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Abstract

We propose a novel method for stereo estimation,
combining advantages of convolutional neural networks
(CNNs) and optimization-based approaches. The optimiza-
tion, posed as a conditional random field (CRF), takes lo-
cal matching costs and consistency-enforcing (smoothness)
costs as inputs, both estimated by CNN blocks. To per-
form the inference in the CRF we use an approach based
on linear programming relaxation with a fixed number of
iterations. We address the challenging problem of training
this hybrid model end-to-end. We show that in the discrimi-
native formulation (structured support vector machine) the
training is practically feasible. The trained hybrid model
with shallow CNNs is comparable to state-of-the-art deep
models in both time and performance. The optimization
part efficiently replaces sophisticated and not jointly train-
able (but commonly applied) post-processing steps by a
trainable, well-understood model.

1. Introduction
Stereo matching is a fundamental low-level vision prob-

lem. It is an ill-posed inverse problem, asking to reconstruct
the depth from a pair of images. This requires robustness to
all kinds of visual nuisances as well as a good prior model
of the 3D environment. Different methods for this problem
have been proposed and improved throughout the whole
history of computer vision. Prior to deep NN data-driven
approaches, progress has been made using global optimiza-
tion techniques [20, 24, 36, 40, 48] featuring robust surface
models and occlusion mechanisms. Typically, these meth-
ods had to rely on engineered cost matching and involved a
number of parameters to be chosen experimentally.

Recent deep CNN models for stereo [12, 28, 53] learn
from data to be robust to illumination changes, occlusions,
reflections, noise, etc. A deep and possibly multi-scale ar-
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Figure 1: Architecture: A convolutional neural network, which
we call Unary-CNN computes features of the two images for each
pixel. The features are compared using a Correlation layer. The
resulting matching cost volume becomes the unary cost of the
CRF. The pairwise costs of the CRF are parametrized by edge
weights, which can either follow a usual contrast sensitive model
or estimated by the Pairwise-CNN.

chitecture is used to leverage the local matching to a global
one. However, to produce a final accurate result they still
rely a lot on post-processing that combines a set of filters
and optimization-like heuristics.

In this work we combine CNNs with a discrete optimiza-
tion model for stereo, allowing complex local matching
costs and parametrized geometric priors to be put together
in a global optimization approach and to be learned end-to-
end from the data. Even though our model contains CNNs,
it is still easily interpretable. This property allows us to shed
more light on the learning our network performs. We start
from a CRF formulation and replace all hand-crafted terms
with learned ones.

2. Overview
We propose a hybrid CNN-CRF model illustrated

in Fig. 1. Our Unary-CNN computes local features of both
images which are then compared in a fixed correlation met-
ric. Our Pairwise-CNN can additionally estimate contrast-
sensitive pairwise costs in order to encourage or discourage
label jumps. Using the learned unary and pairwise costs,
the CRF tries to find a joint solution optimizing the to-
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tal sum of all unary and pairwise costs in a 4-connected
graph. This model is designed to generalizes existing en-
gineered approaches in stereo as well as augment existing
fully learned ones. The Unary-CNN straightforwardly gen-
eralizes manually designed matching costs such as those
based on differences of colors, sampling-insensitive vari-
ants [5], local binary patterns (e.g., Census transform [49]),
etc. The Pairwise-CNN generalizes a contrast-sensitive reg-
ularizer [7], which is the best practice in MRF/CRF models
for segmentation and stereo.

To perform inference in the CRF model we apply the
fast method of [42], which improves over heuristic ap-
proaches combining multiple post-processing steps as used
in [12, 28, 53]. We deliberately chose not to use any post-
processing in order to show that the large part of its perfor-
mance gain can be covered by a well-trained CRF model.
While previously, methods based on LP-relaxation were
considered prohibitively expensive for stereo, [42] reports
a near real-time performance, which makes this choice def-
initely faster than a full deep architecture [53] and compet-
itive in speed with inference heuristics such as SGM [16],
MGM [14], etc.

To this end, we can train the complete model shown
in Fig. 1 using the structured support vector machine
(SSVM) formulation and propagating its subgradient
through the networks. Training a non-linear CNN+CRF
model of this scale is a challenging problem that has not
been addressed before. We show this is practically feasi-
ble having a fast inference method and using an approxi-
mate subgradient scheme. Since at test time the inference
is applied to complete images, we train it on complete im-
ages as well. This is in contrast to the works [28, 50, 53]
which sample patches for training. The SSVM approach
optimizes more directly the inference performance on com-
plete images of the training set. While with the maximum
likelihood it is important to sample hard negative examples
(hard mining) [43], the SSVM determines labellings that are
hard to separate as the most violated constraints.

We observed that the hybrid CNN+CRF network per-
forms very well already with shallow CNN models, such
as 3-7 layers. With the CRF layer the generalization gap
is much smaller (less overfitting) than without. Therefore
a hybrid model can achieve a competitive performance us-
ing much fewer parameters than the state of the art. This
leads to a more compact model and a better utilization of
the training data.

We report competitive performance on benchmarks us-
ing a shallow hybrid model. Qualitative results demonstrate
that our model is often able to delineate object boundaries
accurately as well as it is also often robust to occlusions, de-
spite our CRF did not include explicit occlusion modeling.
Contribution We propose a hybrid CNN+CRF model for
stereo, which utilizes the expressiveness of CNNs to com-

pute good unary- as well as pairwise-costs and uses the
CRF to easily integrate long-range interactions. We propose
an efficient approach to train our CNN+CRF model. The
trained hybrid model is shown to be fast and yields com-
petitive results on challenging datasets. We do not use any
kind of post-processing. The code will be made publicly
available.

3. Related Work
CNNs for Stereo Most related to our work are CNN match-
ing networks for stereo proposed by [12, 28] and the fast
version of [53]. They use similar architectures with a
siamese network [8] performing feature extraction from
both images and matching them using a fixed correlation
function (product layer). Parts of our model Fig. 1 denoted
as Unary-CNN and Correlation closely follow these works.
While [12, 28, 53] train by sampling matching and non-
matching image patches, following the line of work on more
general matching / image retrieval, we train from complete
images. Only in this setting it is possible to extend to a
full end-to-end training of a model that includes a CRF (or
any other global post-processing) optimizing specifically
for the best performance in the dense matching. The accu-
rate model of [53] implements the comparison of features
by a fully connected NN, which is more accurate than their
fast model but significantly slower. Lastly, all these meth-
ods make an extensive use of post-processing steps that are
not jointly-trainable with the CNN: [53] applies cost cross
aggregation, semi-global matching, subpixel enhancement,
median and bilateral filtering; [28] uses window-based cost
aggregation, semi-global matching, left-right consistency
check, supixel refinement, median filtering, bilateral filter-
ing and slanted plane fitting; [12] uses semi-global match-
ing, left-right consistency check, disparity propagation and
median-filtering. Experiments in [28] comparing bare net-
works without post-processing show that their fixed corre-
lation network outperforms the accurate version of [53].
CNN Matching General purpose matching networks are
also related to our work. [50] used a matching CNN for
patch matching, [13] used it for optical flow and [29] used
it for stereo, optical flow and scene flow. Variants of net-
works [13, 29] have been proposed that include a corre-
lation layer explicitly, however it is then used as a stack
of features and followed by up-convolutions regressing the
dense matching. Overall, these networks have a signifi-
cantly larger number of parameters and require a lot of ad-
ditional synthetic training data.
Joint Training (CNN+CRF training) End-to-end training
of CNNs and CRFs is helpful in many applications. The
fully connected CRF [23], performing well in semantic seg-
mentation, was trained jointly in [10, 55] by unrolling iter-
ations of the inference method (mean field) and backprop-
agating through them. Unfortunately, this model does not



seem to be suitable for stereo because typical solutions con-
tain slanted surfaces and not piece-wise constant ones (the
filtering in [23] propagates information in fronto-parallel
planes). Instead simple heuristics based on dynamic pro-
gramming such as SGM [16] / MGM [14] are typically used
in engineered stereo methods or as post-processing. How-
ever they suffer from various artifacts as shown in [14]. A
trained inference model, even a relatively simple one, such
as dynamic programming on a tree [35], can become very
competitive. Scharstein [38] and Pal et al. [34] have con-
sidered training CRF models for stereo, linear in parame-
ters. To the best of our knowledge, training of inference
techniques with CNNs has not yet been demonstrated for
stereo. We believe the reason for that is the relatively slow
inference for models over pixels with hundreds of labels.
Employing the method proposed in [42], which is a variant
of a LP-relaxation on the GPU, allows us to overcome this
limitation. In order to train this method we need to look at
a suitable learning formulation. Specifically, methods ap-
proximating marginals are typically trained with variants of
approximate maximum likelihood [1, 18, 26, 31, 34, 38].
Inference techniques whose iteration can be differenti-
ated can be unrolled and trained directly by gradient de-
scent [27, 32, 33, 37, 41, 45, 55]. Inference methods based
on LP relaxation can be trained discriminatively, using a
structured SVM approach [11, 15, 21, 46], where parame-
ters of the model are optimized jointly with dual variables of
the relaxation (blended learning and inference). We discuss
the difficulty of applying this technique in our setting (mem-
ory and time) and show that instead performing stochastic
approximate subgradient descend is more feasible and prac-
tically efficient.

4. CNN-CRF Model
In this section we describe the individual blocks of our

model (Fig. 1) and how they connect.
We consider the standard rectified stereo setup, in which

epipolar lines correspond to image rows. Given the left and
right images I0 and I1, the left image is considered as the
reference image and for each pixel we seek to find a match-
ing pixel of I1 at a range of possible disparities. The dispar-
ity of a pixel i ∈ Ω = dom I0 is represented by a discrete
label xi ∈ L = {0, . . . L− 1}.

The Unary-CNN extracts dense image features for I0

and I1, respectively, denoted as φ0 = φ(I0; θ1) and φ1 =
φ(I1; θ1). Both instances of the Unary-CNN in Fig. 1
share the parameters θ1. For each pixel, these extracted
features are then correlated at all possible disparities to
form a correlation-volume (a matching confidence volume)
p : Ω × L → [0, 1]. The confidence pi(xi) is interpreted
as how well a window around pixel i in the first image I0

matches to the window around pixel i + xi in the second
image I1. Additionally, the reference image I0 is used to

estimate contrast-sensitive edge weights either using a pre-
defined model based on gradients, or using a trainable pair-
wise CNN. The correlation volume together with the pair-
wise weights are then fused by the CRF inference, optimiz-
ing the total cost.

4.1. Unary CNN

We use 3 or 7 layers in the Unary-CNN and 100 filters
in each layer. The filter size of the first layer is (3 × 3)
and the filter size of all other layers is (2 × 2). We use
the tanh activation function after all convolutional layers.
Using tanh i) makes training easier, i.e., there is no need for
intermediate (batch-)normalization layers and ii) keeps the
output of the correlation-layer bounded. Related works [2,
9] also have found that tanh performs better than ReLU for
patch matching with correlation.

4.2. Correlation

The cross-correlation of features φ0 and φ1 extracted
from the left and right image, respectively, is computed as

pi(k) =
e〈φ

0
i ,φ

1
i+k〉∑

j∈L e
〈φ0

i ,φ
1
i+j〉

∀i ∈ Ω,∀k ∈ L. (1)

Hence, the correlation layer outputs the softmax normal-
ized scalar products of corresponding feature vectors. In
practice, the normalization fixes the scale of our unary-costs
which helps training the joint network. Since the correlation
function is homogeneous for all disparities, a model trained
with some fixed number of disparities can be applied at test
time with a different number of disparities. The pixel-wise
independent estimate of the best matching disparity

xi ∈ arg max
k

pi(k) (2)

will be used for the purpose of comparison with the full
model.

4.3. CRF

The CRF model optimizes the total cost of complete dis-
parity labelings,

min
x∈X

(
f(x) :=

∑
i∈V

fi(xi) +
∑
ij∈E

fij(xi, xj)
)
. (3)

where V is the set of all nodes in the graph, i.e., the pixels,
E is the set of all edges and X = LV is the space of label-
ings. Unary terms fi : L → R are set as fi(k) = −pi(k),
the matching costs. The pairwise terms fij : L × L → R
implement the following model:

fij(xi, xj) = wijρ(|xi − xj |;P1, P2). (4)

The weights wij may be set either as manually defined
contrast-sensitive weights [6]:

wij = exp(−α|Ii − Ij |β) ∀ij ∈ E , (5)



allowing cheaper disparity jumps across strong image gradi-
ents, or using the learned model of the Pairwise-CNN. The
function ρ is a robust penalty function defined as

ρ(|xi − xj |) =


0 if |xi − xj | = 0,

P1 if |xi − xj | = 1,

P2 otherwise,
(6)

popular in stereo [17]. Cost P1 penalizes small disparity
deviation of one pixel representing smooth surfaces and P2

penalizes larger jumps representing depth discontinuities.
We use only pairwise-interactions on a 4-connected grid

(as opposed to the popular fully connected CRF often used
in semantic segmentation).
Inference Despite the direct solution of (3) is in-
tractable [25], there are a number of methods to perform
approximate inference [11, 19] as well as related heuristics
designed specifically for stereo such as [14, 17]. We ap-
ply the dual minorize-maximize method (Dual MM) [42],
which is sound because it is based on LP-relaxation, similar
to TRW-S [19], and massively parallel, allowing a fast GPU
implementation1.

We give a brief description of Dual MM, which will also
be needed when considering training. Let f denote the con-
catenated cost vector of all unary and pairwise terms fi, fij .
The method starts from a decomposition of f into horizon-
tal and vertical chains, f = f1 + f2 (namely, f1 includes
all horizontal edges and all unary terms and f2 all vertical
edges and zero unary terms). The value of the minimum
in (3) is lower bounded by

max
λ

(
D(λ) := min

x1
(f1 + λ)(x1) + min

x2
(f2 − λ)(x2)

)
,

(7)

where λ is the vector of Lagrange multipliers corresponding
to the constraint x1 = x2. The bound D(λ) ≤ (3) holds for
any λ, however it is tightest for the optimal λ maximizing
the sum in the brackets. The Dual MM algorithms performs
iterations towards this optimum by alternatively updating λ
considering at a time either all vertical or horizontal chains,
processed in parallel. Each update monotonously increases
the lower bound (7). The final solution is obtained as

xi ∈ argmin
k

(f1
i + λi)(k), (8)

i.e. similar to (2), but for the reparametrized costs f1 +λ. If
the inference has converged and the minimizer xi in (8) is
unique for all i, then x is the optimal solution to the energy
minimization (3) [22, 47].

4.4. Pairwise CNN

In order to estimate edge weights with a pairwise CNN,
we use a 3-layer network. We use 64 filters with size (3×3)

1GPU implementation of [42] provided by its authors.

Figure 2: Learned vs fixed pairwise costs: Visualization of the
pairwise costs between two neighboring pixels in x- direction us-
ing the learned pairwise-net (left) and a fixed edge-function (right).
Dark pixels indicate a low cost for changing the label and bright
pixels indicate a high cost for a label-switch. Note, how the
dark pixels follow object outlines (where depth discontinuities are
likely) and how texture-edges tend to be suppressed (e.g. at the
floor) in the learned version.

and the tanh activation function in the first two layers to
extract some suitable features. The third layer maps the fea-
tures of pixel i to weights (wij | ij ∈ E) corresponding to
the two edge orientations, where we use the absolute value
function as activation. This ensures, that the pairwise costs
are always larger than 0 and that our Pairwise-CNN has the
ability to scale the output freely. In practice this is desirable
because it allows to automatically learn the optimal trade-
off between data-fidelity and regularization. The parame-
ters of this network will be denoted as θ2. The weights w
can be stored as a 2-channel image (one channel per orien-
tation). These weights contribute to the CRF pairwise terms
fij as follows:

fij(xi, xj) = wijρ(|xi − xj |;P1, P2). (9)

The values P1, P2 remain as global parameters. This net-
work generalizes the manually engineered model (6) with
contrast-sensitive terms (5) and can learn to apply it adap-
tively based on the image content in a wider neighborhood.
Fig. 2 shows an example output of the Pairwise-CNN.

5. Training
One major goal of this work is the training of the com-

plete model in Fig. 1 end-to-end. For the purpose of com-
parison of different components we train 3 types of models,
of increasing generality:
• Pixel-wise Unary-CNN: model in which CRF interac-

tions are set to zero and Pairwise-CNN is switched off.
• Joint Unary-CNN +CRF model in which the Pairwise-

CNN is fixed to replicate exactly the contrast-sensitive
model (5). Trained parameters are: Unary-CNN and
global parameters P1, P2.
• Joint model with trained Unary-CNN and Pairwise-

CNN (=complete model). Trained Parameters are:
Unary-CNN, Pairwise-CNN and global parameters
P1, P2.



5.1. Training Unary CNN in the Pixel-wise Model

For the purpose of comparison, we train a Unary CNN
in a pixel-wise mode, similarly to [12, 28, 53]. For this pur-
pose we let the CRF interactions to be fixed to zero (e.g.,
by letting P1 = P2 = 0), in which case the resulting de-
cision degenerates to the pixel-wise independent argmax
decision rule (2). Training such models can be formu-
lated in different ways, using gradient of the likelihood /
cross-entropy [28, 51], reweighed regression [12] or hinge
loss [52]. Following [28, 51] we train parameters of the
Unary-CNN θ1 using the cross-entropy loss,

min
θ1

∑
i∈Ω

∑
k∈X

pgti (k) log pi(k; θ1), (10)

where pgti (k) is the one-hot encoding of the ground-truth
disparity for the i-th pixel.

5.2. Training Joint Model

We apply the structured support vector machine for-
mulation, also known as maximum margin Markov net-
work [44, 46], in a non-linear setting. After giving a short
overview of the SSVM approach we discuss the problem
of learning when no exact inference is possible and the
blended learning and inference approach of [11, 21], which
as we argue is not feasible for models of our size. We then
discuss the proposed training scheme approximating a sub-
gradient of a fixed number of iterations of Dual MM.
SSVM Assume that we have a training sample consisting of
an input image pair I = (I0, I1) and the true disparity x∗.
Let x be a disparity prediction that we make. We consider
an additive loss function

l(x, x∗) =
∑
i

li(xi, x
∗
i ), (11)

where the pixel loss li is taken to be li(xi, x∗i ) = min(|xi−
x∗i |, τ), appropriate in stereo reconstruction. The empirical
risk is the sum of losses (11) over a sample of several image
pairs, however for our purpose it is sufficient to consider
only a single image pair. When the inference is performed
by the CRF i.e., the disparity estimate x is the minimizer
of (3), training the optimal parameters θ = (θ1, θ2, P1, P2)
can be formulated in the form of a bilevel optimization:

min
θ
l(x, x∗) (12a)

s.t. x ∈ arg min
x∈X

f(x; θ). (12b)

Observe that any x ∈ argmin f(x) in (12b) necessarily
satisfies f(x) ≤ f(x∗). Therefore, for any γ > 0, the

scaled loss γl(x, x∗) can be upper-bounded by

max
x: f(x)≤f(x∗)

γl(x, x∗) (13a)

≤ max
x: f(x)≤f(x∗)

[f(x∗)− f(x) + γl(x, x∗)] (13b)

≤ max
x

[f(x∗)− f(x) + γl(x, x∗)] . (13c)

A subgradient of (13c) w.r.t. (fi | i ∈ V) can be chosen as

δ(x∗)− δ(x̄), (14)

where δ(x)i is a vector in RL with components ([[xi =
k]] | k ∈ L), i.e. the 1-hot encoding of xi, and x̄ is a (gen-
erally non-unique) solution to the loss augmented inference
problem

x̄ ∈ argmin
x

[
f̄(x) := f(x)− γl(x, x∗)

]
. (15)

In the case of an additive loss function, problem (15) is of
the same type as (3) with adjusted unary terms.

To facilitate the intuition of why SSVM chooses the most
violated constraint, the hinge loss (13c) can be equivalently
written in the form

min{ξ ∈ R | (∀x) ξ ≥ f(x∗)− f(x) + γl(x, x∗)}, (16)

which reveals the large margin separation property: the con-
straint in (16) tries to ensure that the training solution x∗ is
better than all other solutions by a margin γl(x, x∗) and the
most violated constraint sets the value of slack ξ. The pa-
rameter γ thus controls the margin: a large margin may be
benefficial for better generalization with limited data. Find-
ing the most violated constraint in (16) is exactly the loss-
augmented problem (15).
SSVM with Relaxed Inference An obstacle in the above
approach is that we cannot solve the loss-augmented infer-
ence (15) exactly. However, having a method solving its
convex relaxation, we can integrate it as follows. Applying
the decomposition approach to (15) yields a lower bound on
the minimization: (15) ≥

D̄(λ) := min
x1

(f̄1 + λ)(x1) + min
x2

(f̄2 − λ)(x2) (17)

for all λ. Lower bounding (15) like this results in an upper-
bound of the loss γl(x, x∗) and the hinge loss (13a):

γl(x, x∗) ≤ (13a) ≤ f(x∗)− D̄(λ). (18)

The bound is valid for any λ and is tightened by maximizing
D(λ) in λ. The learning problem on the other hand mini-
mizes the loss in θ. Tightening the bound in λ and minimiz-
ing the loss in θ can be written as a joint problem

min
θ,λ

f(x∗; θ)− D̄(λ; θ). (19)



Using this formulation we do not need to find an optimal λ
at once, it is sufficient to make a step towards minimizing
it. This approach is known as blended learning and infer-
ence [11, 21]. Unfortunately, it is disadvantageous for our
purpose for two reasons: i) at the test time we are going
to use a fixed number of iterations instead of optimal λ ii)
joint optimization in θ and λ in this fashion will be slower
and iii) it is not feasible to store intermediate λ for each
image in the training set as λ has the size of a unary cost
volume.
Approximate Subgradient We are interested in a subgra-
dient of (18) after a fixed number of iterations of the infer-
ence method, i.e., training the unrolled inference. A sub-
optimal λ (after a fixed number of iterations) will generally
vary when the CNN parameters θ and thus the CRF costs
f are varied. While we do not fully backtrack a subgradi-
ent of λ (which would involve backtracking dynamic pro-
gramming and recursive subdivision in Dual MM) we can
still inspect its structure and relate the subgradient of the
approximate inference to that of the exact inference.

Proposition 5.1. Let x̄1 and x̄2 be minimizers of horizontal
and vertical chain subproblems in (17) for a given λ. Let Ω 6=
be a subset of nodes for which x̄1

i 6= x̄2
i . Then a subgradient

g of the loss upper bound (18) w.r.t. fV = (fi | i ∈ V) has
the following expression in components

gi(k) =
(
δ(x∗)− δ(x̄1)

)
i
(k) (20)

+
∑
j∈Ω6=

(
Jij(k, x̄

2
i )− Jij(k, x̄1

i )
)
,

where Jij(k, l) is a sub-Jacobian (matching dλj(l)
dfi(k) for a sub-

set of directions dfi(k)). See Suppl. A for more details.
We conjecture that when the set Ω 6= is small, for many

nodes the contribution of the sum in (20) will be also small,
while the first part in (20) matches the subgradient with ex-
act inference (14).

Proposition 5.2. For training the abbreviate inference with
dual decomposition such as Dual MM, calculate the mini-
mizer x̄1 after a fixed number of iterations and approximate
the subgradient as

δ(x∗)− δ(x̄1). (21)

The assumption for the learning to succeed is to even-
tually have most of the pixels in agreement. The inference
method works towards this by adjusting λ such that the con-
straints x1

i = x2
i are satisfied. We may expect in practice

that if the data is not too ambiguous this constraint will be
met for a large number of pixels already after a fixed num-
ber of iterations. A good initialization of unary costs, such
as those learned using the pixel-wise only method can help
to improve the initial agreement and to stabilize the method.

5.3. Training Unary and Pairwise CNNs in Joint
Model

In order to make the pairwise interactions trainable, we
need to compute a subgradient w.r.t. wij , P1, P2. We
will compute it similarly to how it was done for the unary
terms assuming exact inference, and then just replace the
exact minimizer x̄ with an approximate x̄1. A subgradient
of (13c) is obtained by choosing a minimizer x̄ and evaluat-
ing the gradient of the minimized expression. Components
of the later are given by

∂
∂wij

= ρ(|x∗i−x∗j |;P1,2)− ρ(|x̄i − x̄j |;P1,2), (22a)
∂
∂P1

=
∑
ij wij([[|x∗i−x∗j | = 1]]− [[|x̄i−x̄j | = 1]]), (22b)

∂
∂P2

=
∑
ij wij([[|x∗i−x∗j | > 1]]− [[|x̄i−x̄j | > 1]]). (22c)

We thus obtain an end-to-end trainable model without any
hand-crafted parameters, except for the hyper-parameters
controlling the training itself.

5.4. Implementation Details

We trained our models using Theano [4] with stochas-
tic gradient descent and momentum. For training the model
without pairwise costs we set the learn rate to 1×10−2, for
all other models we set the learn rate to 1×10−6. Before
feeding a sample into our model we normalize it such that
it has zero-mean as well as unit-variance. Our full model
is trained gradually. We start by training the models with
lower complexity and continue then training more complex
models, where we reuse previously trained parameters and
initialize new parameters randomly (see Fig. 3). Since we
use full RGB images for training, we have to take care of oc-
clusions as well as invalid pixels, which we mask out during
training. Additionally, we implemented the forward pass
using C++/CUDA in order to make use of our trained mod-
els in a real-time environment in a streaming setting. We
achieve 3-4 frames per second with our fully trained 3-layer
model using an input-size of 640× 480 pixels2.

6. Experiments
In this section we will be testing different variants of

our proposed method. In order not to confuse the reader,
we will use the following naming convention: CNNx is
the argmax output of a network trained as described in
§ 5.1; CNNx+CRF is the same network with Dual MM as
post-processing; CNNx+CRF+Joint is the jointly trained
network described in § 5.2; CNNx+CRF+Joint+PW is the
fully trained method described in § 5.3. x represents the
respective number of layers in the CNN.

2A detailed breakdown of the timings can be found in the supplemen-
tary material.



(A) (B) (C)

0 500 1,000 1,500 2,000
5

10

15

20

25

30

35

40

Epochs

ba
d

4
[%

]
training set
validation set

Figure 3: Performance w.r.t. the real objective (bad4, Middle-
bury) for key complexity steps of our model during training. (A)
Unary-CNN (7 layers) is trained using ML § 5.1. (B) Adding
the CRF with contrast-sensitive weights with an optimal choice
of parameters (α, β, P1, P2). (C) Joint optimization of complete
model §§ 5.2 and 5.3. Observe that the gap between training and
validation errors is significantly smaller in (C).

6.1. Benchmark Data Sets

For our experiments we are using two stereo benchmark
datasets: Kitti 2015 [30] and Middlebury [39]. Both bench-
marks hold out the test set, where the ground truth is not
accessible to authors. We call examples with ground truth
available that can be used for training/validation the design
set and split it randomly into 80% training set and 20%
validation set. This way we obtain 160 + 40 examples for
Kitti and 122+31 examples for Middlebury (including addi-
tionally provided images with different lightings, exposures
and perfect/imperfect rectified stereo-pairs). The used er-
ror metric in all experiments is the percent of pixels with a
disparity difference bigger x pixels (badx).

6.2. Performance of Individual Components

In this experiment we measure the performance improve-
ment when going from CNNx to the full jointly trained
model. Since ground-truth of the test data is not available to
us, this comparison is conducted on the complete design set.
The results are shown in Table 1. This experiment demon-
strates that an optimization or post-processing is necessary,
since the direct output of all tested CNNs (after a simple
point-wise minimum search in the cost volume) contains
too many outliers to be used directly. A qualitative com-
parison on one of the training images of Middlebury is de-
picted in Fig. 4. One can observe that the quality of the
CNN-only method largely depends on the number of layers
whereas the CNN+CRF versions achieve good results even
for a shallow CNN.

6.3. Benefits of Joint Training

In this experiment, we compare our method to two re-
cently proposed stereo matching methods based on CNNs,

Input CNN +CRF +Joint+PW

Figure 4: Qualitative comparison of Unary-CNN, CNN+CRF and
CNN+CRF+Joint+PW on the Middlebury benchmark. Zoom-in
of disparity with 3 layers (top) and 7 layers (bottom). Note how
the jointly trained models inpaint occlusions correctly.

Benchmark Method CNN +CRF +Joint +PW

Middlebury
CNN3 23.89 11.18 9.48 9.45
CNN7 18.58 9.35 8.05 7.88

Kitti 2015

CNN3 28.38 6.33 6.11 4.75
CNN7 13.08 4.79 4.60 4.04
[28] 5.99 4.31 - -
[53] 13.56 4.45 - -

Table 1: Influence of the individual components of our method
(§ 6.2) and comparison with [28, 53] without post-processing
(§ 6.3). Standard error metrics (bad4 on official training data for
Middlebury and bad3 on the design set for Kitti) are reported.

the MC-CNN by Zbontar and LeCun [53] and the Content-
CNN by Luo et al. [28]. In order to allow for a fair
comparison among the methods, we disable all engineered
post-processing steps of [28, 53]. We then unify the post-
processing step by adding our CRF on top of the CNN out-
puts. We evaluate on the whole design set since we do
not know the train/test split of the different methods. In
favor of the compared methods, we individually tune the
parameters P1, P2, α, β of the CRF for each method us-
ing grid search. The results are shown in Table 1. While
the raw output of our CNN is inferior to the compared
methods, the post-processing with a CRF significantly de-
creases the difference in performance. Joint training of our
CNN+CRF model further improves the performance, de-
spite using a relatively shallow network, having fewer pa-
rameters. Specifically, our full joint model with 7 layers has
281k parameters, while the networks [28, 53] have about
700k and 830k parameters, respectively.

6.4. Benchmark Test Performance

Evaluation of our submission on test images is available
in online suites of Middlebury [39] and Kitti 2015 [30]. The
summary of this evaluation is presented in Fig. 5. We would
like to stress that those results have been achieved with-
out using any post-processing like occlusion detection and
-inpainting. We fine-tuned our best performing model (Ta-
ble 1, CNN7+PW) for half sized images and used it for the
Middlebury evaluation. Some qualitative results are shown
in Fig. 6. Since no ground-truth is handed out, we can only
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[53] acc. 8.29 5.59 4.55 5.96 2.83 11.4 8.44 8.32 8.89 2.71 16.3 14.1 13.2 13.0 6.40 11.1
[3] 8.62 6.05 5.16 6.24 3.27 11.1 8.91 8.87 9.83 3.21 15.1 15.9 12.8 13.5 7.04 9.99
[54] 13.4 5.90 4.88 10.8 12.9 10.6 13.6 12.2 9.01 5.39 27.4 23.5 17.7 21.0 15.4 20.9
Ours 16.5 27.9 4.79 8.62 20.2 37.6 15.1 24.2 17.4 4.47 19.2 22.0 20.0 21.1 9.43 16.2

Kitti 2015
Method Non-occ All Time

[53] acc. 3.33 3.89 67s
[28] 4.00 4.54 1s
Ours 4.84 5.50 1.3s

Figure 5: Performance in benchmark test sets as of time of submission. For both benchmarks, we compare our results against work that is
based on CNNs for matching costs and accepted for publication [3, 28, 53, 54]. We report the respective standard error metric bad2 for the
Middlebury benchmark and bad3 for the Kitti benchmark.

Figure 6: Qualitative comparison on selected test images (from top
to bottom: Djembe, Plants, Australia) of the Middlebury Stereo
Benchmark. The left column shows the generated disparity images
in false color, the right column the bad2 error image, where white
= error smaller than 2 disparities, grey = occlusion and black =
error greater than 2 disparities.

Figure 7: Qualitative comparison on the test set of Kitti 2015.
More results can be viewed online and in the supplementary ma-
terial.

print the error image that has been provided by the online
system. Looking at the results in Figs. 5 and 6 we have iden-
tified the strengths and drawbacks of the proposed method.
The first two rows of Fig. 6 show examples where our algo-
rithm achieves a very low error as in majority of images. In
the third row we can identify a failure case of our method.
The Australia image is imperfectly rectified, i.e., the epipo-
lar lines do not correspond precisely to the rows anymore.
This contradicts the assumption of our model that the corre-
sponding pixel is always located in the same row and there-
fore implies some errors if the imperfectness is too large.

For Kitti we again used our best performing model (Ta-
ble 1, CNN7+PW), including the x- and y-coordinates of
the pixels as features. This is justified because e.g. the sky
is always at the top of the image while the roads are al-
ways at the bottom. By looking at the error plots for Kitti
in Fig. 7, one can see, that most of the incorrect predictions
are in i) occluded areas or ii) along fine structures in the
images which are fattened in the ground-truth. We include
additional experiments as well as visual comparisons with
other methods in the supplementary material.

7. Conclusion
We have proposed a fully trainable hybrid CNN+CRF

model for stereo. This allows us to directly optimize for the
final output. We utilize CNNs for computing both, unary
costs and pairwise costs, to be used in a CRF. This archi-
tecture makes our model easily interpretable. We showed
how this model can be trained using the SSVM formulation.
Our model achieves competitive results on the Middlebury
and Kitti stereo benchmarks. In contrast to other works,
our model has much less parameters and more importantly,
does not use any post-processing. Despite not modeling oc-
clusions, they are often filled in correctly in practice. For
future work we want to model occlusions explicitly and try
to learn them in order to further improve the performance
of our model. Also, it will be interesting to look into post-
processing methods like sub-pixel enhancement that can be
incorporated into the training process.
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End-to-End Training of Hybrid CNN-CRF Models for Stereo
Supplementary Material

A. Technical Details
A.1. Approximate Subgradient

Here we proof Proposition 5.1, restated below for conve-
nience.

Proposition 5.1. Let x̄1 and x̄2 be minimizers of horizontal
and vertical chain subproblems in (17) for a given λ. Let Ω 6=
be a subset of nodes for which x̄1

i 6= x̄2
i . Then a subgradient

g of the loss upper bound (18) w.r.t. fV = (fi | i ∈ V) has
the following expression in components

gi(k) =
(
δ(x∗)− δ(x̄1)

)
i
(k) (20)

+
∑
j∈Ω6=

(
Jij(k, x̄

2
i )− Jij(k, x̄1

i )
)
,

Proof. The loss upper bound (18) involves the minimum
over x1, x2 as well as many minima inside the dynamic
programming defining λ. A subgradient can be obtained by
fixing particular minimizers in all these steps and evaluat-
ing the gradient of the resulting function. It follows that a
subgradient of the point-wise minimum of (f̄1 + λ)(x1) +
(f̄2 − λ)(x2) over x1, x2 can be chosen as g =

∇fV (f̄1(x̄1) + f̄2(x̄2)) +∇λ(λ(x̄1)− λ(x̄2))J, (23)

where Ji,j(k, l) is a sub-Jacobian matching dλj(l)
dfi(k) for the

directions dfV such that λ(f+dfV) has the same minimizers
inside dynamic programming as λ(f).

In the first part of the expression (23), the pairwise com-
ponents and the loss l(x̄1, x∗) do not depend on fi and may
be dropped, leaving only (∇fV

∑
j∈V fj(x̄

1
j ))i = δ(x̄1)i.

Let h denote the second expression in (23). Its compo-
nent hi(k) expands as

hi(k) =
∑
j∈V

∑
l∈L

∂

∂λj(l)
(λj(x̄

1
j )− λj(x̄2

j ))Jij(k, l) (24a)

=
∑
j∈Ω6=

∑
l∈L

([[x̄1
j=l]]− [[x̄2

j = l]])Jij(k, l) (24b)

=
∑
j∈Ω6=

(Jij(k, x
1
j )− Jij(k, x2

j )). (24c)

Our intuition to neglect the sum (24c) is as follows. We
expect that variation of fi for a pixel i far enough from j ∈
Ω 6= will not have a significant effect on λj and thus Jij will
be small over Ω 6=.

Component # Disp. Kitti 2015 Middlebury Real-Time
0.4 MP 1.3 MP 0.3 MP

Input processing 7.58 6.40 6.02
Pairwise CNN 21.12 59.46 13.75
Unary CNN 262.48 664.19 62.54
Correlation 128 154.86 437.02 46.70
Correlation 256 286.87 802.86 −
CRF 128 309.48 883.57 155.85
CRF 256 605.35 1739.34 −

Total 128 755.52 2050.64 284.86
Total 256 1183.40 3272.25 −

Table B.1: Timing experiments for 7 layer CNN and 5 CRF itera-
tions (3 layer and 4 iterations for Real-Time). Runtimes in ms.

B. Additional Experiments
B.1. Timing

In Table B.1 we report the runtime of individual compo-
nents of our method for different image sizes and number
of labels (=disparties). All experiments are carried out on a
Linux PC with a Intel Core i7-5820K CPU with 3.30GHz
and a NVidia GTX TitanX using CUDA 8.0. For Kitti 2015,
the image size is 1242 × 375. For Middlebury V3 we se-
lected the Jadeplant data set with half resolution, leading
to an image size of 1318 × 994. We observe that with a
constant number of layers in the Unary CNN and dispar-
ity range, the runtime depends linearly on the number of
pixels in the input images. Correlation and CRF layer also
depend on the number of estimated disparities, where we
report numbers using 128 and 256 disparities.

B.2. Sublabel Enhancement

A drawback of our CRF method based on dynamic
programming is the discrete nature of the solution. For
some benchmarks like Middlebury the discretization ar-
tifacts negatively influence the quantitative performance.
Therefore, most related stereo methods perform some kind
of sub-label refinement (e.g. [28, 53]). For the submission
to online benchmarks we deliberately chose to discard any
form of non-trainable post-processing. However, we per-
formed additional experiments with fitting a quadratic func-
tion to the output cost volume of the CRF method around
the discrete solution. The refined disparity is then given by

dse = d+
C(d− h)− C(d+ h)

2(C(d+ h)− 2C(d) + C(d− h))
(25)



Figure B.1: Qualitative comparison on Motorcycle of discrete
(upper-right) and sublabel enhanced (bottom-left) solution. Note
how smooth the transitions are in the sublabel enhanced region
(e.g. at the floor or the rear wheel).

where C(d) is the cost of disparity d. A qualitative experi-
ment on the Motorcycle image of Middlebury stereo can be
seen in Fig. B.1. Quantitative experiments have been con-
ducted on both Kitti 2015 and Middlebury and will be re-
ported in the follow sections (columns w. ref. in Tables B.2
and B.3). Again, in the main paper and in the submitted
images we always report the performance of the discrete
solution in order to keep the method pure.

B.3. Middlebury Stereo v3

In this section we report a complete overview of all tested
variants of our proposed hybrid CNN-CRF model on the
stereo benchmark of Middlebury Stereo v3. We report the
mean error (error metric percent of non-occluded pixels with
an error bigger 4 pixels). All results are calculated on quar-
ter resolution and upsampled to the original image size. We
present the results in Fig. B.2 and Table B.2. Note, how the
quality increases when we add more parameters and there-
fore allow a more general model (visualized from left to
right in Fig. B.2. The last row shows the Vintage image,
where our model produces a rather high error. The reason
for that lies in the (almost) completely untextured region
in the top-left corner. Our full model is able to recover
some disparities in this region, but not all. A very inter-
esting byproduct visible in Fig. B.2 concerns our small 3-
layer model. Visually, one can hardly see any difference to
the deeper 7-layer model, when our models are full jointly
trained. Hence, this small model is suited very well for a
real-time application.

Additionally, we compared to the performance of the
model learned on Kitti, denoted Kitti-CNN in Table B.2.
The performance is inferior, which means that the model
trained on Kitti does not generalize well to Middlebury.
Generalizing from Middlebury to Kitti, on the other hand

is much better, as discussed in the next section.

Method w/o. ref. w. ref.

CNN3 23.89 -
CNN3+CRF 11.18 10.50
CNN3 Joint 9.48 8.75
CNN3 PW+Joint 9.45 8.70
CNN7 18.58 -
CNN7+CRF 9.35 8.68
CNN7 Joint 8.05 7.32
CNN7 PW+Joint 7.88 7.09

Kitti-CNN 15.22 14.43

Table B.2: Comparison of differently trained models and their per-
formance on the official training images of the Middlebury V3
stereo benchmark. The results are given in % of pixels farther
away than 4 disparities from the ground-truth on all pixels.

B.4. Kitti 2015

In this section we report a complete overview of all tested
variants of our proposed hybrid CNN-CRF model on the
stereo benchmark of KITTI 2015. We report the mean er-
ror (official error metric percent of pixel with an error big-
ger 3 pixels) on the complete design set. Table B.3 shows
a performance overview of our models. In the last row of
Table B.3 we apply our best performing model on Middle-
bury to the Kitti design set. Interestingly, the performance
decreases only by ≈ 1.5% on all pixels. This experiment
indicates, that our models generalize well to the scenes of
the Kitti benchmark.

Method w/o. ref. w. ref.
all non occ. all non occ.

CNN3 29.58 28.38 - -
CNN3+CRF 7.88 6.33 7.77 6.22
CNN3 Joint 7.66 6.11 7.57 6.02
CNN3 PW+Joint 6.25 4.75 6.14 4.65
CNN7 14.55 13.08 - -
CNN7+CRF 5.85 4.79 5.76 4.70
CNN7 Joint 5.98 4.60 5.89 4.50
CNN7 PW+Joint 5.25 4.04 5.18 3.96

[53]+CRF 6.10 4.45 5.74 4.08
[28]+CRF 5.89 4.31 5.81 4.21
[53] 15.02 13.56 - -
[28] 7.54 5.99 - -

MB-CNN 6.82 5.35 6.69 5.21

Table B.3: Comparison of differently trained models and their
performance on the design set images of the KITTI 2015 stereo
benchmark. The results are given in % of pixels farther away than
3 disparities from the ground-truth on all pixels.



Figure B.2: Qualitative comparison of our models on Middlebury. For each image, the first row shows our 3-layer model and the second row
shows the result of our 7-layer model. The first column shows out Unary-CNN with argmax desicion rule, the second column CNNx+CRF
and the third column shows the result of CNNx+CRF+Joint+PW. The remaining columns show the respective error-plots for the different
models, where white indicates correct and black indicates wrong disparities. Disparity maps are color-coded from blue (small disparities)
to red (large disparities).

Due to lack of space in the main paper, we could only
show a few qualitative results of the submitted method. In
Fig. B.4 we show additional results, more can be viewed
online.

Looking at Kitti results in more detail, we observe that
most of the errors happen in either occluded regions or due
to a fattened ground-truth. Since we train edge-weights to
courage label-jumps at strong object boundaries, our model

yields very sharp results. It is these sharp edges in our so-
lution which introduce some errors on the benchmark, even
when our prediction is correct. Fig. B.3 shows some ex-
amples on the test set (provided by the online submission
system).



Figure B.3: Error comparison on magnified parts of Kitti 2015 test images: The first and third row show the color-coded disparity map of
Ours, MC-CNN [53], ContentCNN [28] and DispNetC [29]. The second and last row show the corresponding error-plots, where shades
of blue mean correct and shades of orange mean wrong. Note, how our model accurately follows object boundaries, whereas all other
approaches fatten the object. Nevertheless, in terms of correct or wrong we make more wrong predictions, because the ground-truth seems
to be fattened as well.



Figure B.4: Qualitative comparison on the test set of KITTI 2015.


