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Abstract

The Total Variation is a popular image model for denoising of MR images. The key problem in the application of the

method is often the determination of a proper regularization parameter. This work presents an automatic strategy to

determine a spatially dependent regularization parameter. It is shown that the method can be applied in cases where the

distribution of the noise is uniform over the whole image, as well as in situations when this assumption cannot be made.

7KH SURSRVHG DOJRULWKP LV FRPSOHWHO\ IUHH RI DQ\ XVHU GHÀQHG SDUDPHWHUV DQG DXWRPDWLFDOO\ DGDSWV WR GLIIHUHQW OHYHOV RI

FRUUXSWLRQ ZLWK QRLVH DQG WKH H[LVWHQFH RI ÀQH LPDJH IHDWXUHV� ZKLFK KDYH WR EH SUHVHUYHG�

1 Introduction

The Total Variation (TV) is a popular regularization model

in image processing [1]. It was also recently introduced

for various applications in MR research. Examples include

denoising and constrained image reconstruction [2]. In

all TV based methods, a constrained optimization problem

has to be solved that consists of two terms. A penalty term

which enforces a low TV norm of the solution and a data

ÀGHOLW\ WHUP ZKLFK HQVXUHV WKDW WKH VROXWLRQ LV FRQVLVWHQW

with the original data. A regularization parameter controls

the tradeoff between the noise elimination and preserva-

tion of image details. Determination of the regularization

parameter is often performed based on visual inspection of

the reconstruction. This is a cumbersome and time con-

suming task and the results are always biased towards the

personal preference of the user. Additionally, MR images

are comprised of multiple details. In homogenous regions,

a higher regularization can be performed than in regions

ZKLFK LQFOXGH PXOWLSOH ÀQH GHWDLOV� 7KLV LQGLFDWHV WKDW LW

is desireable to apply different amounts of regularization

EDVHG RQ WKH OHYHO RI GHWDLO LQ D VSHFLÀF UHJLRQ� ,Q WKLV ZRUN

spatially dependent regularization parameter selection for

TV based denoising of MR images is introduced. With

this technique, the regularization parameter is adapted au-

tomatically based on the details in the images. This im-

proves the reconstruction of details while still providing

adequate smoothing for the homogeneous parts. It is also

demonstrated that this method can be used successfully in

situations where the distribution of the noise is not uniform

throughout the image, as it often occurs in combination

with parallel imaging reconstruction of undersampled data

sets [3, 4].

2 Theory

In order to enhance regions containing details while still

VXIÀFLHQWO\ VPRRWKLQJ KRPRJHQHRXV SDUWV� ZH LPSURYH WKH

TV-model by using a spatially dependent regularization pa-

rameter instead of a scalar value only, i.e. we consider,
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where % is the noisy image, ! is the restored image, and
�� �!� is the conventional TV penalty term [1]. In this

model, � is localized at image features. For small features,
large � leads to little smoothing so that details are usually
preserved well. On the other hand, for large features, small

� leads to smoothing so that noise is removed consider-
ably. Referring to [5], it can be shown that the minimiza-

tion problem (1) is related to a constrained optimization

problem of the type:
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for all windows !� with window size � in !. Here, �� is

the noise variance, estimated from the image. Compared

with the common TV-model, the constraint in (2) is con-

ÀQHG WR HDFK ORFDO UHJLRQ !� instead of the whole image.

Considering a restored image ! from the TV-model with

a relatively small �, the residual � � % 
 ! will include
noise as well as details. Then, the violation of the local

FRQVWUDLQW LQ ��� UHÁHFWV WKH GLVWULEXWLRQ RI GHWDLOV LQ WKH

LPDJH� %DVHG RQ WKLV� ZH GHÀQH D VWDWLVWLF� ´ORFDO YDULDQFH

)PVTLK�;LJO�����"�����:\WWS������������I`�>HS[LY�KL�.Y\`[LY���)LYSPU���5L^�@VYR��+60���������)4;���������

Brought to you by | Technische Universität Graz

Authenticated

Download Date | 3/29/17 2:50 PM



�  

estimator”, as
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where � is the window size. In general, whenever ����

is less than ��� L�H�� WKH FRQVWUDLQW LQ ��� LV VDWLVÀHG� LW LV DV�

sumed that in !� the residual primarily consists of noise.

2WKHUZLVH� VLJQLÀFDQW LPDJH GHWDLOV DUH OHIW LQ WKH UHVLGXDl,

and � needs to be increased in order to preserve the details
in the reconstruction. This adjustment depends on a robust

upper bound for the (local) constraint. For this purpose,

WKH FRQÀGHQFH LQWHUYDO WHFKQLTXH IURP VWDWLVWLFV >�@ LV LQ�

troduced to automatically adjust � based on the size of the
windows !� . This yields a parameter-free method, i.e.,

without necessity of manually tuning parameters. More-

over, the minimization problem in (2) is solved by a su-

perlinearly convergent algorithm based on Fenchel-duality

and inexact semismooth Newton techniques [5, 7].

a) b) c)

d) e) f)

Figure 1: A numerical example of spatially variant regu-

larization. (a) A numerical test image. (b) Noisy test im-

age. (c) TV denoising with � � ��. (d) TV denoising with
� � ��. (e) � map: � � �� (dark region) and � � ��
(bright region). (f) TV denoising with spatially variant �
from subplot (e).

The concept of spatially variant regularization is illustrated

in Fig. 1 which shows the effect of different regularization

parameters for a numerical test image. If the amount of

regularization is too small, residual noise remains in the

image. With higher regularization, noise is eliminated, but

small image features start to disappear. The use of two dif-

ferent regularization parameters for the same image yields

a result where noise is eliminated, and small features are

preserved.

One limitation of this parameter estimation strategy is that

it assumes that noise is uniformly distributed over the

whole image. In reconstructions from undersampled data

with parallel imaging [3, 4] which are nowdays widely

used in daily clinical practice due to the pronounced reduc-

tion of scanning time, this assumption is violated. Recon-

VWUXFWHG LPDJHV VKRZ VLJQLÀFDQW ORFDO QRLVH DPSOLÀFDWLRQV

ZKLFK GHSHQG RQ WKH FRQÀJXUDWLRQ RI WKH XVHG FRLO DUUD\V

and their ability to separate pixels which are superimposed

due to aliasing. This decrease of SNR due to noise ampli-

ÀFDWLRQ FDQ EH TXDQWLÀHG E\ ����
�
� � 	������
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[3]. The

factor
�

� only depends on the acceleration rate � and is

the same for each pixel in an image. In contrast, ��, the

so called geometry (g)-factor, strongly depends on the coil

geometry and takes different values for each pixel - in the
image. If the method from equation (2) is now directly ap-

plied to these data sets, the algorithm will interpret these

ORFDO QRLVH DPSOLÀFDWLRQV DV DGGLWLRQDO GHWDLOV LQ WKH LP�

age. This means that the regularization will be decreased

in regions where the corruption with noise is higher. In

order to prevent this, information about the spatial distri-

EXWLRQ RI WKH QRLVH DPSOLÀFDWLRQ QHHG EH LQFOXGHG LQ WKH

parameter estimation process.

Since �� VKRZV WKH QRLVH DPSOLÀFDWLRQV LQ UHFRQVWUXFWHG

parallel images, the noise variance can be estimated as a

multiple of ��, i.e., �
� � ���, where � is the noise variance

in the background. Then, we restore the image iteratively

by adjusting � according to the following rule:
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where - � 	���	�		�	� 
 � in order to keep the new
����� at the same scale as ���. Initially, we assign a small

positive value to �� in order to keep most of the details in
the residual. After that, we restore the image iteratively,

and keep increasing � in the regions where the constraint
LQ ��� LV YLRODWHG XQWLO WKH FRQVWUDLQW LV VDWLVÀHG LQ DOO !� .

3 Methods and Results

3.1 Restoration of MR images with uniform

noise distribution

,Q D ÀUVW H[SHULPHQW� GHQRLVLQJ ZDV SHUIRUPHG RQ D GDWD

set where the assumption of uniform noise distribution is

valid, and the parameter estimation strategy from equa-

tion (2) can be applied directly. MR measurements of the

brain of a healthy volunteer were performed on a clinical

3T scanner (Siemens Magnetom TIM Trio, Erlangen, Ger-

many) using a 4 channel head coil. Written informed con-

sent was obtained prior to the examination. A fully sam-

pled �� weighted turbo spin echo scan was used. Sequence

parameters were repetition time TR=5000ms, echo time

TE=99ms, turbo factor 10, matrix size (x,y)=(256,256), 10

slices with a slice thickness of 4mm and an in plane resolu-

tion of 0.86mm � 0.86mm. The raw data set was exported
from the scanner and complex Gaussian noise was added to

the original �-space data of each individual coil. The stan-
dard deviation of the added noise was chosen such that the
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ratio to the norm of the data was 1/40, 1/30 and 1/20. After-

wards, individual coil images were reconstructed with an

inverse FFT and a sum of squares combination of the coils

was performed. TV denoising was then performed with the

proposed spatially variant parameter selection method (2).

Fig. 2 displays noisy images, TV denoising results and

the corresponding � parameters from the experiments with
uniform noise distribution.

Noisy image TV denoised result L  map
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Figure 2: TV restoration results from MR brain data with

uniform noise distribution. The images with noise (left col-

umn), the TV restorations and the regularization parameter

maps are displayed for three different levels of SNR.

3.2 Restoration of parallel imaging recon-

structions with non-uniform noise distri-

bution

In the second experiment, parallel imaging reconstructions

of the same dataset as in section 3.1 were investigated.

Noise was again added to the original �-space data with
a standard deviation of 1/50 with respect to the ratio to

the norm of the data. Retrospective subsampling was per-

formed by including only every second (R=2) and every

third (R=3) line in row direction. 2D acceleration was

simulated by performing factor 2 subsampling in both row

and column direction, leading to total acceleration factor

of � � �. Coil sensitivity maps were obtained by divid-
ing each individual coil image of the fully sampled data

set by the sum of squares combination. Parallel imaging

reconstruction was performed with a SENSE [3] based al-

gorithm. This experiment was repeated ��� times. Noise
DPSOLÀFDWLRQ PDSV ZHUH REWDLQHG E\ FDOFXODWLQJ WKH VWDQ�

dard deviation in each pixel over all ��� experiments. This
was done for both unaccelerated and accelerated images.

R = 2 R = 3 R = 4
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Figure 3: TV restoration results from undersampled par-

allel imaging MR data sets. Noisy images, parallel imag-

LQJ QRLVH DPSOLÀFDWLRQ PDSV� 79 UHVWRUDWLRQ DQG WKH UHJX�

larization parameter maps are displayed for three different

levels of acceleration.

Denoised result L  map

(a
)

(b
)

Figure 4: Comparison of denoising results for R=3 ac-

celerated parallel imaging reconstructions. Results with

the proposed method (4) (a) and with the original formula-

tion (2) (b) are shown.
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The ratio of these two noise maps was used as an estima-

WLRQ RI WKH QRLVH DPSOLÀFDWLRQ LQ WKH 79 SDUDPHWHU HVWL�

PDWLRQ SURFHVV� 1RLV\ LPDJHV� QRLVH DPSOLÀFDWLRQ PDSV�

denoising results and the corresponding � parameters are
shown in Fig. 3.

Fig. 4 shows a comparison of the proposed method which

includes information about the noise distribution with a di-

rect application of (2), which assumes that the noise distri-

bution is uniform for the case � � � of Fig. 3.

4 Discussion

79 GHQRLVLQJ HIÀFLHQWO\ HOLPLQDWHV QRLVH LQ DOO LQYHVWL�

JDWHG H[SHULPHQWV ZKLOH SUHVHUYLQJ ÀQH LPDJH IHDWXUHV�

Bright values in the regularization parameter maps of

Figs. 2, 3 and 4 correspond to high values of �. This means
WKDW LQ WKHVH UHJLRQV� WKH GDWD ÀGHOLW\ WHUP KDV D VWURQJHU

LQÁXHQFH RQ WKH VROXWLRQ DQG WKHUHIRUH WKH 79 UHJXODUL]D�

tion is reduced. As expected, the algorithm decreases reg-

XODUL]DWLRQ LQ UHJLRQV ZLWK D KLJK DPRXQW RI ÀQH GHWDLOV�

Additionally, the overall brightness of the parameter map

is higher in images with less noise corruption (top row in

Fig. 2, cases � � � and � � � in Fig. 3). This means that
the overall amout of regularization is lower in these cases

and illustrates, that the algorithm automatically adapts to

the noise level in a particular image.

,W LV HYLGHQW IURP WKH QRLV\ LPDJHV DQG WKH QRLVH DPSOLÀFD�

tion maps in Fig. 3, that the assumption of a uniform noise

distribution is violated in this case. Pronounced noise am-

SOLÀFDWLRQ RFFXUV LQ VSHFLÀF UHJLRQV RI WKH LPDJHV� 7KH

reason is, that the receive coils that were used during the

SDUDOOHO LPDJLQJ UHFRQVWUXFWLRQ GR QRW GHOLYHU VXIÀFLHQWOy

independent information in these regions. This is also the

UHDVRQ ZK\ QRLVH DPSOLÀFDWLRQ LV KLJKHU IRU � � � than
for two dimensional � � � acceleration because the sen-
sitivities of the receive coils deliver equal amounts of in-

dependet information in the row and column direction. It

can also be seen from the regularization parameter maps

WKDW WKH DOJRULWKP FRUUHFWO\ LGHQWLÀHV UHJLRQV ZLWK D KLJK

amount of detail and reduces the regularization in these

UHJLRQV ZLWKRXW EHLQJ LQÁXHQFHG E\ ORFDO QRLVH DPSOLÀFD�

tion.

The parameter maps in Fig. 4 demonstrate that the orig-

inal method (equation 2) decreases regularization in re-

JLRQV ZLWK KLJK QRLVH DPSOLÀFDWLRQ �WKH SDUDPHWHU PDSV

are brighter in these regions) because it is not able to seper-

ate them from locations in the image with a high amount

RI ÀQH GHWDLOV� 7KHUHIRUH VLJQLÀFDQW DPRXQWV RI UHVLGXDO

noise remain in the TV restoration. This problem does

not occur with the proposed parameter selection strategy

(equation 4).

While our experimental setup of repeating parallel imaging

reconstruction ��� times is of course not suitable for prac-
tical application, this approach was chosen because it is

the only established gold standard to estimate noise in par-

allel imaging. The SENSE theory [3] also allows to make

WKHRUHWLFDO SUHGLFWLRQV DERXW QRLVH DPSOLÀFDWLRQV EDVHG Rn

the used coil geometry. The use of such g-factor maps in

the proposed method is the subject of current investiga-

tions. Future work will also include the extension of the

proposed method to the problem of constrained image re-

construction [2].

One of the most important features of the proposed param-

eter selection strategy is that it is completely independent

RI DQ\ XVHU GHÀQHG SDUDPHWHUV� :KLOH UHJXODUL]HG LPDJH

reconstruction and image denoising have been very active

ÀHOGV LQ 05, UHVHDUFK GXULQJ WKH ODVW \HDUV� VHOHFWLRQ RI

the regularization parameter is still based on visual inspec-

tion of the results in many cases, and surprisingly little

work has been done as regards this subject. Our results

have shown that automatic estimation of spatially depen-

dent regularization parameters leads to excellent results in

MR image denoising and that the algorithm automatically

adapts to data sets with different amounts of noise level

DQG ÀQH GHWDLOV�
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