the
finite element approximation scheme, and from the boundedness of the quasi–interpolation
operator Qh : H1(Ω) → S1

h(Ω) ⊂ H1(Ω), see [35]. The error estimate (3.13) follows from
the application of the Strang lemma, see, e.g., [5] or [37, Theorem 8.2], the Aubin–Nitsche
trick, see, e.g., [37, Lemma 11.3], and by using the L2 error estimate of the linear quasi–
interpolation operator Qh, see [35].
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In the same way as above we may define a finite element approximation of the particular
solution uf , i.e., uf,h ∈ S1

h,0(Ω) is the unique solution of the Galerkin variational problem
∫

Ω

∇uf,h(x) · ∇vh(x) dx =

∫

Ω

f(x)vh(x) dx for all vh ∈ S1
h,0(Ω)

satisfying the error estimate

‖uf − uf,h‖L2(Ω) ≤ c h2 ‖uf‖H2(Ω) (3.14)

in the case of a convex polygonal bounded domain Ω.

3.2 Steklov–Poincaré operator

The application of the Steklov–Poincaré operator S for z ∈ H1/2(Γ) is defined by

〈Sz, w〉Γ =

∫

Ω

∇Hz(x) · ∇Ew(x) dx for all w ∈ H1/2(Γ).

Based on the approximation H̃ of the solution operator H, we define the approximation S̃
by

〈S̃z, w〉Γ =

∫

Ω

∇H̃z(x) · ∇Ew(x) dx for all w ∈ H1/2(Γ). (3.15)

Lemma 3.4 [36, Theorem 3.5] The approximate Steklov–Poincaré operator S̃ : H1/2(Γ) →

H−1/2(Γ) is bounded and H1/2(Γ) semi–elliptic. For z ∈ H
3/2
pw (Γ) there holds the approxi-

mation error estimate

‖Sz − S̃z‖H−1/2(Γ) ≤ c h
[
|u0|H2(Ω) + ‖z‖

H
3/2
pw (Γ)

]
. (3.16)

3.3 Adjoint boundary value problem

Next we consider a finite element approximation of the adjoint solution operator τ = H∗ψ
as defined in (2.10), i.e., of

τ(x) = −
∂

∂nx
p(x) for x ∈ Γ,

where p ∈ H1
0 (Ω) is the unique solution of the variational problem (2.12). The finite

element approximation of (2.12) is to find ph ∈ S1
h,0(Ω) such that

∫

Ω

∇ph(x) · ∇vh(x) dx =

∫

Ω

ψ(x)vh(x) dx for all vh ∈ S1
h,0(Ω). (3.17)

Again, we conclude the unique solvability of the Galerkin formulation (3.17) by means of
Cea’s lemma, as well as the quasi–optimal error estimate, in the case of a convex polygonal
bounded domain,

‖p− ph‖H1(Ω) ≤ c h |p|H2(Ω) ≤ c h ‖ψ‖L2(Ω). (3.18)
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Now we are able to define an approximation τ̃ = H̃∗ψ of τ = H∗ψ for ψ ∈ L2(Ω) by

〈τ̃ , w〉Γ = −

∫

Ω

∇ph(x) · ∇Ew(x) dx+

∫

Ω

ψ(x)Ew(x) dx for all w ∈ H1/2(Γ). (3.19)

Lemma 3.5 For ψ ∈ L2(Ω) let τ̃ = H̃∗ψ be the approximation as defined in (3.19). Then,

H̃∗ : L2(Ω) → H−1/2(Γ) is bounded, and there holds the error estimate

‖(H∗ − H̃∗)ψ‖H−1/2(Γ) = ‖τ − τ̃‖H−1/2(Γ) ≤ c h ‖ψ‖L2(Ω). (3.20)

Proof. Both the boundedness of H̃∗ : L2(Ω) → H−1/2(Γ) and the error estimate (3.20)
follow from the finite element error estimate (3.18) when using duality arguments and the
inverse trace theorem.

3.4 Approximation error estimates

By using the finite element approximations H̃, H̃∗, and S̃ as defined in (3.12), (3.19) and
(3.15), respectively, we can introduce the finite element approximations

T̺̃ := ̺S̃ + H̃∗H̃, g̃ := H̃∗(u− uf,h) (3.21)

to be used within the perturbed variational inequality (3.6). For the application of Theo-
rem 3.2 we need to estimate the related approximation error.

Lemma 3.6 For z ∈ H
3/2
pw (Γ), let Hz = u0 + Ez ∈ H2(Ω) be the solution of the Dirichlet

boundary value problem (2.4). Let p ∈ H2(Ω) be the weak solution of the adjoint boundary

value problem (2.11) with ψ = Hz. Then there holds the error estimate

‖(T̺ − T̺̃)z‖H−1/2(Γ) ≤ c1 h ‖Hz‖L2(Ω) + c2 h
[
‖u0‖H2(Ω) + ‖z‖

H
3/2
pw (Γ)

]
. (3.22)

Proof. By the triangle inequality and by using the boundedness of H̃∗ : L2(Ω) → H−1/2(Γ)
we have

‖(T̺ − T̺̃)z‖H−1/2(Γ) = ‖(H∗H− H̃∗H̃)z + (S − S̃)z‖H−1/2(Γ)

≤ ‖(H∗ − H̃∗)Hz‖H−1/2(Γ) + ‖H̃∗(H− H̃)z‖H−1/2(Γ) + ‖(S − S̃)z‖H−1/2(Γ)

≤ ‖(H∗ − H̃∗)Hz‖H−1/2(Γ) + cH̃
∗

2 ‖(H− H̃)z‖L2(Ω) + ‖(S − S̃)z‖H−1/2(Γ).

The assertion now follows from the error estimates (3.13), (3.16), and (3.20).

Lemma 3.7 Let uf,h ∈ S1
h,0(Ω) be the finite element approximation of the particular solu-

tion uf ∈ H2(Ω). Let pu, puf
∈ H2(Ω) be the weak solutions of the adjoint boundary value

problem (2.11) with ψ = u and ψ = uf , respectively. Then there holds the error estimate

‖g − g̃‖H−1/2(Γ) ≤ c1 h
2 ‖uf‖H2(Ω) + c2 h

[
‖u‖L2(Ω) + ‖uf‖L2(Ω)

]
. (3.23)
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Proof. From the triangle inequality we first have

‖g − g̃‖H−1/2(Γ) = ‖H∗(u− uf)− H̃∗(u− uf,h)‖H−1/2(Γ)

≤ ‖(H∗ − H̃∗)u‖H−1/2(Γ) + ‖H̃∗(uf,h − uf)‖H−1/2(Γ) + ‖(H̃∗ −H∗)uf‖H−1/2(Γ).

The assertion now follows from the boundedness of H̃∗ : L2(Ω) → H−1/2(Γ), and the finite
element error estimates (3.14) and (3.20). For the application of Lemma 3.5 we need to
assume pu, puf

∈ H2(Ω) where pu and puf
are the weak solutions of the adjoint boundary

value problem (2.11) with ψ = u and ψ = uf , respectively. But this assumption is satisfied
in the case of a convex polygonal domain.

It remains to prove the S1
h(Γ)–ellipticity of the finite element approximation T̺̃. This will

be a consequence of the matrix representation of T̺̃ as discussed in the next subsection.
Now we are in the position to present the final error estimate for the approximate

solution z̃h of the variational inequality (3.6).

Corollary 3.8 Let Ω ⊂ R
2 be a convex polygonal bounded domain. For ga, gb ∈ H

3/2
pw (Γ)

and f, u ∈ L2(Ω) let z ∈ H
3/2
pw (Γ) be the unique solution of the variational inequality (2.16).

Let z̃h ∈ Uh be the unique solution of the perturbed variational inequality (3.6). Then there

holds the error estimate

‖z − z̃h‖H1/2(Γ) ≤ c(z, u, f) h . (3.24)

Moreover, we have

‖z − z̃h‖L2(Γ) ≤ c(z, u, f) h3/2. (3.25)

Proof. The error estimate (3.24) follows from Theorem 3.2 by using the approximation
error estimates (3.22) and (3.23). By using the Aubin–Nitsche trick for the perturbed
variational inequality (3.6) we obtain the error estimate (3.25).

From the error estimate (3.25) we also conclude, by applying the Aubin–Nitsche trick for
the primal boundary value problem (2.2), the error estimate

‖u− uh‖L2(Ω) ≤ c(z, u, f) h2 . (3.26)

Moreover, by using the Aubin–Nitsche trick for the adjoint boundary value problem (2.11)
with ψ = u− u we also obtain the error estimate

‖p− ph‖L2(Ω) ≤ c(z, u, f) h2 . (3.27)

3.5 Approximate variational inequality

Now we are in a position to describe the finite element approximation of the perturbed
variational inequality (3.6) to find z̃h ∈ Uh such that

̺〈S̃z̃h, wh − z̃h〉Γ + 〈H̃∗(H̃z̃h + uf,h − u), wh − z̃h〉Γ ≥ 0 for all wh ∈ Uh .
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Note that uh = H̃z̃h + uf,h ∈ S1
h(Ω) is the unique solution of the Galerkin variational

formulation
∫

Ω

∇uh(x) · ∇vh(x) dx =

∫

Ω

f(x)vh(x) dx for all vh ∈ S1
h,0(Ω). (3.28)

By using

uh(x) =

MΩ∑

k=1

uI,kϕk(x) +

MΓ∑

ℓ=1

z̃ℓϕMΩ+ℓ(x), z̃h(x) =

MΓ∑

ℓ=1

z̃ℓφℓ(x), φℓ = ϕMΩ+ℓ|Γ,

the variational formulation (3.28) is equivalent to the linear system

KIIuI +KCI z̃ = f
I
, (3.29)

where

KII [j, k] =

∫

Ω

∇ϕk(x) · ∇ϕj(x) dx, KCI [j, ℓ] =

∫

Ω

∇ϕMΩ+ℓ(x) · ∇ϕj(x) dx,

for k, j = 1, . . . ,MΩ, ℓ = 1, . . . ,MΓ, describe the standard finite element stiffness matrices,
and

fI,j =

∫

Ω

f(x)ϕj(x) dx for j = 1, . . . ,MΩ.

Next we consider, by using (3.19),

〈H̃∗(H̃z̃h + uf,h − u), wh − z̃h〉Γ = 〈H̃∗(uh − u), wh − z̃h〉Γ

= −

∫

Ω

∇ph(x) · ∇E(wh − z̃h)(x) dx+

∫

Ω

[uh(x)− u(x)]E(wh − z̃h)(x) dx,

where ph ∈ S1
h,0(Ω) is the unique solution of the variational problem

∫

Ω

∇ph(x) · ∇qh(x) dx =

∫

Ω

[uh(x)− u(x)]qh(x) dx for all qh ∈ S1
h,0(Ω).

Hence we conclude the matrix representation

〈H̃∗(H̃z̃h + uf,h − u), wh − z̃h〉Γ = (−KICp +MICuI +MCC z̃ − g
C
, w − z̃),

where
KIIp = MIIuI +MCI z̃ − g

I
.

Note that the matrices defined by

MII [j, k] =

∫

Ω

ϕk(x)ϕj(x) dx, MCI [j, ℓ] =MIC [ℓ, j] =

∫

Ω

ϕMΩ+ℓ(x)ϕj(x) dx

17



for k, j = 1, . . . ,MΩ, ℓ = 1, . . . ,MΓ and

MCC [j, ℓ] =

∫

Ω

ϕMΩ+ℓ(x)ϕMΩ+j(x) dx for j, ℓ = 1, . . . ,MΓ

are the standard finite element mass matrices. Moreover,

gI,j =

∫

Ω

u(x)ϕj(x) dx for j = 1, . . . ,MΩ, gC,ℓ =

∫

Ω

u(x)ϕMΩ+ℓ(x) dx for ℓ = 1, . . . ,MΓ.

Let S̃h be the Galerkin matrix of the approximate Steklov–Poincaré operator S̃, i.e.,

S̃h = KCC −KICK
−1
II KCI

where

KCC [j, ℓ] =

∫

Ω

∇ϕMΩ+ℓ(x) · ∇ϕMΩ+j(x) dx,

for j, ℓ = 1, . . . ,MΓ. The matrix representation of the variational inequality (3.6) is then
given by the discrete variational inequality

̺(S̃hz̃, w− z̃) + (−KICp+MICuI +MCC z̃− g
C
, w− z̃) ≥ 0 for all w ∈ R

MΓ ↔ wh ∈ Uh,

or
(T̺̃,hz̃ − g̃, w − z̃) ≥ 0 for all w ∈ R

MΓ ↔ wh ∈ Uh, (3.30)

where

T̺̃,h := ̺S̃h +KICK
−1
II MIIK

−1
II KCI −KICK

−1
II MCI −MICK

−1
II KCI +MCC (3.31)

and
g̃ := g

C
−KICK

−1
II gI +KICK

−1
II MIIK

−1
II f I

−MICK
−1
II f I

.

Lemma 3.9 The approximate operator T̺̃ = ̺S̃ + H̃∗H̃ is S1
h(Γ)–elliptic. In particular,

the matrix T̺̃,h as defined in (3.31) is positive definite, i.e.,

〈T̺̃wh, wh〉Γ = (T̺̃,hw,w) ≥ c
T̺̃

1 ‖wh‖
2
H1/2(Γ) for all wh ∈ S1

h(Γ) ↔ w ∈ R
MΓ.

Proof. For w ∈ R
MΓ and by defining v = −K−1

II KCIw we have

(T̺̃,hw,w) = ([KICK
−1
II MIIK

−1
II KCI −KICK

−1
II MCI −MICK

−1
II KCI +MCC + ̺S̃h]w,w)

= (MIIK
−1
II KCIw,K

−1
II KCIw)− (MCIw,K

−1
II KCIw)− (MICK

−1
II KCIw,w)

+(MCCw,w) + ̺(S̃hw,w)

= (MIIv, v) + (MCIw, v) + (MICv, w) + (MCCw,w) + ̺(S̃hw,w)

=

((
MII MCI

MIC MCC

)(
v
w

)
,

(
v
w

))
+ ̺(S̃hw,w).
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Since the mass matrix

Mh =

(
MII MCI

MIC MCC

)

is positive definite, the assertion follows.

In the particular case of a non–constrained minimisation problem, instead of the discrete
variational inequality (3.30) we have to solve the linear system

T̺̃,hz̃ = g̃,

which is equivalent to the system




−MII KII −MCI

KII KCI

MIC −KIC MCC + ̺S̃h







uI
p

z̃


 =




−g
I

f
I

g
C


 . (3.32)

Note that the coupled linear system (3.32) also results from a direct finite element approx-
imation of the adjoint boundary value problem, of the primal boundary value problem,
and of the optimality condition.

4 Numerical results and concluding remarks

As numerical example we consider as in [8], see also [30], the Dirichlet boundary control
problem (2.1)–(2.3) for the domain Ω = (0, 1

2
)2 ⊂ R

2 where

u(x) = (x21 + x22)
−1/3, f(x) = 0, ̺ = 1,

and without box constraints. For the finite element discretization we introduce a uniform
triangulation of Ω on several refinement levels L with the mesh size hL = 2−(L+2), where
for L = 0 the coarsest level is given by 4 uniform triangles. Since the minimiser of (2.1) is
not known for this example, we use the finite element solutions (zh9

, uh9
) on the 9th level

as reference solutions.
In Table 1 we give the finite element errors for the control variable z in the L2(Γ)–norm,

for the primal variable u and for the adjoint state p in the L2(Ω)–norm. We observe an
estimated order of convergence (eoc) close to 2 as predicted by the error estimates (3.26)
and (3.27) for u and p. For the control z the observed order of convergence is larger than
3/2 which is predicted by the error estimate (3.25). So far we are not able to prove this
higher order of convergence for a finite element discretization but for the boundary element
discretization presented in [32] when assuming z ∈ H2

pw(Γ). In this case the second order of
convergence reflects the optimal approximation property when using piecewise linear basis
functions on the boundary.

For comparison we present in Table 2 the numerical results when considering the Dirich-
let control problem in L2(Γ), see also [8, 30]. While we obtain a quadratic convergence
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L ‖zh − zh9
‖L2(Γ) eoc ‖uh − uh9

‖L2(Ω) eoc ‖ph − ph9
‖L2(Ω) eoc

2 1.23e-03 2.25e-04 1.47e-04
3 3.47e-04 1.83 5.51e-05 2.03 4.77e-05 1.63
4 9.48e-05 1.87 1.34e-05 2.04 1.40e-05 1.76
5 2.57e-05 1.88 3.44e-06 1.96 3.88e-06 1.85
6 6.96e-06 1.88 9.72e-07 1.82 1.03e-06 1.92
7 1.87e-06 1.89 2.91e-07 1.74 2.57e-07 2.00
8 4.54e-07 2.04 7.70e-08 1.92 5.52e-08 2.22

Table 1: Finite element errors for the Dirichlet control problem in H1/2(Γ).

behaviour for the adjoint state p with slightly larger errors than for H1/2(Γ) control, the
convergence rate for the control z and for the primal variable u changes significantly. The
total errors are worse by orders of magnitude than the ones in Table 1. The main reason
for this different convergence behaviour lies in the optimality condition which reads for the
L2(Γ) control

z = PUξ, ̺ξ + τ = 0, τ = −
∂

∂n
p (4.1)

where PU denotes the pointwise projection onto U .

L ‖zh − zh9
‖L2(Γ) eoc ‖uh − uh9

‖L2(Ω) eoc ‖ph − ph9
‖L2(Ω) eoc

2 3.20e-02 6.76e-03 4.92e-04
3 1.84e-02 0.80 2.66e-03 1.35 1.38e-04 1.84
4 1.05e-02 0.80 1.05e-03 1.34 3.63e-05 1.92
5 6.07e-03 0.80 4.20e-04 1.32 9.34e-06 1.96
6 3.53e-03 0.78 1.69e-04 1.31 2.35e-06 1.99
7 2.07e-03 0.77 6.85e-05 1.30 5.71e-07 2.04
8 1.14e-03 0.85 2.57e-05 1.41 1.20e-07 2.25

Table 2: Finite element errors for the Dirichlet control problem in L2(Γ).

Indeed, for the given u we obtain z ∈ H2/3(Γ) only, instead of z ∈ H
3/2
pw (Γ) when considering

the control in H1/2(Γ). Moreover, from the optimality conditions (4.1) we conclude, that
z is zero in all corner points due to the zero Dirichlet boundary condition of the adjoint
state p. Hence we obtain a zero control z in all corner points independent of the target
function u. Instead, when considering the control in H1/2(Γ), the application of S̃ reflects
the proper mapping properties of the Dirichlet to Neumann map. This results in a more
feasible Dirichlet control in corner points. For illustration we give the plots of the states
u in Fig. 1 for the H1/2(Γ) setting, and in Fig. 2 for the L2(Γ) setting. Note that for
this example we used a H1/2 norm, which is defined by the semi–norm induced by the
Steklov–Poincaré operator S plus a L2(Γ) equivalent term, and different values of ̺ to
ensure comparable values for the tracking functional ‖u− u‖L2(Ω).
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Fig. 1: State u for the control in H1/2(Γ). Fig. 2: State u for the control in L2(Γ).

In Table 3, we present the computational times in seconds related to Table 1 and Table 2.
N denotes the number of triangles of the triangulation. The slightly higher effort for the
approach of the H1/2(Γ) semi–norm is due to a few more iteration steps needed to solve
the Schur complement system of (3.32) iteratively. Note that advanced preconditioners
are not applied here. Taking into account the higher order of convergence, the additional
effort is justifiable.

L N H1/2(Γ) L2(Γ)
4 1024 0.04 sec 0.03 sec
5 4096 0.18 sec 0.16 sec
6 16384 0.79 sec 0.70 sec
7 65536 3.70 sec 3.05 sec
8 262144 15.92 sec 12.81 sec

Table 3: Comparison of the computational times for H1/2(Γ) and L2(Γ) costs.

Recall that there are no box constraints considered in this example, i.e., we have to solve
the coupled linear system (3.32), or the related Schur complement system. Since the Schur

complement T̺̃,h defines an equivalent discrete norm in H1/2(Γ), appropriate precondition-
ers can be constructed, e.g. by using multilevel methods. For the solution of the discrete
variational inequality (3.30) one may consider either multigrid methods, see, e.g., [18, 34],
or semi–smooth Newton methods, see, e.g., [23, 42].

As an example with active constraints and a H1/2(Γ) control, we consider the first
example where ̺ = 1 and choose gb = 2.2 and ga inactive. Again we use the semi–norm
induced by the Steklov–Poincaré operator. Fig. 3 and Fig. 4 clearly show the difference
of the solutions of the unconstrained and the constrained case. The constrained problem
is solved by a semi–smooth Newton method, see e.g. [23]. Fig. 5 shows the control of the
constrained and unconstrained problem along the line x2 = 0.
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Fig. 3: State u for the unconstrained case. Fig. 4: State u for the constrained case.
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Fig. 5: Comparison of the constrained and unconstrained control z along the line x2 = 0.

In this paper we have presented a rigorous stability and error analysis for a finite element
approximation of a Dirichlet boundary control problem where the control is considered
in the energy space H1/2(Γ). For the ease of presentation we have restricted our consid-
erations to the case of a convex two–dimensional polygonal bounded domain. However,
using standard finite element approximations for partial differential equations which are
formulated in domains with smooth curved boundaries, our approach can be extended to
the case of two– and three–dimensional domains with smooth boundary. Moreover, the
finite element analysis can be transfered also to general polygonal or polyhedral bounded
domains, but then related regularity results for Signorini boundary value problems are
required.

Note that for the approximation of the operator T̺ : H1/2(Γ) → H−1/2(Γ) as defined
in (2.14) we may also consider boundary element methods which require an appropriate
handling of the inhomogeneous adjoint partial differential equation in (2.11). The stability
and error analysis of the resulting boundary element approach for the solution of Dirichlet
control problems is discussed in [32], see also [33].

Instead of the Steklov–Poincaré operator S : H1/2(Γ) → H−1/2(Γ) one may use any
other bounded and semi–elliptic operator to realize an equivalent norm in H1/2(Γ). A
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possible choice is to consider as in [32] the so–called hypersingular boundary integral op-

erator D which does not require an inversion as in the definition of S̃h. But the use of
the hypersingular integral operator may result in a lower regularity of the control z, and
therefore in a lower order of convergence of the finite element approximation, see [32, 33].

Acknowledgement

This work has been supported by the Austrian Science Fund (FWF) under the Grant
SFB Mathematical Optimisation and Applications in Biomedical Sciences, Subproject Fast
Finite Element and Boundary Element Methods for Optimality Systems. The authors
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[6] H. Brezis: Problémes unilateraux. J. Math. Pures Appl. 51 (1972) 1–168.

[7] F. Brezzi, W. W. Hager, P. A. Raviart: Error estimates for the finite element solution
of variational inequalities. Numer. Math. 28 (1977) 431–443.

[8] E. Casas, J. P. Raymond: Error estimates for the numerical approximation of Dirichlet
boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45 (2006)
1586–1611.

[9] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North–Holland,
Amsterdam, 1978.

23



[10] K. Deckelnick, A. Günther, M. Hinze: Finite element approximation of Dirichlet
boundary control for elliptic PDEs on two– and three–dimensional curved domains.
SIAM J. Control Optim. 48 (2009) 2798–2819.

[11] R. S. Falk: Error estimates for the approximation of a class of variational inequalities.
Math. Comput. 28 (1974) 963–971.

[12] A. V. Fursikov, M. D. Gunzburger, L. S. Hou: Boundary value problems and optimal
boundary control for the Navier–Stokes system: the two–dimensional case. SIAM J.
Control Optim. 36 (1998) 852–894.

[13] R. Glowinski: Numerical methods for nonlinear variational problems. Springer, Berlin,
1980.

[14] M. D. Gunzburger, L. S. Hou, T. Swobodny: Analysis and finite element approxi-
mation of optimal control problems for the stationary Navier–Stokes equations with
Dirichlet controls. Math. Model. Numer. Anal. 25 (1991) 711–748.

[15] M. D. Gunzburger, L. Hou, T. P. Svobodny: Boundary velocity control of incompress-
ible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30
(1992) 167–181.

[16] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich: Optimization with PDE Constraints.
Mathematical Modelling: Theory and Applications, vol. 23, Springer, Heidelberg,
2009.

[17] L. S. Holt, S. S. Ravindran: Penalty methods for numerical approximations of optimal
boundary flow control problems. Internat. J. Comput. Fluid Dyn. 11 (1998) 157–167.

[18] R. H. W. Hoppe: Multigrid algorithms for variational inequalities. SIAM J. Numer.
Anal. 24 (1987) 1046–1065.

[19] L. S. Hou, S. S. Ravindran: A penalized Neumann control approach for solving an
optimal Dirichlet control problem for the Navier–Stokes equations. SIAM J. Control
Optim. 36 (1998) 1795–1814.

[20] L. S. Hou, S. S. Ravindran: Numerical approximation of optimal flow control problems
by a penalty method: Error estimates and numerical results. SIAM J. Sci. Comput.
20 (1999) 1753–1777.

[21] L. S. Hou, T. P. Svobodny: Optimization problems for the Navier–Stokes equations
with regular boundary controls. J. Math. Anal. Appl. 177 (1993) 342–367.

[22] G. C. Hsiao, W. L. Wendland: Boundary Integral Equations. Springer, Heidelberg,
2008.

24



[23] K. Ito, K. Kunisch: Semi–smooth Newton methods for the Signorini problem. Appl.
Math. 53 (2008) 455–468.

[24] D. Kinderlehrer: Remarks about Signorini’s problem in linear elasticity. Ann. Scuola
Norm. Sup. Pisa cl. Sci. 4 (1981) 605–645.

[25] K. Kunisch, B. Vexler: Constrained Dirichlet boundary control in L2 for a class of
evolution equations. SIAM J. Control Optim. 46 (2007) 1726–1753.

[26] H.–C. Lee, S. Kim: Finite element approximation and computations of optimal Dirich-
let boundary control problems for the Boussinesq equations. J. Korean Math. Soc. 41
(2004) 681–715.

[27] H. Lewy, G. Stampacchia: On the regularity of the solution of a variational inequality.
Comm. Pure Appl. Math. 22 (1969) 153–188.

[28] J. L. Lions: Optimal Control of Systems Governed by Partial Differential Equations.
Springer, Berlin, Heidelberg, New York, 1971.

[29] J. L. Lions, G. Stampacchia: Variational inequalities. Comm. Pure Appl. Math. 20
(1967) 493–519.

[30] S. May, R. Rannacher, B. Vexler: Error analysis for a finite element approximation of
elliptic Dirichlet boundary control problems. Lehrstuhl für Angewandte Mathematik,
Universität Heidelberg, Preprint 05/2008.

[31] W. McLean: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge
University Press, 2000.

[32] G. Of, T. X. Phan, O. Steinbach: Boundary element methods for Dirichlet boundary
control problems. Math. Methods Appl. Sci. 33 (2010) 2187–2205.

[33] G. Of, T. X. Phan, O. Steinbach: Finite and boundary element energy approximations
of Dirichlet control problems. In: Modeling, Simulation and Optimization of Complex
Processes. Proceedings of the Fourth International Conference on High Performance
Scientific Computing, March 2–6, 2009, Hanoi, Vietnam (H. G. Bock, X. P. Hoang,
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