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Abstract

The Total Variation is a popular image model for denoising of MR images. The key problem in the application of the
method is often the determination of a proper regularization parameter. This work presents an automatic strategy to
determine a spatially dependent regularization parameter. It is shown that the method can be applied in cases where the
distribution of the noise is uniform over the whole image, as well as in situations when this assumption cannot be made.
The proposed algorithm is completely free of any user defined parameters and automatically adapts to different levels of
corruption with noise and the existence of fine image features, which have to be preserved.

1 Introduction

The Total Variation (TV) is a popular regularization model
in image processing [1]. It was also recently introduced
for various applications in MR research. Examples include
denoising and constrained image reconstruction [2]. In
all TV based methods, a constrained optimization problem
has to be solved that consists of two terms. A penalty term
which enforces a low TV norm of the solution and a data
fidelity term which ensures that the solution is consistent
with the original data. A regularization parameter controls
the tradeoff between the noise elimination and preserva-
tion of image details. Determination of the regularization
parameter is often performed based on visual inspection of
the reconstruction. This is a cumbersome and time con-
suming task and the results are always biased towards the
personal preference of the user. Additionally, MR images
are comprised of multiple details. In homogenous regions,
a higher regularization can be performed than in regions
which include multiple fine details. This indicates that it
is desireable to apply different amounts of regularization
based on the level of detail in a specific region. In this work
spatially dependent regularization parameter selection for
TV based denoising of MR images is introduced. With
this technique, the regularization parameter is adapted au-
tomatically based on the details in the images. This im-
proves the reconstruction of details while still providing
adequate smoothing for the homogeneous parts. It is also
demonstrated that this method can be used successfully in
situations where the distribution of the noise is not uniform
throughout the image, as it often occurs in combination
with parallel imaging reconstruction of undersampled data
sets [3,4].
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2 Theory

In order to enhance regions containing details while still
sufficiently smoothing homogeneous parts, we improve the
TV-model by using a spatially dependent regularization pa-
rameter instead of a scalar value only, i.e. we consider,

min%/ A@) Ju— 2 de + TV (u) ()
w Q

where z is the noisy image, u is the restored image, and
TV (u) is the conventional TV penalty term [1]. In this
model, A is localized at image features. For small features,
large A leads to little smoothing so that details are usually
preserved well. On the other hand, for large features, small
A leads to smoothing so that noise is removed consider-
ably. Referring to [5], it can be shown that the minimiza-
tion problem (1) is related to a constrained optimization
problem of the type:

rnuin TV (u) (2)

s.t. / lu— 2| do < o2 |9

for all windows Q¢ with window size w in €. Here, o2 is

the noise variance, estimated from the image. Compared
with the common TV-model, the constraint in (2) is con-
fined to each local region 2“ instead of the whole image.
Considering a restored image v from the TV-model with
a relatively small A, the residual » = z — u will include
noise as well as details. Then, the violation of the local
constraint in (2) reflects the distribution of details in the
image. Based on this, we define a statistic, “local variance
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estimator”, as

LVE{; = —
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where w is the window size. In general, whenever LVE®
is less than o2, i.e., the constraint in (2) is satisfied, it is as-
sumed that in Q the residual primarily consists of noise.
Otherwise, significant image details are left in the residual,
and A needs to be increased in order to preserve the details
in the reconstruction. This adjustment depends on a robust
upper bound for the (local) constraint. For this purpose,
the confidence interval technique from statistics [6] is in-
troduced to automatically adjust \ based on the size of the
windows Q“. This yields a parameter-free method, i.e.,
without necessity of manually tuning parameters. More-
over, the minimization problem in (2) is solved by a su-
perlinearly convergent algorithm based on Fenchel-duality
and inexact semismooth Newton techniques [5, 7].
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Figure 1: A numerical example of spatially variant regu-
larization. (a) A numerical test image. (b) Noisy test im-
age. (c) TV denoising with A = 20. (d) TV denoising with
A = 10. (e) A map: A = 10 (dark region) and A = 20
(bright region). (f) TV denoising with spatially variant A
from subplot (e).

The concept of spatially variant regularization is illustrated
in Fig. 1 which shows the effect of different regularization
parameters for a numerical test image. If the amount of
regularization is too small, residual noise remains in the
image. With higher regularization, noise is eliminated, but
small image features start to disappear. The use of two dif-
ferent regularization parameters for the same image yields
a result where noise is eliminated, and small features are
preserved.

One limitation of this parameter estimation strategy is that
it assumes that noise is uniformly distributed over the
whole image. In reconstructions from undersampled data
with parallel imaging [3, 4] which are nowdays widely
used in daily clinical practice due to the pronounced reduc-
tion of scanning time, this assumption is violated. Recon-
structed images show significant local noise amplifications
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which depend on the configuration of the used coil arrays
and their ability to separate pixels which are superimposed
due to aliasing. This decrease of SNR due to noise ampli-
fication can be quantified by SN R}*? = % [3]. The

factor /R only depends on the acceleration rate R and is
the same for each pixel in an image. In contrast, g,, the
so called geometry (g)-factor, strongly depends on the coil
geometry and takes different values for each pixel p in the
image. If the method from equation (2) is now directly ap-
plied to these data sets, the algorithm will interpret these
local noise amplifications as additional details in the im-
age. This means that the regularization will be decreased
in regions where the corruption with noise is higher. In
order to prevent this, information about the spatial distri-
bution of the noise amplification need be included in the
parameter estimation process.

Since g, shows the noise amplifications in reconstructed
parallel images, the noise variance can be estimated as a
multiple of g,,ie., o? = tgp, where ¢ is the noise variance
in the background. Then, we restore the image iteratively
by adjusting \ according to the following rule:

<k <k
)\i;.rl = 2()\1-7]- + pmax ( (LVEL;:)%] — 04, O)),
1 ~k+1
k
NPT 2 A @
(s,)€QY;
where p = \|5\k||oo/Ha||oo~> 0 in order to keep the new

Ak+1 at the same scale as Ax. Initially, we assign a small
positive value to A in order to keep most of the details in
the residual. After that, we restore the image iteratively,
and keep increasing A in the regions where the constraint
in (2) is violated until the constraint is satisfied in all 2.

3 Methods and Results

3.1 Restoration of MR images with uniform
noise distribution

In a first experiment, denoising was performed on a data
set where the assumption of uniform noise distribution is
valid, and the parameter estimation strategy from equa-
tion (2) can be applied directly. MR measurements of the
brain of a healthy volunteer were performed on a clinical
3T scanner (Siemens Magnetom TIM Trio, Erlangen, Ger-
many) using a 4 channel head coil. Written informed con-
sent was obtained prior to the examination. A fully sam-
pled T weighted turbo spin echo scan was used. Sequence
parameters were repetition time TR=5000ms, echo time
TE=99ms, turbo factor 10, matrix size (x,y)=(256,256), 10
slices with a slice thickness of 4mm and an in plane resolu-
tion of 0.86mm x 0.86mm. The raw data set was exported
from the scanner and complex Gaussian noise was added to
the original k-space data of each individual coil. The stan-
dard deviation of the added noise was chosen such that the

Brought to you by | Technische Universitat Graz
Authenticated
Download Date | 3/29/17 2:50 PM



ratio to the norm of the data was 1/40, 1/30 and 1/20. After-
wards, individual coil images were reconstructed with an
inverse FFT and a sum of squares combination of the coils
was performed. TV denoising was then performed with the
proposed spatially variant parameter selection method (2).
Fig. 2 displays noisy images, TV denoising results and
the corresponding A parameters from the experiments with
uniform noise distribution.

TV denoised result

Noisy image
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noise
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noise
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Figure 2: TV restoration results from MR brain data with
uniform noise distribution. The images with noise (left col-
umn), the TV restorations and the regularization parameter
maps are displayed for three different levels of SNR.

3.2 Restoration of parallel imaging recon-
structions with non-uniform noise distri-
bution

In the second experiment, parallel imaging reconstructions
of the same dataset as in section 3.1 were investigated.
Noise was again added to the original k-space data with
a standard deviation of 1/50 with respect to the ratio to
the norm of the data. Retrospective subsampling was per-
formed by including only every second (R=2) and every
third (R=3) line in row direction. 2D acceleration was
simulated by performing factor 2 subsampling in both row
and column direction, leading to total acceleration factor
of R = 4. Coil sensitivity maps were obtained by divid-
ing each individual coil image of the fully sampled data
set by the sum of squares combination. Parallel imaging
reconstruction was performed with a SENSE [3] based al-
gorithm. This experiment was repeated 300 times. Noise
amplification maps were obtained by calculating the stan-
dard deviation in each pixel over all 300 experiments. This
was done for both unaccelerated and accelerated images.
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Noisy Pl reconstruction

Noise amplification

TV denoised result

Figure 3: TV restoration results from undersampled par-
allel imaging MR data sets. Noisy images, parallel imag-
ing noise amplification maps, TV restoration and the regu-
larization parameter maps are displayed for three different
levels of acceleration.

Denoised result

Figure 4: Comparison of denoising results for R=3 ac-
celerated parallel imaging reconstructions. Results with
the proposed method (4) (a) and with the original formula-
tion (2) (b) are shown.
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The ratio of these two noise maps was used as an estima-
tion of the noise amplification in the TV parameter esti-
mation process. Noisy images, noise amplification maps,
denoising results and the corresponding A parameters are
shown in Fig. 3.

Fig. 4 shows a comparison of the proposed method which
includes information about the noise distribution with a di-
rect application of (2), which assumes that the noise distri-
bution is uniform for the case R = 3 of Fig. 3.

4 Discussion

TV denoising efficiently eliminates noise in all investi-
gated experiments while preserving fine image features.
Bright values in the regularization parameter maps of
Figs. 2,3 and 4 correspond to high values of A. This means
that in these regions, the data fidelity term has a stronger
influence on the solution and therefore the TV regulariza-
tion is reduced. As expected, the algorithm decreases reg-
ularization in regions with a high amount of fine details.
Additionally, the overall brightness of the parameter map
is higher in images with less noise corruption (top row in
Fig. 2, cases R = 2 and R = 4 in Fig. 3). This means that
the overall amout of regularization is lower in these cases
and illustrates, that the algorithm automatically adapts to
the noise level in a particular image.

It is evident from the noisy images and the noise amplifica-
tion maps in Fig. 3, that the assumption of a uniform noise
distribution is violated in this case. Pronounced noise am-
plification occurs in specific regions of the images. The
reason is, that the receive coils that were used during the
parallel imaging reconstruction do not deliver sufficiently
independent information in these regions. This is also the
reason why noise amplification is higher for R = 3 than
for two dimensional R = 4 acceleration because the sen-
sitivities of the receive coils deliver equal amounts of in-
dependet information in the row and column direction. It
can also be seen from the regularization parameter maps
that the algorithm correctly identifies regions with a high
amount of detail and reduces the regularization in these
regions without being influenced by local noise amplifica-
tion.

The parameter maps in Fig. 4 demonstrate that the orig-
inal method (equation 2) decreases regularization in re-
gions with high noise amplification (the parameter maps
are brighter in these regions) because it is not able to seper-
ate them from locations in the image with a high amount
of fine details. Therefore significant amounts of residual
noise remain in the TV restoration. This problem does
not occur with the proposed parameter selection strategy
(equation 4).

While our experimental setup of repeating parallel imaging
reconstruction 300 times is of course not suitable for prac-
tical application, this approach was chosen because it is
the only established gold standard to estimate noise in par-
allel imaging. The SENSE theory [3] also allows to make
theoretical predictions about noise amplifications based on
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the used coil geometry. The use of such g-factor maps in
the proposed method is the subject of current investiga-
tions. Future work will also include the extension of the
proposed method to the problem of constrained image re-
construction [2].

One of the most important features of the proposed param-
eter selection strategy is that it is completely independent
of any user defined parameters. While regularized image
reconstruction and image denoising have been very active
fields in MRI research during the last years, selection of
the regularization parameter is still based on visual inspec-
tion of the results in many cases, and surprisingly little
work has been done as regards this subject. Our results
have shown that automatic estimation of spatially depen-
dent regularization parameters leads to excellent results in
MR image denoising and that the algorithm automatically
adapts to data sets with different amounts of noise level
and fine details.
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